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Abstract

This paper is concerned with a nonparametric regression problem in which the input
variables and the errors are autocorrelated in time. The motivation for the research
stems from modeling wind power curves. Using existing model selection methods, like
cross validation, results in model overfitting in presence of temporal autocorrelation.
This phenomenon is referred to as temporal overfitting, which causes loss of performance
while predicting responses for a time domain different from the training time domain.
We propose a Gaussian process (GP)-based method to tackle the temporal overfitting
problem. Our model is partitioned into two parts—a time-invariant component and
a time-varying component, each of which is modeled through a GP. We modify the
inference method to a thinning-based strategy, an idea borrowed from Markov chain
Monte Carlo sampling, to overcome temporal overfitting and estimate the time-invariant
component. We extensively compare our proposed method with both existing power
curve models and available ideas for handling temporal overfitting on real wind turbine
datasets. Our approach yields significant improvement when predicting response for
a time period different from the training time period. Supplementary material and
computer code for this article is available online.

Keywords: Autocorrelation, Gaussian process, Nonparametric regression, Time series.

1 Introduction

Wind energy is the forerunner among the renewable energy sources, and by the end of 2020,

wind energy accounted for roughly 8.4% of the total electricity used in the United States

(EIA, 2021). In various decision making tasks in wind energy, wind power curve plays an

important role. A power curve is a function that maps the relationship of wind speed and

other environmental variables to the wind power output. A quality estimation of power

curve has crucial practical implication for decision-making in many aspects, including wind

power prediction and turbine performance evaluation (Ding, 2019).

International Electrotechnical Commission (IEC, 2005) recommends a data-driven ap-

proach, known as the binning method, to construct the power curve. The binning method
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Figure 1: A nominal wind power curve. Dots (red) denote the data; piecewise constant

curve (blue) represents binning; smooth curve (black) is from smoothing on binning.

considers the single input of wind speed, partitions wind speed into small bins, say, 0.5

m/s, and uses the sample average of wind power data, whose corresponding wind speed

falls into a bin, as the estimate of power response for that bin. The power curve in Figure

1 is generated using the binning method (with some simple post smoothing).

Research reported in Bessa et al. (2012) and Lee et al. (2015) identifies that wind power

production is not limited to the effect of wind speed, but also depends on other factors such

as wind direction, air density, etc. Bessa et al. (2012) and Lee et al. (2015) both used the

kernel regression and kernel density estimation approaches. But Bessa et al. (2012) handle

up to three input variables, while Lee et al. (2015) use a new additive-multiplicative model

structure, referred to as AMK, that can in principle take in as many inputs as possible. The

actual number of inputs used in Lee et al. (2015) is up to seven. In Chapter 5 of Ding (2019)

and its companion DSWE R package (Kumar et al., 2021), more nonparametric regression

methods are provided, including those based on the smoothing splines (SSANOVA) (Gu,

2013, 2014), Bayesian trees (BART) (Chipman et al., 2010), k-nearest neighbors (kNN)

(Hastie et al., 2009), and support vector machines (SVM) (Vapnik, 2000). Thus, the nature

of power curve modeling falls squarely under the umbrella of nonparametric regression.

During our research, we encountered a problem in wind power curve modeling, which

we explain through the following real-life example. We were given (by a wind company) a

set of wind/weather inputs—wind speed, its standard deviation, wind direction, ambient

temperature—denoted by x, and the turbine power output data, denoted by y; all collected
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in 2015. We were asked to train a model and then predict y using the x values collected

in 2016 (the first six months). The actual y values of 2016 were withheld by the company

for evaluation. The binning method is the company’s practice and used as the benchmark.

The company (in fact any company) would only consider adopting a new method, if the

new method outperforms their current benchmark in testing. We chose the AMK method

mentioned above, as it was then demonstrated as the most competitive method. We use

a five-fold randomized cross validation to train the AMK model, including both variable

selection and parameter estimation. Using a forward stepwise variable selection, all four

aforementioned inputs are selected as important. The resulting AMK model has a root mean

squared error (RMSE) 30% smaller than the binning RMSE, based on the same five-fold

randomized cross-validation using the 2015 data. However, when both models (binning

and AMK) are applied to the 2016 data, the AMK model produces an RMSE which is

5% higher than binning. This is not a unique problem to AMK. Should we use another

nonparametric regression method included in the DSWE R package, a similar phenomenon

will be observed, that is, all of them outperform binning, with a comfortable margin, when

tested using 2015 data through a randomized cross validation, but all of them either fails

to outperform binning or see their margin of improvement significantly diminished when

tested using the 2016 data.

Exploring the literature (Roberts et al., 2017; Meyer et al., 2018; Sheridan, 2013), we

found that we are not alone—the problem encountered is a case of a common issue in non-

parametric regression, known as temporal overfitting (Meyer et al., 2018). This overfitting

is caused due to the temporal autocorrelation in the data. In the wind application, both x

and y are autocorrelated. Temporal overfitting differs from the usual notion of overfitting;

the latter occurs when a model fits well to the training data, but performs worse on a ran-

dom holdout data. The usual overfitting can generally be avoided using cross-validation, as

cross-validation error tends to estimate the generalization error when the input and error

processes are independent and identically distributed (i.i.d.); see Hastie et al. (2009, Chap-

ter 7). For temporal overfitting, however, the model generalizes well for the test datasets

originating from the same time domain as the training dataset, that is, there is no temporal

extrapolation when moving from training to test inputs and the data points in training and

test sets are temporally close. But, the model’s performance seriously deteriorates when
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the test dataset is from a different time domain (temporal extrapolation), precisely as we

observed in the wind power curve modeling.

We can classify test sets and their corresponding test errors into two categories. For

convenience, let us call the two test errors as in-temporal and out-of-temporal test errors,

respectively, based on whether the test datasets arise from the same or a different time

domain than that of the training dataset. In the earlier example, when a model is trained

and tested on the 2015 data through a randomized cross validation, the corresponding test

error is the in-temporal error, whereas when a model is trained using the 2015 data and

tested using the 2016 data, the corresponding test error is the out-of-temporal error. To be

clear, temporal overfitting is not concerned with the training error like the usual overfitting

problem. Rather, it is concerned with the aforementioned two types of test errors.

In this work, we establish a Gaussian process (GP)-based method to deal with temporal

overfitting. We split our functional model into two components: a time-invariant component

and a time-varying component, each of which is modeled as a GP. The GP model in and

of itself does not remove temporal overfitting; we make use of a subsampling scheme from

the Bayesian statistics literature, known as thinning, for model inference that reduces the

adverse impact of temporal overfitting. Thus, the main contributions of this work is to

highlight the temporal overfitting problem in power curve modeling and propose a GP-based

inference strategy to overcome the problem. Our numerical studies show that the proposed

method performs significantly better for out-of-temporal predictions, as compared to the

existing power curve models and other statistical approaches (those described in Section 2)

that can be used to deal with the temporal overfitting problem.

The rest of the paper is organized as follows. In Section 2, we describe the problem

statement and the major schools of thought in dealing with temporal overfitting. Section 3

presents our proposed method. Section 4 provides the empirical evidence on performance

of our method using wind turbine datasets. We conclude our research in Section 5.

2 Problem statement and relevant literature

We consider a nonparametric regression problem, where Yi ∈ R, Xi ∈ Rd, and ui ∈ R, and

Yi = f(Xi) + ui, (1)
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which has the following features:

1. The form of f(·) is unknown and differs in applications, making nonparametric ap-

proaches more appropriate. Furthermore, there are sufficient data pairs, {yi, xi}Ni=1,

enabling the nonparametric treatment.

2. The input is multivariate, but the number of input variables that are causal for the

response is unknown.

3. The input X and the error u can be considered physically independent with each

other.

4. The data are observational, not experimentally designed or controlled. They are

sequentially collected from an ongoing physical process over time. The index, i,

corresponds to time. Both the input variables in X and the error process, u, are

temporally autocorrelated over the time index i.

Our focus here is on #4, because without the temporal autocorrelation, the problem

falls under standard nonparametric regression.

A natural question is how the temporal autocorrelation in the data causes the overfitting,

even though time is not explicitly considered in the model (only implicitly tagged with

Xi) and the function of interest is the relationship between the input variables X and

the response Y . To address this question, we consider a closely related problem in the

statistics literature—when the error process is correlated with some input variables, namely

u = u(X). If one applies the standard statistical learning techniques without accounting

for the correlation between the error and the input variable, one may get an overfitted

functional estimate as shown in the left panel of Figure 2. The curve is fitted using a kernel

regression with a direct plug-in (DPI) bandwidth estimate (Ruppert et al., 1995). One can

find similar plots in Opsomer et al. (2001), De Brabanter et al. (2011).

The problem of temporal overfitting can be thought of a case when the errors are

correlated with the input variables. We know that when two random variables change

slowly over time, it could result in a spurious correlation among these two quantities even if

they are independent, as in the case under our consideration; see #3 and #4 in the problem

setup. This is to say, when the input variables and errors are autocorrelated in time, it
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Figure 2: Effect of correlation between input variable and error on functional estimate:
a) correlated errors; b) independent errors. We use f(x) = 5x2. The correlated error
sequence is generated using a zero mean GP with input x and an exponential kernel with
a lengthscale of 0.05.

would create a correlation among them, and may consequently create the overfitting effect

as shown in Figure 2. The presence of the nuisance input variables, which are not causal

to the response, further aggravates the problem. An input variable could turn out to be

‘seemingly important,’ owing to the temporal autocorrelation in both the response and the

nuisance variable, even when it is not a causal variable. The more input variables considered

for modeling, the more likely a non-causal variable to be selected because of the presence

of temporal autocorrelation, leading to poor generalization when the test data points are

from a different time domain (Roberts et al., 2017).

There are various methods studied in the literature to handle the problem of autocor-

relation in error and/or input; Opsomer et al. (2001) provides a survey of the methods up

to two decades ago. One class of methods, developed specifically for kernel regression, are

based on directly modifying the bandwidth estimation technique; see, for example, Altman

(1990) and De Brabanter et al. (2011, 2018). This is generally done by modifying the crite-

rion for computing the optimal bandwidth such as asymptotic squared error (ASE). One of

the criticisms for these kernel-based methods, as discussed by Opsomer et al. (2001), is their

inability to handle multivariate inputs. This limitation persists even in the recent literature

(De Brabanter et al., 2018), which still considers a univariate input while developing their

bandwidth estimation. De Brabanter et al. (2018) touch upon extensions to multivariate

inputs only in their discussions section. Thus, this class of method is not directly applicable
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to our nonparametric regression problem where multiple input variables are dealt with.

There are two other schools of thought applicable to our problem setup. One is known

as pre-whitening (Xiao et al., 2003; Geller and Neumann, 2018) and the other is through

some modification of the cross-validation error (Chu and Marron, 1991; Burman et al.,

1994; Racine, 2000; Opsomer et al., 2001; Rabinowicz and Rosset, 2020).

The idea of pre-whitening is to preprocess the response itself such that the resulting

data has a white noise (Xiao et al., 2003; Geller and Neumann, 2018). More specifically,

pre-whitening is to model ui using an invertible linear process,

ui = Σ∞j=0cjεi−j ,

where ε’s are white noises. Then, one can map ui’s to εi’s using the inverse process. Prac-

tically, one would require to fit a regression model m̂(X) and then compute the residuals

ûi = Yi− m̂(Xi). An autoregressive model of a suitable order can be estimated for ûi. Sub-

tracting the estimated autoregressive part of ûi from Yi, so as to remove the autocorrelation

in Y due to u, produces a modified response Ȳi. Theoretically, this modified response Ȳi

would be free from temporal autocorrelation and can be used as the response for the final

model. One major challenge in this method is the presence of some nuisance variables in the

data. According to Roberts et al. (2017), these nuisance (non-causal) variables can mask

the autocorrelation in the residuals, that is, the temporal autocorrelation of the residuals

gets modeled through the autocorrelation in the nuisance variables. If that happens, one

would underestimate the autocorrelation in the residuals, resulting in minimal or even no

changes in the modified response Ȳi. As a result, one gets little or no improvement on the

estimate of the regressor.

The idea of modifying cross-validation is arguably a more general framework to deal

with correlated errors or temporal overfitting. This branch of methods is also known as h-

blocking or hν-blocking and, more recently, as leave-time-out or time-split cross-validation.

The idea is to do cross-validation on temporal blocks of data rather than random samples.

Chu and Marron (1991); Burman et al. (1994); Racine (2000) explore this idea under

different settings. The time-blocked cross-validation idea is advocated by Roberts et al.

(2017) and adopted in Meyer et al. (2018).

Related to the idea of modifying cross-validation but unlike the previous works, Rabi-

nowicz and Rosset (2020) proposed a modification for the cross-validation error by adding
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a correction factor to account for the correlation. They motivate the problem using a linear

mixed effect model where some of the effects stay the same, whereas other effects change

from training to test datasets. The model formulation in Rabinowicz and Rosset (2020)

bears certain similarity to ours, as we split the regression function into a time-invariant

and time-dependent component (to be presented in the next section). A key difference is

that the inputs to the time-invariant component in our model are autocorrelated, while the

inputs to Rabinowicz and Rosset (2020)’s fixed effect term are i.i.d. The rest of the treat-

ment in our method also differs substantially from that in Rabinowicz and Rosset (2020).

For instance, our inference method does not require cross-validation.

In the case study, we compare our proposed method with the pre-whitening method,

the time-split cross-validation, and Rabinowicz and Rosset (2020)’s method. We find that

our method consistently outperforms these available approaches when testing on data that

are outside the time domain covered by the training data.

3 Proposed method

In this section, we describe our proposed method to mitigate the problem of temporal

overfitting while fitting a nonparametric regression model.

3.1 The model

Given a dataset D = {yi,xi, ti}Ni=1, we consider the following model:

yi = f(xi) + g(ti) + εi, (2)

where for our target wind application, y is the power output of a wind turbine, x is the d-

dimensional vector of environmental input variables, t denotes time, and ε is i.i.d. Gaussian

noise with zero mean and variance σ2
ε <∞. We deem that f(·) is a time-invariant function of

the input variables x and g(·) is a temporally autocorrelated stationary stochastic process

that contains the autocorrelated part of the residual. We stress that while f(·) is time

invariant, xi is time varying and autocorrelated.

Recall that the motivation for this paper is to avoid temporal overfitting and improve

the prediction accuracy under temporal extrapolation, that is, for out-of-temporal test sets

as defined in Section 1. In Equation (2), f(·) can explain the variance in the data that is
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carried over to a different time domain, as we assume that this function does not directly

depend on time but only through the input variables. The variance which does not carry

over to a different time horizon is modeled through the time-dependent term, g(·). The rest

is just i.i.d. noise. Thus, for out-of-temporal predictions, accurately identifying f(·) plays

a key role in improving the accuracy.

Before providing further modeling details, we would like to elaborate on this model

setup. Among the three main approaches reviewed in Section 2, the pre-whitening approach

and the time-split cross-validation do not invoke a model like in Equation (2); rather they

work directly with the model in Equation (1). This is especially obvious in the pre-whitening

approach, which is to whiten the autocorrelated u and use that as the main apparatus to

deal with temporal overfitting. But Rabinowicz and Rosset (2020)’s method does invoke

a model of certain similarity to Equation (2). Specifically, Rabinowicz and Rosset (2020)

consider a generalized linear mixed model (GLMM) of the form,

y = Φβ + Zs+ ε, (3)

where Φ contains the fixed effect covariates, meaning that the input x would be included

through Φ, and Z contains the random effect covariates. The realization of the random

effect s can change from training to test cases.

As we pointed out earlier, Rabinowicz and Rosset (2020) assume the input variables in

their fixed effect term, Φ, to be i.i.d. samples. In our setting, the input variables in xi

are autocorrelated in time. In other words, the autocorrelation in yi in our process comes

from two sources—the autocorrelation in both xi and g(ti). We believe this difference is

important and helps explain the difference in the outcome of applying both methods. We

revisit this point in Section 4.7 after presenting the numerical results.

Continuing with our modeling process, we model both f(·) and g(·) as realizations

of stationary Gaussian processes (GPs) (Rasmussen and Williams, 2006). For f(·), it is

assumed to be a sample from a GP with a mean function µ(·) and a covariance function

k(·, ·). Specifically, we use a constant mean function and a Matérn covariance function with

a smoothness parameter of ν = 1.5 as follows:

µ(x) = β, k(x,x′) = σ2
f

(
1 +
√

3r
)

exp
(
−
√

3r
)
, r =

√√√√ d∑
`=1

((x)` − (x′)`)2

(θ)2
`

(4)
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where β is an unknown constant, σ2
f is the variance of f(·), and (·)` denotes `th component

of a vector; for instance, (θ)` is the lengthscale parameter for the `th covariate. We come to

this specific choice by experimenting with four covariance functions—squared exponential,

two Matérn kernels (smoothness of 1.5 and 2.5), and exponential kernel—and chose the

best performing one, which is Matérn with ν = 1.5. While there are some difference in

performance, the differences are not that striking; see Supplementary Material S1.

The temporal part g(·) is assumed to be zero mean with a covariance function denoted

by q(·, ·). We again use a Matérn covariance function with ν = 1.5 for g(·) given as follows:

q(t, t′) = σ2
g

(
1 +
√

3
|t− t′|
φ

)
exp

(
−
√

3
|t− t′|
φ

)
, (5)

where σ2
g is the variance of g(·) and φ is the lengthscale for time.

3.2 Inference procedure

The key is how to effectively estimate the two components in Equation (2). Recall that

our data are observational, not from designed experiments in which the confounding effects

can be distinguished through a careful selection of factor settings. Using the observa-

tional data, if one conducts the maximum likelihood estimation of the hyperparameters,

(β, σf ,θ, σg, φ, σε), in Equation (2), one would run into an identifiability issue—while at-

tempting to learn the hyperparameters for both f(·) and g(·) together, it is difficult to tell

whether the variance in the data is due to some input variables or due to time. We provide

numerical evidence on worse performance of joint (direct) estimation in Section 4.6.

Another possible explanation for the inferior performance of direct estimation comes

from an intrinsic problem of GP regression. For simplicity, consider the model yi = µ0 +

f0(xi) + g0(ti) + εi, where µ0 stands for the global mean value, and f0 and g0 are zero-

mean GPs. Then there is a known identifiability issue for estimating µ0; see Tuo and Wu

(2016) and Theorem 3 of Wang et al. (2020). This issue in estimation does not affect

the prediction properties for applications in which people combine all additive terms for

making prediction, because this bias can be compensated by another bias in estimating f0

and g0; see Tuo and Wu (2018) and Theorem 2 of Wang et al. (2020). However, in the

current context, the estimate of g0 itself is critical for out-of-temporal predictions, because

an inaccurate estimate of g0 means that µ0 + f0 is also inaccurate, resulting in worse out-
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of-temporal predictions.

In order to overcome this problem, we decompose the model in Equation (2) as follows:

yi = f(xi) + ui,

ui = g(ti) + εi.

In the first step, we only focus on estimating f(·) such that the variation in y due to

temporal correlation of u does not get modeled. The residual left after subtracting the

estimate of f(·) would be used to estimate g(·) and σ2
ε .

The first step is equivalent to learning a function with autocorrelated errors. To this

end, we adopt an idea frequently used to reduce the autocorrelation in Markov chain Monte

Carlo (MCMC) sampling schemes. The method is a subsampling scheme known as thinning.

The method retains one sample after every T time steps and discards all the samples in

between to reduce the autocorrelation; hence the name, thinning, as this results in a thinned

dataset. The number T is often referred as the thinning number.

Thinning retains only 1/T fraction of the original dataset and discards the rest. We

would like to retain all the samples because each sample carries information about the

function, which may not be otherwise available in other data points. So, instead of dis-

carding the data, we put the training samples in T number of thinned data bins. Let us

denote a data point (yi,xi, ti) as Di. Then, the first bin will have following data points,

B1 := {D1,DT+1,D2T+1, . . . ,DbN
T
cT+1}, where bac rounds a down to its nearest integer.

Generally, the jth bin has the following data points:

Bj := {Dj ,DT+j ,D2T+j , . . . ,DbN
T
cT+j}.

If bNT cT +j > N , then (bNT c−1)T +j would be last element for Bj . We have T bins overall.

Thinning creates a temporal gap between two consecutive data points in a bin, and thus

reduces the intra-bin temporal autocorrelation among the training points in any given bin.

Hence, for the data points in the same bin, we could assume u to be independent Gaussian

noise with some variance σ2
u < ∞. Then, we can proceed to estimate f using a likelihood

function of the thinned data.

Let us denote the number of data points in Bj by nj and let πj(·) be the function

that maps the index of the elements in set Bj to the index of the original dataset D.
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Denote the response vector for Bj by y(j) = (yπj(1), yπj(2), . . . , yπj(nj))
>. Let K(j) be the

covariance matrix for Bj such that the element in rth row and sth column is given by

(K(j))rs = k(xπj(r),xπj(s)) | r, s = 1 . . . nj , where k(·, ·) is the same as defined in Equation

(4). Let I be an identity matrix of a proper size and 1 be a vector of ones of a compatible

size. Then, the likelihood function for the jth bin Bj is given as follows:

Lj =
1√

(2π)nj |K(j) + σ2
uI|

exp (−1

2
(y(j) − β1)>[K(j) + σ2

uI]
−1(y(j) − β1)) . (6)

One could use any individual bin and its likelihood function to estimate the hyperpa-

rameters for function f , but doing so makes use of only a fraction of the original data, which

is not ideal. Intending to make full use of all the data for estimating f , our approach is to

create a pseudo-likelihood function as the product of the likelihood functions of individual

bins, namely
∏T
j=1 Lj . As such, the hyperparameters of function f can be estimated by

maximizing this pseudo-likelihood function, as follows:

(β̂, σ̂2
f , θ̂, σ̂

2
u) = arg max

T∏
j=1

Lj . (7)

The temporal correlation between different bins, namely the inter-bin temporal correlation,

will still exist, because temporally neighboring data points are now in different bins. But

the construction of the pseudo-likelihood function ignores the inter-bin correlations. In

other words, from the lens of this pseudo-likelihood function, the bins are not related at all.

Optimizing this pseudo-likelihood function forces the estimation of f to the thinned data

and will not be affected by the temporal autocorrelation.

The hyperparameters in Equation (7) can be estimated using any optimization routine.

In practice, we work with the logarithm of the likelihood function, which changes the finite

product structure of the likelihood function to a finite sum. Finite sum functions can also be

optimized using parallel processing, that is, each of the summand function can be evaluated

independently on a different computing core, which could reduce the computation time.

The hyperparameters therefore estimated will not reflect or minimally reflect the tem-

poral correlation due to u. Once the hyperparameters are estimated, we combine the

bins back to create a single dataset and use the single dataset for predictions. We use

the following notation: K is the covariance matrix for all the training points with its

element in the ith row and jth column given as (K)ij = k(xi,xj) | i, j = 1 . . . N ,
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r(x) = (k(x,x1), . . . , k(x,xN ))> is the correlation vector between any point x and all

the training points, and y = (y1, . . . , yN )> is the vector of response for all the training

points. The value of f̂(·) can be calculated at a given point x as follows:

f̂(x) = β̂ + r>(x)[K + σ̂2
uI]
−1(y − β̂1). (8)

3.3 Estimating g(t)

Let f̂ = (f̂(x1), . . . , f̂(xN ))> be the vector of the estimate of f(·) for all the training points.

The vector of residual ê is calculated as: ê = y − f̂ . Each of the residual is associated

with a time point. Denote by êt the residual for time point t. We use these residuals as the

response for estimating g(t) and σ2
ε .

Here we assume that the autocorrelation in time decays much faster as compared with

the overall time span of the training dataset. This is definitely reasonable for our target wind

applications, because the autocorrelation in wind speed or other environmental variables

only persists in the order of hours (Ding, 2019, Figure 2.3), while our training data spans

from a number of months to more than a whole year. For this reason, we do not need

all the training points to compute a global estimate for g(·). Instead, we compute a local

estimate of g(t∗) at t∗, based only on the training points in the neighborhood of t∗. Doing

this substantially reduces the computational burden for estimating g(·).

We use a neighborhood based on the thinning number T , as temporal autocorrelation

would be small after a lag of T time units. Thus, we only include the training points that

are within ±T time units from t∗, while estimating g(t∗). Moreover, there is no need to

estimate g(t∗) if there happens to be no training points in the T -neighborhood of t∗.

Let us define an index set for training points close to point t∗ as J∗ = {j : |t∗ − tj | ≤

T ; j = 1 . . . N}. Denote by Q∗ the covariance matrix formed by the time points in J∗

such that (Q∗)ij = q(ti, tj); i, j ∈ J∗. Here q(·, ·) is the same as defined in Equation (5).

Also, denote by ê∗ a vector of residuals with its jth component (ê∗)j = etj ; j ∈ J∗. The

hyperparameters for q(·, ·) and σ2
ε is estimated based on the value of t∗, and is given as

(σ̂2
g , φ̂, σ̂

2
ε ) = arg max

1√
(2π)(|J∗|)|Q∗ + σ2

ε I|
exp (−1

2
ê∗
>

[Q∗ + σ2
ε I]
−1ê∗). (9)

Let s∗ denote a covariance vector such that its jth component is (s∗)j = q(t∗, tj); j ∈ J∗.
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Once the hyperparameters are estimated, ĝ(t∗) is given as follows:

ĝ(t∗) = s∗>[Q∗ + σ̂2
ε I]
−1ê∗ (10)

3.4 Predictions

Once f̂(·) and ĝ(·) are estimated, they do not have to be used together in a prediction. If

one wants to predict at a time t∗, which is in the far distant future and temporally far away

from any training data points, then one only needs f̂(x∗), as ĝ(t∗) is going to be zero. The

condition to decide whether t∗ is temporally enough far away from the training data is to

check whether there exists a training data point, ti, such that |t∗ − ti| ≤ T . If no, then t∗

is temporally far away. We refer to this type of prediction under temporal extrapolation

as out-of-temporal prediction. By contrast, the in-temporal prediction refers to predictions

over a time t∗ not temporally far away from the training data points.

Of course, a user does not have to check this condition. One can just use f̂(x∗)+ ĝ(t∗) to

predict at any test point (x∗, t∗), regardless of where t∗ is. The ĝ(·) term takes the temporal

distance between t∗ and the training data points into consideration and will reduce to zero

when t∗ is temporally distant from the training data. Simply put, our model can adapt for

out-of-temporal versus in-temporal prediction without a user’s active involvement.

3.5 Choice of thinning number

The choice of thinning number T is important to reduce the temporal autocorrelation within

a data bin. If T is very small, we may still have overfitting problem. On the other hand, if T

is very large, the number of data points in each bin may be too low to learn f(·) accurately.

The choice of T needs to provide a trade-off between these two aspects. Since, we want

to ensure that the temporal autocorrelation is sufficiently reduced, we choose the thinning

number as the smallest lag such that the absolute value of the partial autocorrelation

function (PACF) for each of the covariates is less than two standard errors of the PACF for

a sequence of N i.i.d Gaussian noise, which is considered to be statistically insignificant at

the 95% significance level. In other words, the value of T is given as follows:

T = max
`=1,...,d

min
h

( | PACF(x)`(h) | ≤ 2/
√
N), (11)
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where PACF(x)`(h) is the PACF for covariate ` = 1, . . . , d for lag h. We tested the choice

of thinning number in Section 4.5 through a sensitivity analysis on real datasets.

4 Case study: Application to wind turbine datasets

We present two case studies for modeling wind power curves to validate the performance

of the proposed method. Both datasets are publicly available. The first case study is based

on four datasets. We refer to the first case study as Case Study I. The second case study

is on a larger number of datasets (thirty turbines) but the data available are for a shorter

period of time. We refer to the second case study as Case Study II.

4.1 Datasets

Case Study I uses four datasets available on the book website of Ding (2019) (https://

aml.engr.tamu.edu/book-dswe/dswe-datasets/, Dataset 6). They are associated with

four turbines, denoted as WT1 to WT4. The first two datasets are from inland and the

remaining are from offshore wind turbines. Each turbine has four years of data collected at

a 10-minute frequency. The data for the inland turbines (WT1 and WT2) span from 2008

to 2011, and those for the offshore turbines (WT3 and WT4) extend from 2007 to 2010.

Each dataset has five environmental input variables along with the response (y) and time

stamp (t) for each data point. The inland turbines have the same input variables: wind

speed (V ), wind direction (D), air density (ρ), turbulence intensity (I), and wind shear

(S). The offshore turbine datasets contain humidity (H) instead of wind shear and have

the rest of the four variables same as the inland turbines. One can easily see that all these

variables are temporally autocorrelated by plotting their partial autocorrelation function

(PACF) plots. One such example for WT1 is provided in the Supplementary Material S2.

Each of the datasets has missing data points. The exact number of data points is given

in Table 1. The number of data points are about 50% when compared to the scenario where

turbines produce power at all the times (for every 10 minute interval, we have a positive

power), which is an ideal condition and not observed in practice. There are two major

causes of missing data points: 1) wind speed is either below cut-in speed or above cut-out

speed, so there is no power production; 2) wind conditions are favorable but the power
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Table 1: Description of the main study datasets.
Dataset WT1 WT2 WT3 WT4

Type of wind turbine Inland Inland Offshore Offshore
Time period 2008–2011 2008–2011 2007–2010 2007–2010
Covariates {V,D, ρ, I, S} {V,D, ρ, I, S} {V,D, ρ, I,H} {V,D, ρ, I,H}

Number of data points 96,824 89,730 113,378 110,556

output is either curtailed or zero because of grid commitments or operational issues.

Case Study II is based on thirty wind turbines. These datasets are available at https://

github.com/TAMU-AML/Datasets/tree/master/TemporalOverfitting. The input vari-

ables are the same as that of the inland turbines in Case Study I. These thirty datasets

can be further classified into groups of ten, as the ten turbines in the same group share

the same meteorological tower. The meteorological towers measure wind speed at multiple

heights, wind direction, ambient pressure and temperature. The multi-height wind speed

measurements are used to calculate the wind shear. Ambient pressure and temperature are

used to calculate the air density. Wind direction data are also taken from the meteorologi-

cal towers. Each of the turbines also measure the wind speed at their nacelle. The data for

wind speed and power are collected at individual turbines, and turbine’s wind speed data

is used to calculate the turbulence intensity. The first meteorological tower has a slightly

longer duration of data than the other two towers; see Table 2.

For both case studies, we divide the datasets into three temporally disjoint datasets:

T1, T2, and T3. In Case Study I, T1 corresponds to the first two years, and T2 and T3 has the

data for the third and fourth year, respectively. For example, for the inland turbines (WT1

and WT2), T1 contains the data for the years 2008 and 2009, and T2 and T3 correspond

to the year 2010 and 2011, respectively. In Case Study II, the duration corresponding to

T1, T2, and T3 are listed in Table 2. We select a few methods including our proposed method

to learn the power curve for each wind turbine using their corresponding T1 datasets. The

learned model is then used to do out-of-temporal predictions on T2 and T3.

Table 2: Duration of the datasets and temporal partitions for Case Study II.
Turbines Total duration T1 duration T2 duration T3 duration

1 to 10 Apr 29, 2010–Oct 31, 2011 Apr 29, 2010–Nov 30, 2010 Dec 1, 2010–May 31, 2011 Jun 1, 2011–Oct 31, 2011

11 to 20 Jul 30, 2010–Oct 23, 2011 Jul 30, 2010–Dec 31, 2010 Jan 1, 2010–May 31, 2011 Jun 1, 2011–Oct 23, 2011

21 to 30 Jul 30, 2010–Oct 20, 2011 Jul 30, 2010–Jan 31, 2011 Feb 1, 2011–May 31, 2011 Jun 1, 2011–Oct 20, 2011
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Table 3: Thinning number, T , for each of the four datasets.
Dataset WT1 WT2 WT3 WT4

Thinning Number 12 14 22 22

4.2 Implementation and comparison

For implementing our method, we use all the five input variables in the model as the starting

point but subset selection is part of the learning task; see Section 4.1 for description of the

input variables. Also, since wind direction is a circular variable, we embed it into a two-

dimensional Euclidean space by using its sine and cosine transformations. We standardized

all the input variables by subtracting their respective sample mean and dividing them by

their sample standard deviation. Standardization of the inputs ensure that the importance

of the variables would be clear from their respective lengthscale. A large lengthscale would

imply that the input variable is not important in predicting the response.

We proceed by computing the thinning number T for each of the datasets as per Equa-

tion (11). The computed value of T for the four datasets in Case Study I is shown in Table

3. Taking the thinning number for WT1 as an example, the value of 12 would be equivalent

to 2 hours, as the data points are collected every 10 minutes. This implies that two data

points with less than 2 hours of time gap would not be kept in the same bin. Since there

are missing data points in the dataset, the time of 2 hours serves as the minimum time

gap between two intra-bin points. The actual temporal gap for some of the consecutive

data points in a bin would be higher. We bin the datasets using their respective thinning

number given in Table 3, and use Equations (6) and (7) to estimate the hyperparameters

for the time-invariant function f(·), as described in the previous section. Once we have the

hyperparameter estimates for f(·), we compute the out-of-temporal predictions on T2 and

T3 using just f(·), as given in Equation (8).

We compare our proposed method with two categories of methods: the first category

is for the nonparametric power curve methods that do not consider the issues of temporal

overfitting, and the second category is for the approaches that address the serial autocor-

relation and temporal overfitting issues, which are reviewed in Section 2.

In the first category, we use the following three methods—the IEC binning method,

k-nearest neighbors (kNN), and additive multivariate kernel (AMK) by Lee et al. (2015),
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but with the focus on out-of-temporal predictions only. We include the binning method

because it is the industry baseline. If a proposed method cannot outperform this baseline,

the value of that method will be called into question. kNN and AMK are included because

the comparison presented in Chapter 5 of Ding (2019) shows that these two methods do a

better job than other nonparametric regression methods.

In the second category, we again consider three methods. The first is the time-split

cross-validation (Burman et al., 1994; Racine, 2000; Roberts et al., 2017), the second is

based on Rabinowicz and Rosset (2020)’s corrected cross-validation error, and third one is

based on pre-whitening of the response (Xiao et al., 2003; Geller and Neumann, 2018).

The implementation of the binning method is straightforward; we use a 0.5 m/s bin-

width (the IEC standard). For kNN and AMK, one would have to do variable selection. We

employ a forward stepwise subset selection using a five-fold cross validation to get the best

subset of input variables. The AMK method by Lee et al. (2015), which was specifically

developed to model the wind turbine power curves, uses a kernel regression method. In

their paper, Lee et al. (2015) consider additive combinations of trivariate kernels, keeping

the first two variables common in all the additive terms and varying the third variable.

They kept the common variables fixed as wind speed and wind direction. We modify their

method by only fixing the first variable as wind speed and let the data decide the second

common variable for the additive terms, while still using trivariate kernels. The analyses

for both kNN and AMK are done in R using the DSWE package (Kumar et al., 2021).

In order to do time-split cross-validation, we use kNN as the base method, but modify

the cross-validation scheme. We divide the temporally ordered data into small blocks of

size T—same as the thinning number used in our proposed method. Instead of randomly

sampling training and test datasets, we select training and test samples from the temporal

blocks in a way such that if a particular temporal block is in test set, its neighboring blocks

must not be in the training set. This splitting ensures that there is low temporal correlation

between training and test datasets. A schematic of time-split cross-validation is given in

Figure 3. We do a five-fold time-split validation by sampling different test datasets and

refer to the resulting method as TS-kNN, namely time-split kNN.

Time-split cross-validation can also be clubbed with any other base method such as

AMK; however, given the size of the datasets, doing so is computationally expensive. For
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example, it took more than 10 hours to find the best subset of variables and compute

the optimal bandwidths for WT1 when AMK method was clubbed with time-split cross-

validation whereas TS-kNN took less than 15 minutes to do the same. Also, the result

obtained using time-split validation on AMK did not show any significant improvement

over standard AMK which uses a direct plug-in (DPI) approach by Ruppert et al. (1995)

for estimating the bandwidths. So, we decide to proceed with only kNN as the base method.

Train Discard Test Discard Train Train Train Train

Figure 3: A schematic of time-split cross-validation. Each block represents a group of
temporally adjacent data points.

For Rabinowicz and Rosset (2020)’s method, we again use kNN as the base method for

the same reasons described for time-split validation; cross-validation with AMK is compu-

tationally prohibitive for the data size at hand. We refer to the resulting kNN method as

CVc-kNN. The CVc method relies on estimating the covariance matrix of the response,

Cov(y,y), conditioned on the input variables. Here we run into a problem. For our prob-

lem setting, we need to estimate the covariance in y due to g(t) but the covariance in the

response data are caused by the autocorrelation in both x and g(t). To apply the idea of

CVc, we come up with an an hoc procedure, which is to first fit a one-dimensional kNN

model to the response data and then use the residual to compute Cov(y,y). The thought

behind is that the single input of wind speed is the most important variable in power curve

models. Subtracting its effect would remove a major portion of the covariance in y due to

the temporal autocorrelation in x. Once Cov(y,y) is estimated, we keep it fixed and do a

forward subset selection, based on CVc, to find the best variables subset and corresponding

hyperparameter (k). It is apparent that the lack of a quality estimate of Cov(y,y) under

our problem setting presents a major roadblock to the effective application of CVc (more

discussion in Section 4.7).

The last method is based on pre-whitening of the response (Xiao et al., 2003; Geller

and Neumann, 2018). We follow the steps in Xiao et al. (2003), but with AMK as our base

method. Here, we use AMK not only because AMK as the base method is a better choice

than kNN, but also because Xiao et al. (2003) uses a kernel-based local polynomial method,
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meaning that AMK is more compatible. We did not use AMK to be clubbed with time-split

cross-validation, due to heavy computation that would have otherwise resulted. But for

pre-whitening, as it does not require cross-validation to compute the optimal bandwidths,

this computational burden is not there. In other words, AMK can be used along with DPI

approach once the response is modified.

Specifically, we fit an AMK model to the datasets and estimate the residuals at the

training points. We use these residuals to fit an autoregressive (AR) model of order T—the

computed thinning number. We then modify the response by subtracting the estimated

autoregressive component of residuals from the response. The modified response is then

used to build a new AMK model, which would be used for predictions. Since we have

already obtained the best input variable subset using forward subset selection for AMK, we

use the same subset of input variables for the model and do not carry out subset selection

again. We refer to this pre-whitened AMK model as PW-AMK.

4.3 Results for Case Study I

We present the results in two parts, corresponding to the two categories of methods. The

first part compares our method with the power curve methods in Category 1, in which we

use the binning method as the benchmark and compute performance improvement over

binning for each method. The performance criteria is the root mean square error (RMSE)

on a test dataset. Our proposed method is referred to as tempGP in the comparison.

Table 4: A comparison table for out-of-temporal RMSE for dataset T2

Dataset Binning kNN AMK tempGP (f(x))

WT1 4.98
4.96 4.35 3.52

(0.4%) (12.7%) (29.3%)

WT2 4.93
4.66 4.32 3.69

(5.3%) (12.2%) (25.0%)

WT3 3.95
4.11 3.50 3.19

(−4.1%) (11.4%) (19.2%)

WT4 3.73
3.96 3.47 2.94

(−6.5%) (6.7%) (21.0%)

Tables 4 and 5 present the performance of binning, kNN, AMK, and tempGP for out-of-

temporal predictions on test dataset T2 and T3, respectively. Since T2 and T3 are temporally

disjoint from T1, we only use the estimate for the time-invariant function f(x) for predic-
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Table 5: A comparison table for out-of-temporal RMSE for dataset T3

Dataset Binning kNN AMK tempGP (f(x))

WT1 5.03
4.98 4.47 4.11

(0.8%) (11.0%) (18.1%)

WT2 5.17
5.04 4.78 4.48

(2.3%) (7.4%) (13.2%)

WT3 4.23
4.68 4.12 3.83

(−10.6%) (2.6%) (9.5%)

WT4 3.64
4.05 3.14 2.84

(−11.3%) (13.7%) (22.0%)

tions. We highlight in boldface font the best prediction performance, i.e., whichever has

the lowest RMSE. The values in parentheses denote the percentage improvement over the

binning method. A negative percentage implies a worse performance than binning. Ev-

idently, tempGP outperforms both the industry baseline (binning) and the data science

competitors (kNN and AMK). In other words, explicitly avoiding the temporal structure

in the learned function improves the performance of out-of-temporal predictions.

Next, we present the results for the second category of methods (TS-kNN, CVc-kNN,

and PW-AMK) in Tables 6 and 7. We also append the results for kNN and AMK from

Tables 4 and 5 for easier comparison. The last column of the tables (% Imp) shows the

percentage improvement for tempGP over the second best method; note that the second

best method differs for different datasets. For the cross-validation based methods, TS-

kNN and CVc-kNN, we notice some improvement in performance as compared to their

counterpart kNN, in most of the cases. However, our proposed method still outperforms

these methods. The pre-whitening method PW-AMK shows a small but sometimes no

improvement over its counterpart AMK. Pre-whitening relies on the autocorrelation in the

residuals to modify the response. Lee et al. (2015) show that the autocorrelation in the

residuals of the AMK model is still there but nonetheless weakened. As Roberts et al.

(2017) explained, the temporal structure in the residual can easily get modeled through

some input variables when multiple autocorrelated input variables are present, masking the

autocorrelation of the residual. Thus, this weakened autocorrelation in the residual may

not be strong enough to modify the response significantly in the pre-whitening step.

Overall, looking at the results of these four datasets, our proposed method is a clear

winner. However, the second best method varies from case to case. Interestingly, the
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Table 6: A comparison table for out-of-temporal RMSE for dataset T2 using methods that
account for serial autocorrelation.

Dataset tempGP TS-kNN CVc-kNN PW-AMK kNN AMK % Imp

WT1 3.52 4.06 4.10 4.38 4.96 4.35 13.3%
WT2 3.69 4.59 4.70 4.38 4.66 4.32 14.6%
WT3 3.19 3.98 3.73 3.39 4.11 3.50 5.8%
WT4 2.94 3.82 3.55 3.47 3.96 3.47 15.2%

Table 7: A comparison table for out-of-temporal RMSE for dataset T3 using methods that
account for serial autocorrelation.

Dataset tempGP TS-kNN CVc-kNN PW-AMK kNN AMK % Imp

WT1 4.11 4.26 4.25 4.49 4.98 4.47 3.3%
WT2 4.48 5.14 5.12 4.82 5.04 4.78 6.3%
WT3 3.83 4.32 4.11 3.97 4.68 4.12 3.6%
WT4 2.84 3.74 3.51 3.19 4.05 3.14 9.6%

standard version of AMK, which does not model the temporal structure, turn out to be

the second best in some of the cases. Rabinowicz and Rosset (2020) explain that if the

correlation structure in training and test datasets are the same, there is no need for a

special treatment of the correlation structure in the data, and the standard methods would

perform well. In practice, we do not know the temporal correlation structure in the training

and test datasets, and thus cannot guarantee if the correlation pattern would stay the same.

Thus, it is a good idea to assume different correlation structure for training and test sets

when one is not certain that the correlation structures are the same. This argument becomes

more convincing as we extend our case study to a larger set of datasets. There we notice

that not handling the temporal structure results in much worse predictions.

4.4 Results for Case Study II

We extend our case study on another thirty datasets. Since the datasets in Case Study

II are of smaller size, we also used a regular version of Gaussian process, that is, without

the g(t) term and thinning, and refer it as regGP. In order to present the results concisely,

we use plots instead of the tables. Figure 4 (left panels) presents the relative RMSEs of

regGP, tempGP, kNN and AMK with respect to binning. To obtain the relative RMSEs,

we divide all the RMSEs for different methods by the RMSE of the binning method for

each turbine, so that the relative RMSEs in the same scale. Thus, a value larger than

one implies performance deterioration over binning; for example, a relative RMSE of 1.1
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implies that the method performs 10% worse than binning. A relative RMSE smaller than

one implies performance improvement over binning. The dashed horizontal line at one is

for the binning method. The actual RMSEs are presented in Supplementary Material S4.

We also plot the prediction intervals for select turbines in Supplementary Material S5.

We notice that for the first out-of-temporal dataset T2 (Figure 4a), the performance of

kNN, AMK, and, regGP are much worse than that of the second out-of-temporal dataset

T3 (Figure 4c). As mentioned earlier, these datasets are for 15 to 18 months time periods.

Thus, equal division of these datasets into T1, T2, and T3 results in a half year time span

for each of T1, T2, and T3. What this means is that if T1 cover the first half of a year,

then T2 covers the second half and T3 covers the first half of the next year. Due to the

seasonal difference of environmental variables, principally that of wind and temperature,

it is commonly understood that using the first half year data to predict the second half of

the same year is harder than using the first half year data to predict the same first half

year of the next year. In another angle, T1 and T2 have rather different temporal structure

but T1 and T3 share a similar temporal structure. It does not therefore come as a surprise

that a model temporally-overfitted on T1 could perform much worse on T2 but reasonably

well on T3. We stress that tempGP performs uniformly better for both out-of-temporal test

datasets, although the performance gain is admittedly much more pronounced for T2.

Figure 4 (right panels) presents the relative RMSEs (still relative to binning) for the sec-

ond category of methods—TS-kNN, CVc-kNN, and PW-AMK—along with tempGP. When

the temporal overfitting causes a much worse performance for standard regression methods

(kNN, AMK, and regGP), which is the case for T2, the second category of methods that

address temporal overfitting provides a significant improvement over their non-temporal

counterpart, except for PW-AMK. When temporal overfitting does not result in a worse

performance (for T3), we do not see much help from these temporal methods. It may be

fair to say that these temporal methods are not very sensitive to weak temporal overfitting.

4.5 Further experiments and simulations

The main parameter used in our method is the thinning number, as it regulates the temporal

autocorrelation in each of the data bins. Thus, in order to highlight the importance of

thinning and validate our choice of thinning number, we did a sensitivity analysis using
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Figure 4: Relative RMSEs as compared to binning RMSE for out-of-temporal datasets.
The top two plots are for dataset T2 with the top-left plot a) for kNN, AMK, tempGP,
and regGP and the top-right plot b) for TS-kNN, CVc-kNN, PW-AMK, and tempGP. The
bottom two plots are for dataset T3 with the bottom-left plot c) for kNN, AMK, tempGP,
and regGP and the bottom-right plot d) or TS-kNN, CVc-kNN, PW-AMK, and tempGP.
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Figure 5: Box plots for relative RMSE using different thinning numbers for all the turbines:

a) for test set T2; b) for test set T3. “Adp” denotes the adaptive thinning number computed

using the proposed approach.

different thinning numbers on Case Study II datasets. We consider the following thinning

numbers: 1, 2, 22 = 4, . . . , 26 = 64. The thinning number computed from our proposed

approach for these datasets vary between 14 and 17 with a majority of them being 15.

Using these thinning numbers, we re-estimate the function f and recompute the test errors

for T2 and T3. A thinning number of 1 implies no thinning at all, which is essentially a

regular version of GP model without the g(t) term, same as regGP in Case Study II.

We present the box plots for relative RMSEs (defined in Section 4.4) for all the turbines

in Figure 5. The advantage of thinning is much more pronounced in T2 than T3. This

is consistent with our previous comments in Section 4.4 about T1 and T2 having different

temporal structure, and T1 and T3 having similar temporal structure because they are

approximately the same time period of two consecutive years. We see that when temporal

structure between the training and test datasets are different, thinning plays an important

role in improving the performance, and our proposed approach for computing the thinning

number, referred to as “Adp” in the figure, proves to be quite effective.

We also applied our method on a simulated function where the ground truth is known.

The details of the simulation study is available in Supplementary Material S6.

4.6 Direct inference of f(·) and g(·)

In the model inference section, we state that estimating the hyperparameters of f(·) and

g(·) jointly via a maximum likelihood estimation results in an identifiability problem, which
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can result in unreliable hyperparameter estimates and thereby leads to considerable deterio-

ration in prediction performance. We here provide the numerical evidence on the 30-turbine

T2 datasets used in Case Study II. Figure 6 presents the histograms of the ratios of the

out-of-temporal RMSEs obtained by using the jointly estimated hyperparameters over that

obtained by the thinning-based inference.

We find that under the best case scenario, the direct (joint) estimation results in an error

rate that is 6% worse than that of the thinning-based inference, and under the worst case

scenario, the direct estimation results in an error rate that is 80% worse, that is the ratio of

out-of-temporal RMSE for direct estimation vs thinning-based estimation is approximately

1.8. Out of the 30 turbines, 28 cases are at least 10% worse.
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Figure 6: Ratios of the out-of-temporal RMSEs for T2 obtained from jointly estimated
hyperparameters over those using hyperparameters from the thinning-based inference.

Another advantage of thinning-based approach over the direct estimation is the compu-

tation time. In general, the time complexity for fitting a GP model is of the order O(n3),

where n is the number of data points. However, since we bin the data into T bins such

that each bin has approximately n/T = m observations and use the pseudo-likelihood de-

fined in Section 3.2, the time complexity for fitting the proposed model is in the order of

O(Tm3) = O(nm2), which is lower than O(n3) for any T > 1.
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4.7 Further discussions on CVc

Looking at all methods that account for correlation in data, CVc looks like the most

promising alternative to tempGP. CVc, however, has its own limitations.

The main challenge that arises in our problem setting is the estimation of Cov(y,y),

which plays a critical role in correcting the standard CV error estimation. As noted in

Section 3, Rabinowicz and Rosset (2020) assume the input variables to be i.i.d. Under

their assumption, Cov(y,y) can be directly estimated using sample covariance matrix of

y because no covariance in y is due to the input variables in x. For our problem setting,

however, x are autocorrelated. We need to estimate the covariance in y due to g(t). This

dual autocorrelation makes it harder to estimate Cov(y,y) accurately. Strictly speaking,

CVc as presented in Rabinowicz and Rosset (2020) is not directly applicable to our model.

Our ad hoc procedure in Section 4.2 is an attempt to estimate Cov(y,y) in the presence

of the dual autocorrelation. We acknowledge that the ad hoc procedure may not be the

best approach, but it remains unknown how to estimate the covariance in y due to g(t)

under our problem setting. While devising the ad hoc procedure, we used the residuals

of a fixed one-dimensional kNN model to estimate Cov(y,y). One may ask if it would

be better to increase the number of input variables in the kNN model while estimating

Cov(y,y)? Using a multivariate model weakens the correlation in the residuals, leading to

a different estimate of Cov(y,y). As such, the issue of variable selection gets entangled

with the estimate of CVc. It is unclear to us which multivariate model should be used for

estimating Cov(y,y). Given these challenges with CVc, tempGP appears better suited for

the application at hand. The empirical evidence is rather strong in supporting this claim.

5 Conclusion

We explore a class of regression problems when the input variables and errors are serially

correlated over time. Classical regression, which works under the independence assump-

tion, results in overfitted models, known as temporal overfitting. We propose a method

to reduce temporal overfitting by explicitly modeling the temporal correlation in the data.

We split the variance in response into a time-independent function and a temporally au-

tocorrelated stochastic process. We take advantage of an idea frequently used in Bayesian
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statistics—thinning. Using the thinned data, the time-independent function can be sepa-

rately estimated from the temporally autocorrelated model term.

The thinning-based idea is one of the approaches that can be used to learn the time-

independent function. An alternative approach could be to regularize the time-independent

function f , or constrain it, following an idea first proposed in Ba and Joseph (2012). Ba

and Joseph (2012) also considers an additive model with two GP terms. They separate

the effect of the two terms by ensuring that one term is smoother than the other and then

constraining the lengthscale of the two kernels accordingly. Unlike in Ba and Joseph (2012)

where the two GP terms take the same input, f and g in our model take different inputs,

and as a result, it is not immediately clear how the lengthscales of the respective kernels

should be constrained, but this could be an interesting future work to pursue.

A final note is that while the paper highlights the problem of temporal overfitting in wind

power curves, we believe that the wind energy problem is just one of the many application

areas where one could encounter temporal overfitting. Many real datasets in engineering

and life sciences are collected over time and could be autocorrelated due to the inertia in the

underlying physical processes. We are confident that the resulting methodology is generic

and could benefit other nonparametric regressions of the same nature.

Supplementary Material

Supplementary Material: The PDF file contains: (S1) Results for Case Study II with

different covariance functions, (S2) PACF plots for WT1, (S3) Hyperparameter es-

timates, (S4) Actual RMSEs for Case Study II, (S5) Prediction intervals for select

turbines, and (S6) Experiments on a simulated function.

Computer Code: The computer code to reproduce all the results in this paper are avail-

able on GitHub at https://github.com/TAMU-AML/tempGP-Paper. A generic R func-

tion for applying the tempGP algorithm to any dataset is available in DSWE package

in R available through CRAN at https://CRAN.R-project.org/package=DSWE.
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