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Abstract

Nonstationary non-Gaussian spatial data are common in many disciplines, in-
cluding climate science, ecology, epidemiology, and social sciences. Examples include
count data on disease incidence and binary satellite data on cloud mask (cloud/no-
cloud). Modeling such datasets as stationary spatial processes can be unrealistic
since they are collected over large heterogeneous domains (i.e., spatial behavior dif-
fers across subregions). Although several approaches have been developed for non-
stationary spatial models, these have focused primarily on Gaussian responses. In
addition, fitting nonstationary models for large non-Gaussian datasets is computa-
tionally prohibitive. To address these challenges, we propose a scalable algorithm for
modeling such data by leveraging parallel computing in modern high-performance
computing systems. We partition the spatial domain into disjoint subregions and
fit locally nonstationary models using a carefully curated set of spatial basis func-
tions. Then, we combine the local processes using a novel neighbor-based weighting
scheme. Our approach scales well to massive datasets (e.g., 1 million samples) and
can be implemented in nimble, a popular software environment for Bayesian hierar-
chical modeling. We demonstrate our method to simulated examples and two large
real-world datasets pertaining to infectious diseases and remote sensing.
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1 Introduction

Nonstationary spatial models have been used in a wide range of scientific applications,

including disease modeling (Ejigu et al., 2020), remote sensing (Heaton et al., 2017), pre-

cision agriculture (Katzfuss, 2013), precipitation modeling (Risser and Calder, 2015), and

air pollutant monitoring (Fuentes, 2002). Simple models assume second-order stationarity

of the spatial process; however, this can be unrealistic since data are collected over het-

erogeneous domains. Here, the spatial processes can exhibit localized spatial behaviors.

Although several methods (cf. Fuentes, 2002; Risser and Calder, 2015; Heaton et al., 2017)

have been developed for modeling nonstationary spatial data, these have focused primarily

on Gaussian spatial data. Moreover, fitting these models poses both computational and in-

ferential challenges, especially for large datasets. In this manuscript, we propose a scalable

algorithm for fitting nonstationary non-Gaussian datasets. Our approach captures non-

stationarity by partitioning the spatial domain and modeling local spatial processes using

basis expansions. This new algorithm is computationally efficient in that: (1) partition-

ing the spatial domain permits parallelized computation on high-performance computation

(HPC) systems; and (2) basis approximation of spatial processes dramatically reduces the

computational overhead.

There is a growing literature on modeling nonstationary spatial datasets. Weighted

average methods (Fuentes, 2001; Kim et al., 2005; Risser and Calder, 2015) combine local-

ized spatial models to reduce computational costs. Basis function approximations (Nychka

et al., 2002; Katzfuss, 2013, 2017; Hefley et al., 2017) represent complex spatial processes

using linear combinations of spatial basis functions. Higdon (1998) and Paciorek and
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Schervish (2006) represent a nonstationary process using convolutions of spatially varying

kernel functions. Based on the spatial partitioning strategies, some of these approaches

are amenable to massive spatial datasets. For example, Heaton et al. (2017) develops a

computationally efficient approach for large nonstationary spatial data by partitioning an

entire domain into disjoint sets using a hierarchical clustering algorithm. Katzfuss (2017)

constructs basis functions at multiple levels of resolution based on recursive partitioning

of the spatial region. Guhaniyogi and Banerjee (2018) proposes a divide-and-conquer ap-

proach to generate a global posterior distribution by combining local posterior distributions

from each subsample. Though these approaches scale well, they are limited to Gaussian

responses.

Spatial generalized linear mixed models (SGLMMs) (Diggle et al., 1998) are popular

class of models designed for non-Gaussian spatial datasets. SGLMMs are widely used for

both areal and point-referenced data, where latent Gaussian random fields can account for

the spatial correlations. However, fitting SGLMMs for massive spatial datasets is com-

putationally demanding since the dimension of correlated spatial processes grows with an

increasing number of observations. Although several computational methods (Banerjee

et al., 2008; Hughes and Haran, 2013; Guan and Haran, 2018; Lee and Haran, 2019; Zil-

ber and Katzfuss, 2020) have been proposed for large non-Gaussian spatial datasets, these

methods assume second-order stationarity of the latent spatial processes.

In this manuscript, we propose a scalable approach for modeling massive nonstationary

non-Gaussian spatial datasets. Our smooth mosaic basis approximation for nonstationary

SGLMMs (SMB-SGLMMs) combines key ideas from weighted average approaches and basis
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approximations. SMB-SGLMM consists of four steps: (1) partition the spatial region

using a spatial clustering algorithm (Heaton et al., 2017); (2) generate localized spatial

basis functions; (3) fit a nonstationary basis-representation model to each partition; and

(4) smooth the local processes using distance-based weighting scheme (smooth mosaic).

Due to the partitioning and localized model fitting, we can leverage parallel computing,

which greatly increases the scalability of the SMB-SGLMM method. To our knowledge, this

study is the first attempt to develop a scalable algorithm for fitting large nonstationary non-

Gaussian spatial datasets. Furthermore, our method provides an automated mechanism

for selecting appropriate spatial basis functions. We also provide ready-to-use code written

in nimble (de Valpine et al., 2017), a software environment for Bayesian inference.

The outline for the remainder of this paper is as follows. In Section 2, we introduce sev-

eral nonstationary modeling approaches. We discuss the potential extension of stationary

SGLMMs to nonstationary SGLMMs and discuss their challenges. In Section 3, we propose

SMB-SGLMMs for massive spatial data and provide implementation details. Furthermore,

we investigate the computational complexity of our method in detail. In Section 4, we

study the performance of SMB-SGLMMs through simulated data examples. In Section

5, we apply SMB-SGLMMs to malaria incidence data and binary cloud mask data from

satellite imagery. We conclude with a discussion and summary in Section 6.
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2 Nonstationary Modeling for Non-Gaussian Spatial

Data

Let Z = {Z(si)}Ni=1 be the observed data and X ⊂ RN×p be the matrix of covariates at the

spatial locations s = {si}Ni=1 in a spatial domain S ⊆ R2. W = {W (si)}Ni=1 is a mean-zero

Gaussian process with covariance matrix Σ ⊂ RN×N . Then SGLMMs can be defined as

g{E[Z|β,W]} := η = Xβ + W

W ∼ N(0,Σ)

(1)

with link function g(·) and linear predictor η. Standard SGLMMs (Diggle et al., 1998)

consider a second-order stationary Gaussian process for W for their convenient mathemat-

ical framework. However, this assumption can be unrealistic for spatial processes existing

in large heterogeneous domains (see Bradley et al. (2016), for a discussion). A natural

extension to (1) is to model W as a nonstationary spatial process. There is an extensive

literature on modeling nonstationary spatial data (Sampson, 2010) such as: (1) weighted-

average methods, (2) basis function methods, and (3) process convolutions. Our method

is motivated by these nonstationary modeling approaches.

Weighted average methods (Fuentes, 2001) divide the spatial region S into disjoint

partitions and fit locally stationary models to each partition. For example, Kim et al.

(2005); Heaton et al. (2017) partition the spatial domain through Voronoi tessellation.

Then, the global process is constructed by combining the locally stationary processes via a

weighted average. The weights are computed using the distances between the observation
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locations and ‘center’ of the localized processes. These approaches scale well by taking

advantage of parallel computation (cf. Risser and Calder, 2015; Heaton et al., 2017).

Basis functions approaches represent the nonstationary covariance structure as an ex-

pansion of spatial basis functions {Φj(s)}mj=1. Let Φ be an N by m matrix with columns

indicate the basis functions and rows indicate locations Φi,j = Φj(si). Then we can con-

struct a nonstationary spatial process as

W ≈ Φδ, δ ∼ N(0,ΣΦ),

where δ is the coefficients of basis functions. We approximate the covariance structure as

ΦΣΦΦ>, which is not dependent solely on the lag between locations; hence this is non-

stationary. Different types of basis functions have been used, for instance eigenfunctions

obtained from the empirical covariance (Holland et al., 1999), multiresolution basis func-

tions (Nychka et al., 2002, 2015; Katzfuss, 2017), and computationally efficient low-rank

representation of nonstationary covariance (Katzfuss, 2013).

Process convolutions represent the nonstationary spatial processes through convolutions

of spatially varying kernel function and Brownian motion. For an arbitrary s ∈ S,

W(s) =

∫
S
Ks(u)dW(u)

where Ks(·) is a kernel function centered at location s and W(·) is a bivariate Brown-

ian motion. Higdon (1998) use bivariate Gaussian kernels under this framework. Several

extensions have also been proposed including creating closed-form nonstationary Matérn
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covariance functions (Paciorek and Schervish, 2006), extension to multivariate spatial pro-

cess (Kleiber and Nychka, 2012), and computationally efficient local likelihood approaches

(Risser and Calder, 2015).

We note that these nonstationary models have focused on Gaussian responses. Direct

application of these methods to (1) is challenging because we cannot obtain closed-form

maximum likelihood estimates by marginalizing out W. Within the Bayesian framework,

updating conditional posterior distributions requires a computational complexity of O(N3),

which becomes infeasible even for moderately large size datasets (e.g., binary satellite data

with 100,000 observations). Although several computationally efficient approaches (cf. Rue

et al., 2009; Hughes and Haran, 2013; Guan and Haran, 2018; Lee and Haran, 2019; Zilber

and Katzfuss, 2020) have been developed for non-Gaussian hierarchical spatial models,

they are assuming stationarity of W. In what follows, we develop partitioned nonstationary

models for non-Gaussian spatial data. Our method is computationally efficient and provides

accurate predictions over large heterogeneous spatial domains.

3 Smooth Mosaic Basis Approximation for Nonsta-

tionary SGLMMs

We propose a smooth mosaic basis approximation for nonstationary SGLMMs (SMB-

SGLMMs) designed for massive spatial datasets. We begin with an outline of our method:

Step 1. Partition the spatial domain into disjoint subregions.
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Step 2. Construct data-driven basis functions for each subregion.

Step 3. Fit a locally nonstationary basis function model to each subregion in parallel.

Step 4. Construct the global nonstationary process as a weighted average of local processes.

SMB-SGLMMs are described in Figure 1. We provide the details in the following subsec-

tions.

3.1 Partitioned Nonstationary Spatial Models

Step 1. Partition the spatial domain into disjoint subregions

We use an agglomerative clustering approach (Heaton et al., 2017) to partition the spatial

domain S into K subregions {Sk}Kk=1, which satisfy ∪Kk=1Sk = S. We fit a nonspatial

generalized linear model (glm function in R) using responses Z and covariates X. Then

we obtain the spatially correlated residuals {ε(si)}Ni=1. For all i 6= j, we calculate the

dissimilarity between ε(si) and ε(si) as dij = |ε(si) − ε(sj)|/‖si − sj‖ from spatial finite

differences (Banerjee and Gelfand, 2006). Heaton et al. (2017) assigns locations with low

dissimilarity values (dij) into the same partitions. The main idea is to separate locations

with large pairwise dissimilarities (i.e. rapidly changing residual surfaces ε(s)). We initialize

K = N where each observation belongs to its own cluster. Then we combine two clusters

if they are Voronoi neighbors and have minimum pairwise dissimilarity. We repeat this

procedure until we arrive at the desired K partitions (Figure 1 (a)). We provide details

about the clustering algorithm in the supplementary material.
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Figure 1: Illustration for the partitioned nonstationary approach for simulated W. (a)
Nonstationary W is partitioned through 16 subregions; different colors indicate disjoint
partitions. (b) For each partition, thin plate splines basis functions are constructed at
knots; basis functions represent distinct spatial patterns. (c) The Local nonstationary
model is fit to each partition using a linear combination of basis functions. (d) The global
nonstationary process is obtained via a weighted average of the local processes.
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Step 2. Construct data-driven basis functions for each subregion

For each partition, we generate a collection of spatial basis functions. We have Zk =

{Z(s) : s ∈ Sk} ∈ RNk , the observations belong to Sk, where N =
∑K

k=1Nk. Xk is an

Nk×p matrix of covariates. Consider the knots (grid points) {ukj}mk
j=1 over Sk (mk � Nk).

These knots can define a wide array of spatial basis functions such as radial basis functions

(Nychka et al., 2015; Katzfuss, 2017) and eigenbasis functions (Banerjee et al., 2008). In

this study, we consider thin plate splines defined as Φkj(s) = ‖s − ukj‖2 log(‖s − ukj‖).

Here Φk is an Nk × mk matrix by evaluating the basis function at Nk locations in Sk

(Figure 1 (b)). Although we focus on thin plate splines, different types of basis functions

can be considered. Examples include eigenfunctions (Holland et al., 1999; Banerjee et al.,

2013; Guan and Haran, 2018), radial basis (Nychka et al., 2015; Katzfuss, 2017), principal

components (Higdon et al., 2008; Cressie, 2015), and Moran’s basis (Hughes and Haran,

2013; Lee and Haran, 2019).

Step 3. Fit a locally nonstationary basis function model to each subregion in

parallel.

For each partition, we can represent the spatial random effects as Wk ≈ Φkδk and model

the conditional mean E[Zk|βk,Φk, δk] as

g{E[Zk|βk,Φk, δk]} := ηk = Xkβk + Φkδk

δk ∼ N(0,ΣΦk
),

(2)
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where ΣΦk
is a covariance of basis coefficients δk. Here we set ΣΦk

= σ2
kIk, as in a

discrete approximation of a nontationary Gaussian process (Higdon, 1998). This basis

representation approximates the covariance through σ2
kΦkΦ

>
k . Such approximation can

capture the nonstationary behavior of the spatial process through a linear combination of

basis functions (Figure 1 (c)). Since we typically choose mk � Nk, basis representations

can drastically reduce computational costs by avoiding large matrix operations. For our

simulated example (Section 4.1), we use mk = 81 for a partition of size Nk = 13, 129. We

provide implementation details in Section 3.2. In addition, a clever choice of Φk can also

reduce correlations in δk, resulting in fast mixing MCMC algorithms (Haran et al., 2003;

Christensen et al., 2006). For the exponential family distribution f(·), the partition-specific

hierarchical spatial model is as follows:

Data Model: Zk|ηk ∼ f(ηk)

g{E[Zk|βk,Φk, δk)]} := ηk = Xkβk + Φkδk

Process Model: δk|σ2
k ∼ N(0, σ2

kIk)

Parameter Model: βk ∼ p(βk), σ2
k ∼ p(σ2

k)

(3)

We complete the hierarchical model by assigning prior distributions for the model param-

eters βk and σ2
k.
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Step 4. Construct the global nonstationary process as a weighted average of

the local processes.

To construct the global process, we use a weighted average of the fitted local processes.

Note that Φk ∈ RNk×mk is the basis functions matrix consisting of thin plate splines

Φkj(s) = ‖s − ukj‖2 log(‖s − ukj‖) for s ∈ Sk, where {ukj}mk
j=1 are the knots over Sk.

Here, we introduce another notation. We define Φ̃k ∈ RN×mk by evaluating Φkj(s) for all

s ∈ S. Let Φ̃k(s) ∈ Rmk be the row of Φ̃k corresponding to spatial location s ∈ S. Since

Wk(s) ≈ Φ̃>k (s)δk, we have:

W(s) =
K∑
k=1

ck(s)Wk(s) ≈
K∑
k=1

ck(s)Φ̃>k (s)δk,

ck(s) ∝ exp
(
− ‖s− s̃k‖2

)
if ‖s− s̃k‖ ≤ γ otherwise 0,

(4)

where s̃k ∈ Sk is the closest point to s. The weight ck(s) is proportional to the inverse

distance between s and s̃k; hence, shorter distances result in higher weights. We assign a 0

weight if the distance exceeds a threshold, or weighting radius, γ. We present details about

choice of γ in Section 3.2. The weighted average of the local processes approximates the

nonstationary global process (Figure 1 (d)). Similarly, a global linear predictor η can be

written as

η(s) =
K∑
k=1

[X(s)>βk1{s∈Sk} + ck(s)Φ̃>k (s)δk], (5)

where 1{s∈Sk} is an indicator function. Here X(s) ∈ Rp is a vector of the covariate matrix

X for location s, βk ∈ Rp is corresponding regression coefficients. Our method provides

a partition varying estimate of βk. This is because the fixed effects may have spatially
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varying (nonstationary) behavior over large heterogeneous spatial domains. Therefore, as

in Heaton et al. (2017) we provide a partition varying βk in our applications. If estimating

a global β is of interest, one may consider divide and conquer algorithms such as consensus

Monte Carlo (Scott et al., 2016) or geometric median of the subset posteriors (Minsker

et al., 2017). Such methods provide the global posterior distribution of fixed effects by

combining subset posteriors.

Spatial prediction

Spatial prediction at unobserved locations is of great interest in many scientific applications.

Let s∗ ∈ S be an arbitrary unobserved location. From thin plate splines basis functions, we

can construct a local basis as Φkj(s
∗) = ‖s∗−ukj‖2 log(‖s∗−ukj‖), where we have {ukj}mk

j=1

knots in partition k. As in (5) we can also provide a global prediction:

η(s∗) =
K∑
k=1

[X(s∗)>βk1{s∗∈Sk} + ck(s∗)Φ̃>k (s∗)δk]. (6)

For given posterior samples {βk, δk}Kk=1, we can obtain a posterior predictive distribution

of η(s∗).

3.2 Implementation Details

In this section, we provide automated heuristics for the tuning parameters. To implement

SMB-SGLMMs, we need to specify the following components: (1) K number of partitions,

(2) location of knots in each partition, and (3) a weighting radius γ for smoothing the

local processes. In practice, we can set K ≤ C (number of available cores) for parallel

13



computation. Our method is heavily parallelizable, so computational walltimes tend to

decrease with larger K. However, selecting a very large K may result in unreliable local

estimates due to a small number of observations Nk within each partition. In our simulation

study, we compare the performance of our approach with varying K. Then, we select the

K that minimizes the out-of-sample root cross validated mean squared prediction error

(rCVMSPE). Based on simulation results, the SMB-SGLMM is robust to the choice of K.

To avoid overfitting, we use lasso (Tibshirani, 1996) to select the appropriate number

and location of the knots. Initially, we set m candidate knots {ukj}mj=1 uniformly over each

partition Sk (e.g. m ≈ 1000). Then we fit a penalized glm with lasso using response Zk

and covariates [Xk,Φk], where Φk is an Nk by m matrix. We impose an l1 penalty to only

the basis coefficients δk, not the fixed effects βk. We use the glmnet package (Friedman

et al., 2010a) in R for lasso regression. For basis selection, we choose the basis functions

corresponding to the nonzero basis coefficients. Since we run lasso regression independently

for each partition, this step is embarrassingly parallel.

From a pre-specified set of values (e.g., γ = 0.01, 0.025, 0.05, 0.1), we choose the γ

that yields the lowest rCVMSPE. Note that we choose γ upon completion of Steps 1-3,

the computationally demanding parts of SMB-SGLMM. Since the calculations in (6) are

inexpensive, there are very little additional costs associated with Step 4.

3.3 Computational Complexity

We examine the computational complexity of SMB-SGLMM and illustrate how our ap-

proach scales with an increasing number of observations N . The three computationally
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demanding components are (1) basis selection (lasso), (2) MCMC for fitting the local pro-

cesses, and (3) obtaining the global process. Here, parallelized computing is integral to the

scalability of SMB-SGLMM. We provide the following discussion on computational costs

and parallelization for each step:

1. Basis Selection: In each partition, our methods select the mk knots from m can-

didates using a regularization method (lasso). Based on results in Friedman et al.

(2010a) the cost of the coordinate descent-based lasso is O(Nkm), where Nk is the

number of observations in a partition Sk. We can select the basis functions for each

partition in parallel across K processors.

2. MCMC for local processes: The computational cost is dominated by matrix-

vector multiplications Φkδk, where Φk is the Nk by mk basis function matrix from

the previous lasso step. The costs for this step is O(Nkmk). We can fit the local

processes in parallel across K processors.

3. Global Process: We obtain the global process using weighted averages in (4). This

step requires O(N2) complexity to calculate a distance matrix because the weights

ck(s) in (4) are based on the distances between observations. Computing ck(s) requires

a one-time computation of the distance matrix for all N locations, which can be

readily parallelized across C available processors. We propose a novel way to “stream”

the distances (Supplement) so that we can compute the weights ck(s) without actually

storing the final distance matrix (e.g. 8TB for N = 1 million).

Table 1 summarizes complexity of SMB-SGLMM. Considering that the complexity of
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Operations Complexity

Basis selection O(
∑K

k=1Nkm/K)

MCMC O(
∑K

k=1Nkmk/K)
Weighted average O(N2/C)

Table 1: Computational complexity of SMB-SGLMMs. K is the number of partitions and
C is the total available cores. Nk is the number of observations, and mk is the number of
knots from each partition. Knots are selected from m candidate knots using a lasso.

the stationary SGLMM is O(N3), SMB-SGLMM is fast and provides accurate predictions

for nonstationary processes (details in Sections 4,5).

4 Simulated Data Examples

We implement SMB-SGLMMs in two simulated examples of massive (N = 100, 000) non-

stationary binary and count data. We implement our approach in nimble (de Valpine

et al., 2017), a programming language for constructing and fitting Bayesian hierarchical

models. Parallel computation is implemented through the parallel package in R. The

computation times are based on a single 2.2 GHz Intel Xeon E5-2650v4 processor. All the

code was run on the Pennsylvania State University Institute for Cyber Science-Advanced

Cyber Infrastructure (ICS-ACI) high-performance computing infrastructure. Source code

is provided in the Supplement.

Data is generated on 125, 000 locations on the spatial domain S ∈ R2. We fit the

spatial models using N = 100, 000 observations and reserve the remaining Ncv = 25, 000

observations for validation. We denote the model-fitting observations as Z = {Z(si) :

si ∈ s} where s = {s1, ..., sN}. Observations are generated using the SGLMM framework

described in (1) with β = (1, 1). The nonstationary spatial random effects W = {W (si) :
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si ∈ s} are generated through convolving spatially varying kernel functions (Higdon, 1998;

Paciorek and Schervish, 2006; Risser and Calder, 2015). For some s ∈ s and reference

locations uj ∈ D, we have W(s) =
∑J

j=1Ks(uj)V (uj), where Ks(uj) is a spatially varying

Gaussian kernel function centered at reference location uj and V (uj) is a realization of

Gaussian white noise. Additional details are provided in the Supplement. The binary

dataset uses a Bernoulli data model and a logit link function logit(p) = p
1−p , and the count

dataset is similarly generated using a Poisson data model and a log link function.

We model the localized processes using the hierarchical framework in (3). To complete

the hierarchical model, we set priors following Hughes and Haran (2013): β ∼ N(0, 100I)

and σ2 ∼ IG(0.5, 2000). We study SMB-SGLMM for different combinations of K (the

number of partitions) and γ (weighting radius). We examine five partition groups K =

{4, 9, 16, 25, 36} and four weighting radii γ = {0.1, 0.25, 0.5, 1}. In total, we study a total

of 5× 4 = 20 implementation.

For each case, we perform basis selection via lasso using the glmnet R package (Friedman

et al., 2010b). We generate 100, 000 samples from the posterior distribution π(β, δ, σ2)

using a block random-walk Metropolis-Hastings algorithm using the adaptation routine

from Shaby and Wells (2010). We examine predictive ability and computational cost.

These include rCVMSPE =
√

1
Ncv

∑Ncv

i=1(Zi − Ẑi)2 and the walltime required to run 100, 000

iterations of the MCMC algorithm. In addition, we present the posterior predictive intensity

and probability surfaces.
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4.1 Count Data

Table 2 presents results for the out-of-sample prediction errors for the SMB-SGLMM ap-

proach. Results indicate that the performance of our approach is robust across different

combinations of K and γ. For this example, predictive accuracy improves as we increase the

number of partitions (K) and decrease the width of the weight radius (γ = 0.1). We provide

the posterior predictive intensity surface in Figure 2 for the implementation yielding the

lowest rCVMSPE (K = 36 and γ = 0.1). Based on visual inspection, the SMB-SGLMM

approach captures the nonstationary behavior of the true latent spatial process.

We report the combined walltimes for running lasso, MCMC, and weighting. Walltimes

decrease considerably as we increase the number of partitions. This is not surprising as

we fit these models in parallel and the sample size for each partition tends to decrease

as we increase the number of total partitions. For each partition, model fitting incurs a

computational cost of O(Nkmk) where Nk and mk are the number of observations and the

number of selected basis functions (thin-plate splines) within partition k, respectively. For

the case where K = 36, the median number of basis functions per partition is 14 with a

range of 4 to 169.

The localized parameter estimates of β are centered around the true parameter values

β = (1, 1) (Supplement). For the case where the number of partitions K = 36, we also

provide a map of the localized estimates of β = (β1, β2) in the Supplement.
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Figure 2: True (top left) and predicted intensity surfaces (top right) for the simulated
count data example. True (bottom left) and predicted probability surfaces (top right) for
the simulated binary data example. We set K = 36 and γ = 0.1 for the count example and
K = 25 and γ = 0.1 for the binary case.
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Weighting Radius (γ) Walltime
Partitions 0.1 0.25 0.5 1 (minutes)

4 1.079 1.109 1.147 1.204 113.13
9 1.060 1.084 1.137 1.228 67.92

16 1.059 1.073 1.104 1.196 65.19
25 1.057 1.073 1.127 1.576 65.34
36 1.054 1.069 1.162 2.145 25.32

Table 2: Cross-validation root mean squared prediction error (rCVMSPE) and total wall-
time (minutes) for the count data simulated example. Rows denote the five partition classes
and columns correspond to the chosen weighting radius (γ). We report the combined wall-
time for lasso, MCMC, and weighting.

4.2 Binary Data

In Table 3, we present prediction results for the binary simulated dataset. For this example,

we observe that increasing the number of partitions K and reducing the neighbor radius

γ results in more accurate predictions and lower computational costs. Figure 2 includes

the posterior predictive probability surface for the implementation yielding the lowest root

CVMSPE (K = 25 and r = 0.1). For the case where K = 25, the mean number of basis

functions per partition is 7.5 with a range of 0 to 33. In addition, computational walltimes

decrease considerably as we increase the number of partitions for the reasons presented in

Section 4.1. The localized parameter estimates of β are centered around the true parameter

values β = (1, 1) (Supplement). For the case where the number of partitions K = 25, we

provide a map of the localized estimates of β = (β1, β2).

5 Applications

In this section, we apply our method to two real-world datasets pertaining to malaria

incidence in the African Great Lakes region and cloud cover from satellite imagery. For both
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Weighting Radius (γ) Walltime
Partitions 0.1 0.25 0.5 1 (minutes)

4 0.360 0.362 0.371 0.380 70.15
9 0.348 0.351 0.365 0.381 17.76

16 0.348 0.351 0.370 0.402 15.98
25 0.348 0.350 0.365 0.397 8.65
36 0.349 0.350 0.364 0.402 16.330

Table 3: Cross-validation root mean squared prediction error (rCVMSPE) and total wall-
time (minutes) for the binary simulated example. Rows denote the five partition classes and
columns correspond to the chosen weighting radius (γ). We report the combined walltime
for lasso, MCMC, and weighting.

large non-Gaussian nonstationary datasets, SMB-SGLMM provides accurate predictions

within a reasonable timeframe.

5.1 Malaria Incidence in the African Great Lakes Region

Malaria is a parasitic disease which can lead to severe illnesses and even death. Predicting

occurrences at unknown locations can be of significant interest for effective control interven-

tions. We compiled malaria incidence data from the Demographic and Health Surveys of

2015 (ICF, 2020). The dataset contains malaria incidence (counts) from 4, 741 GPS clusters

in nine contiguous countries in the African Great Lakes region: Burundi, the Democratic

Republic of Congo, Malawi, Mozambique, Rwanda, Tanzania, Uganda, Zambia, and Zim-

babwe. We use the population size, average annual rainfall, vegetation index of the region,

and the proximity to water as spatial covariates. Under a spatial regression framework,

Gopal et al. (2019) analyzes malaria incidence in Kenya using these environmental vari-

ables. In this study, we extend this approach to multiple countries in the African Great

Lakes region.

We use N = 3, 973 observations to fit the model and save Ncv = 948 observations for
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Weighting Radius (γ) Walltime
Partitions 0.035 0.075 0.1 0.2 0.3 (minutes)

2 55.1 62.7 69.4 78.6 88.2 33.2
3 58.6 69.7 76.8 95.2 132.1 19.9
4 56.9 70.7 82.1 82.2 94.2 16.9

Table 4: Root CVMSPE and total walltime (mins) for the malaria incidence example.
Rows denote the four partition classes and columns correspond to the chosen weighting
radius. We report the combined walltime for lasso, MCMC, and weighting.

Figure 3: Illustration of the malaria occurrence dataset for K = 2 and γ = 0.035. True ob-
servations (left) and posterior predictive intensity surface (right) for the validation sample.

cross-validation. We study the performance of SMB-SGLMMs for different combinations

of K ∈ {2, 3, 4} and γ ∈ {0.035, 0.075, 0.1, 0.2, 0.3}. For each partition, we set the number

of candidate knots to be approximately m = 500 and perform basis selection using lasso

(Tibshirani, 1996). On average 49.5 basis functions are selected per partition. We fit a

local spatial model (3) running the MCMC algorithm for 200, 000 iterations.

Table 4 compares the rCVMSPE for each case. We observe that rCVMSPE increases

with larger weighting radii γ, possibly due to over smoothing in the partition boundaries.

For smaller γ (0.035 and 0.075), we find that predictions are not sensitive to the choice of

K. For this example, setting K = 2, γ = 0.035 yields the most accurate predictions. In

Figure 3, the predicted intensities of the validation locations exhibit similar spatial pat-
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Figure 4: Posterior mean estimates of partition-varying (K = 2) fixed effects β̂. Estimated
coefficients ({β̂1, β̂2, β̂3, β̂4}) for covariates population (top left), vegetation (top right),
water (bottom left), and rain (bottom right).
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terns as the true count observations. We provide maps for the partition-varying coefficients

(K = 2) in Figure 4. The smaller partition includes parts of northern Malawi, southern

Tanzania, and northeastern Zambia. Here, the values of β̂ > 0 indicate that the correspond-

ing covariates have a positive relationship with malaria incidence. From the estimates of

β̂4, we observe that while rainfall may increase malaria incidence, these effects are more

pronounced in the smaller partition.

5.2 Moderate Resolution Imaging Spectroradiometer (MODIS)

Cloud Mask Data

The National Aeronautics and Space Administration (NASA) launched the Terra Satellite

in December 1999 as part of the Earth Observing System. As in past studies (Sengupta

and Cressie, 2013; Bradley et al., 2019), we model the cloud mask data captured by the

Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard the Terra

satellite. The response is a binary incidence of cloud mask at a 1km × 1km spatial res-

olution. In this study, we selected N = 1, 000, 000 observations to fit our model and

reserved Ncv = 111, 000 for validation. We model the binary observations as a nonsta-

tionary SGLMM via the SMB-SGLMM method. Similar to Sengupta and Cressie (2013);

Bradley et al. (2019), we include the vector 1 and a vector of latitudes as the covariates

and use a logit link function.

For the SMB-SGLMM approach, we vary the number of partitions K ∈ {16, 25, 36, 49}

and weighting radius γ ∈ {0.01, 0.025, 0.05, 0.1} for a total of 16 cases. For each partition,

we begin with m = 1, 000 knots (candidates) and perform basis selection using lasso regres-
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Weighting Radius (γ) Walltime
Partitions 0.01 0.025 0.05 0.1 (hours)

16 0.192 0.215 0.229 0.266 5.4
25 0.174 0.175 0.184 0.211 3.9
36 0.182 0.200 0.223 0.299 3.2
49 0.186 0.198 0.222 0.290 2.8

Table 5: Misclassification Rate and total walltime (hours) for the MODIS cloud mask
example. Rows denote the four partition classes and columns correspond to the chosen
weighting radius. We report the combined walltime for lasso, MCMC, and weighting.

sion Tibshirani (1996). On average, basis selection results in roughly 16.3 basis functions

per partition. For each partition, we fit a localized spatial basis SGLMM (3) by running

the MCMC algorithm for 100, 000 iterations.

Figure 5 indicates that there are similar spatial patterns between binary observations

and predicted probability surface. We also provide the misclassification rate for each case

in Table 5. The performance of SMB-SGLMMs is robust across different choices of K and

γ. Results suggest that a moderate number of partitions (K = 25) and a smaller weighting

radius (γ = 0.01) yields the most accurate predictions. The combined walltimes decrease

when using more partitions; however, these are on the order of hours in all cases.

6 Discussion

In this manuscript, we propose a scalable algorithm for modeling massive nonstationary

non-Gaussian datasets. Existing approaches are limited to either stationary non-Gaussian

or nonstationary Gaussian spatial data, but not both. Our method divides the spatial

domain into disjoint partitions using a spatial clustering algorithm (Heaton et al., 2017).

For each partition, we fit a localized model using a collection of thin plate spline basis
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Figure 5: Illustration for the MODIS cloud mask dataset. (left) True observations of cloud
mask. (right) Posterior predictive probability surface (K = 25 and γ = 0.01).

functions. Here, the linear combinations of the basis functions capture the underlying non-

stationary behavior. We provide an automated basis selection process via a regularization

approach, such as lasso. This framework is computationally efficient due to parallel com-

puting and using basis representations of complex spatial processes. Our study shows that

the proposed method provides accurate estimations and predictions within a reasonable

time. Moreover, our approach scales well to massive datasets, where we model N = 1 mil-

lion binary observations within 4 hours. To our knowledge, this is the first method geared

towards modeling nonstationary non-Gaussian spatial data at this scale.

The proposed framework can be extended to a wider range of spatial basis functions. In

the literature, there exists a wide array of spatial basis functions such as bi-square (radial)

basis functions using varying resolutions (Cressie and Johannesson, 2008; Nychka et al.,

2015; Katzfuss, 2017), empirical orthogonal functions (Cressie, 2015), predictive processes
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(Banerjee et al., 2008), Moran’s basis functions (Griffith, 2003; Hughes and Haran, 2013),

wavelets (Nychka et al., 2002; Shi and Cressie, 2007), Fourier basis functions (Royle and

Wikle, 2005) and Gaussian kernels (Higdon, 1998). A closer examination of adopting

Bayesian regularization methods (see O’Hara et al. (2009) for a detailed review) for selecting

basis functions is also an interesting future research avenue.

Developing scalable methods for modeling nonstationary non-Gaussian spatio-temporal

data is challenging. The partition-based basis function representation can be integrated

into existing hierarchical spatio-temporal models. For example, we can approximate the

nonstationary processes using a tensor product of spatial and temporal basis functions or

by constructing data-driven space-time basis functions.
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Supplementary Material for A Scalable Partitioned Approach to Model Mas-

sive Nonstationary Non-Gaussian Spatial Datasets

A Spatial Clustering Algorithm

Here, we provide the clustering algorithm (Heaton et al., 2017) in detail. We obtain resid-

uals ε from a GLM fit with a response vector Z ∈ RN and a covariate matrix X ∈ RN×p.

Let εk ∈ RNk be the residuals belongs to the cluster (partition) Sk. Then we can define

the dissimilarity between two clusters as

d(Sk1 ,Sk2) =
[ Nk1Nk2

Nk1 +Nk2

(ε̄k1 − ε̄k2)2
] 1

Ē
,

where ε̄k is the average of εk and Ē is the average Euclidean distance between points in

Sk1 ,Sk2 . Then the spatial clustering algorithm can be summarized as follows.

Algorithm 1 Spatial clustering algorithm (Heaton et al., 2017)

Initialize each location sk = Sk for k = 1, · · · , N ; we have N number of clusters.
1. Find clusters Sk1 ,Sk1 having the minimum d(Sk1 ,Sk2) where si ∼ sj (Voronori
neighbors) for si ∈ Sk1 and sj ∈ Sk2
2. Combine two clusters

Smin{k1,k2} = Sk1 ∪ Sk2
and set

Smax{k1,k2} = ∅

Repeat 1-2 until we have K < N number of clusters.

We note that Algorithm 1 becomes computationally expensive with increasing number

of observations. Following suggestions in Heaton et al. (2017), we perform clustering after

combining observations to a lattice {s∗l }Ll=1 (L << N). Here, Nl = {si : ‖si − s∗l ‖ <
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‖si − s∗m‖} is the collection of observations whose closest lattice point is s∗l , and ε̄(s∗l ) =

|Nl|−1
∑

si∈Nl
ε(si). Then we apply Algoritm 1 to {ε̄(s∗l )}Ll=1 rather than to {ε(si)}Ni=1. Since

the number of lattice points L is much smaller than the number of observations N , spatial

clustering algorithm becomes computationally feasible. For instance, in our simulation

studies we chose L = 900 for N = 100, 000.

B Simulation of Nonstationary Spatial Random Ef-

fects

We describe how to generate the nonstationary spatial random effects from Section 4,

W = {W (s1), ...,W (sn))}. The nonstationary spatial random effects W are generated by

convolving a collection of spatially varying kernel functions (Higdon, 1998; Paciorek and

Schervish, 2006; Risser and Calder, 2015). The construction procedure is broken down

into four steps: (1) select locations for the “basis” and “reference” kernel functions; (2)

construct “basis” kernels; (3) use “basis” kernels to construct “reference” kernels on a finite

grid; and (4) generate non-stationary spatial random effects using the “reference kernels”.

In Step 1, we select M “basis” locations b = {b1, ..., bM} on a coarse grid of evenly-

spaced locations over the spatial domain D ∈ R2. Similarly, we select J “reference” lo-

cations u = {u1, ..., uJ} on a finer grid of evenly-space locations in D. As in past studies

(Higdon, 1998; Paciorek and Schervish, 2006; Risser and Calder, 2015), we typically select

M < J . Figure 6 illustrates the placement of the ‘basis” and “reference” locations.

In Step 2, we construct Gaussian “basis” kernels centered at each basis location b for
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Figure 6: Locations (knots) for “basis” (red) and “reference” (blue) locations.
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m = 1, ...,M . The “basis” kernels are defined as

Km(xi) = (2π)−1|Σm|−1/2 exp
{
− 1

2
(xi − bm)′Σm(xi − bm)

}
,

where bm is a “basis” location, xi is the location of interest, and Σm is a 2× 2 covariance

matrix for the m-th Gaussian “basis” kernel.

In Step 3, we construct the Gaussian kernels for the reference locations Ks(uj) for

j = 1, ..., J as a weighted average of the “basis” kernels Km(·). The “reference” kernels are

defined as:

Ks(uj) =
M∑

m=1

wm(s)Km(uj),

where wm(s) are the distance-based weights, uj are the “reference” locations, and s is

the spatial location of interest. Here, the weights wm(s) ∝ exp
{
− 1

2
||s − bm||

}
and∑M

m=1wm(s) = 1.

Finally, in Step 4, we generate the nonstationary spatial random effects as

W (s) =
J∑

j=1

Ks(uj)V (uj),

where Ks(uj) is a spatially varying Gaussian kernel function centered at “reference” loca-

tions uj and V (uj) is a realization of Gaussian white noise. Note that V (uj) ∼ N (0, σ2
u).

In our implementation, we chose M = 9 “basis” locations b = {b1, ..., bM} and J = 100

“reference” locations u = {u1, ..., uJ} on a grid of evenly-space locations in D. The “basis”

kernel functions Km(·) for m = 1, ..., 9 have spatially-varying covariance matrices Σm as
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Figure 7: “Basis” Kernel functions Km(·) for locations bm, m = 1, ..., 9.

follows:

Σ1 =

0.50 0.30

0.30 0.33

 Σ2 =

 0.50 −0.12

−0.12 0.13

 Σ3 =

0.50 0.18

0.18 0.20



Σ4 =

0.50 0.54

0.54 0.60

 Σ5 =

0.50 0.06

0.06 0.07

 Σ6 =

 0.50 −0.48

−0.48 0.53



Σ7 =

0.50 0.42

0.42 0.46

 Σ8 =

 0.50 −0.36

−0.36 0.40

 Σ9 =

 0.50 −0.24

−0.24 0.26
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Figure 8: Nonstationary spatial random field constructed via convolutions of Gaussian
basis kernels.

C Computing weights via parallelization

As mentioned in Section 3.1 (step 4), we propose a parallelized method to compute weights

ck(s) for k = 1, ..., K and s ∈ S. For a given location s, the weights ck(s) ∝ exp
(
−‖s−s̃k‖2

)
where s̃k ∈ Sk is the point in partition k with the shortest distance to point s. The challenge

lies in computing and storing the distances ‖s − s̃k‖. Naive implementations may simply

compute the distance matrix between all N locations, which requires O(n2) operations

as well as O(n2) in storage. In the MODIS example (Section 5.2), the distance matrix

(n = 1million observations) demands 8TB of storage.

We propose “streaming” the weight calculations (ck(s)) without storing the distance

matrix. First, we parallelize over C available cores where each core is assigned a location

s. Then, we compute distances between location s and the other locations s−. This
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Figure 9: Map of the spatially-varying β1 parameter (left) and β2 parameter (right) for the
simulated Poisson Dataset)

n-dimensional vector of distances (e.g. 8MB for the MODIS case) can be stored in the

random access memory (RAM). Finally, we compute the weights ck(s) for each partition k.

The task concludes once ck(s) are computed for all s in our dataset and for all partitions

k.

D Partition Varying Estimates
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Figure 10: Map of the spatially-varying β1 parameter (left) and β2 parameter (right) for
the simulated Binary Dataset)

Figure 11: Map of the spatially-varying β0 parameter (left) and β1 parameter (right) for
the MODIS cloud mask dataset.)
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Count Data Binary Data
Partition β1 β2 β1 β2

1 0.93 (0.87,0.98) 0.98 (0.93,1.04) 0.99 (0.96,1.02) 1.02 (0.98,1.05)
2 1.02 (0.92,1.13) 0.98 (0.87,1.08) 1.01 (0.98,1.06) 1 (0.96,1.04)
3 0.95 (0.72,1.18) 1.08 (0.86,1.31) 1.03 (0.96,1.1) 1 (0.94,1.07)
4 1.03 (0.81,1.24) 1.15 (0.95,1.37) 1 (0.93,1.08) 1.05 (0.98,1.12)

Table 6: For K = 4 partitions, we report parameter estimates for β1 and β2 for the
simulated count and binary datasets. This includes the posterior mean and 95% credible
intervals for each partition.

Count Data Binary Data
Partition β1 β2 β1 β2

1 0.91 (0.77,1.06) 0.97 (0.83,1.11) 0.99 (0.94,1.03) 1.01 (0.97,1.06)
2 0.97 (0.88,1.05) 1.03 (0.95,1.12) 1 (0.95,1.05) 1 (0.95,1.05)
3 0.94 (0.64,1.25) 0.96 (0.65,1.28) 1.08 (0.97,1.2) 1.05 (0.94,1.17)
4 1 (0.7,1.31) 0.95 (0.65,1.24) 0.97 (0.87,1.08) 0.97 (0.86,1.08)
5 1.02 (0.92,1.12) 0.98 (0.87,1.08) 1.01 (0.95,1.07) 1.03 (0.97,1.09)
6 0.95 (0.72,1.17) 1.08 (0.86,1.31) 1.03 (0.96,1.1) 1 (0.93,1.07)
7 0.94 (0.84,1.03) 1.02 (0.92,1.12) 0.94 (0.86,1.02) 1.05 (0.96,1.13)
8 1.03 (0.82,1.24) 1.15 (0.95,1.37) 1.06 (0.98,1.15) 1.02 (0.93,1.11)
9 1.16 (0.79,1.54) 0.69 (0.31,1.05) 1 (0.93,1.07) 1.05 (0.97,1.12)

Table 7: For K = 9 partitions, we report parameter estimates for β1 and β2 for the
simulated count and binary datasets. This includes the posterior mean and 95% credible
intervals for each partition.
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Count Data Binary Data
Partition β1 β2 β1 β2

1 0.94 (0.72,1.15) 1 (0.79,1.22) 0.99 (0.93,1.04) 1.03 (0.97,1.08)
2 1.06 (0.7,1.41) 0.95 (0.58,1.3) 1 (0.95,1.05) 0.99 (0.95,1.04)
3 0.98 (0.89,1.07) 1.02 (0.93,1.11) 1.08 (0.97,1.19) 1.06 (0.95,1.17)
4 0.93 (0.62,1.24) 0.98 (0.66,1.28) 0.97 (0.86,1.08) 0.97 (0.86,1.08)
5 0.99 (0.69,1.29) 0.95 (0.67,1.26) 1 (0.88,1.12) 1.03 (0.91,1.15)
6 0.91 (0.72,1.11) 0.94 (0.75,1.14) 0.91 (0.78,1.04) 0.87 (0.75,1)
7 1.02 (0.92,1.13) 0.98 (0.87,1.09) 1 (0.85,1.15) 1.12 (0.97,1.27)
8 0.83 (0.44,1.21) 1.44 (1.02,1.82) 1.02 (0.95,1.08) 1.02 (0.95,1.09)
9 1.02 (0.66,1.35) 0.91 (0.56,1.27) 1.03 (0.95,1.11) 1 (0.93,1.08)
10 1.02 (0.75,1.29) 1.08 (0.81,1.35) 1.03 (0.88,1.18) 1.02 (0.88,1.17)
11 0.98 (0.86,1.1) 1.03 (0.91,1.15) 0.94 (0.86,1.03) 1.05 (0.96,1.13)
12 0.79 (0.4,1.21) 1.1 (0.68,1.51) 1.18 (0.97,1.39) 1 (0.8,1.21)
13 0.86 (0.69,1.03) 1 (0.84,1.18) 1.08 (0.97,1.19) 1.02 (0.91,1.13)
14 0.96 (0.69,1.23) 1.29 (1.02,1.57) 1.02 (0.87,1.16) 1.02 (0.87,1.17)
15 1.16 (0.78,1.54) 0.69 (0.31,1.05) 0.95 (0.85,1.06) 1.02 (0.91,1.12)
16 1.13 (0.79,1.47) 0.96 (0.63,1.29) 1.05 (0.96,1.15) 1.09 (0.99,1.18)

Table 8: For K = 16 partitions, we report parameter estimates for β1 and β2 for the
simulated count and binary datasets. This includes the posterior mean and 95% credible
intervals for each partition.
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Count Data Binary Data
Partition β1 β2 β1 β2

1 0.94 (0.72,1.15) 1.01 (0.79,1.22) 0.99 (0.94,1.05) 1.03 (0.97,1.08)
2 1.07 (0.72,1.43) 0.95 (0.59,1.32) 0.99 (0.74,1.23) 0.95 (0.69,1.2)
3 0.96 (0.83,1.08) 1.08 (0.95,1.21) 1 (0.96,1.05) 1 (0.96,1.06)
4 0.94 (0.63,1.25) 0.96 (0.65,1.28) 0.93 (0.75,1.12) 0.92 (0.73,1.11)
5 1.19 (0.85,1.52) 1.03 (0.68,1.35) 1.06 (0.93,1.19) 1.03 (0.9,1.16)
6 1 (0.7,1.3) 0.95 (0.65,1.25) 0.97 (0.86,1.08) 0.97 (0.86,1.07)
7 0.91 (0.71,1.1) 0.94 (0.75,1.14) 1 (0.88,1.11) 1.03 (0.91,1.14)
8 1.05 (0.91,1.19) 0.98 (0.84,1.11) 0.91 (0.78,1.03) 0.87 (0.75,1)
9 0.83 (0.44,1.21) 1.44 (1.05,1.85) 1 (0.85,1.14) 1.12 (0.97,1.27)
10 1.02 (0.8,1.25) 1.03 (0.8,1.26) 1.02 (0.94,1.08) 1.02 (0.95,1.09)
11 1.01 (0.73,1.3) 1.02 (0.72,1.29) 1.04 (0.88,1.2) 0.96 (0.81,1.11)
12 1.01 (0.67,1.36) 0.92 (0.56,1.26) 1.02 (0.85,1.18) 1.11 (0.94,1.27)
13 0.79 (0.36,1.23) 0.96 (0.54,1.41) 1.11 (0.91,1.31) 1.01 (0.81,1.21)
14 1.08 (0.55,1.59) 1.33 (0.82,1.86) 1.03 (0.88,1.18) 1.02 (0.87,1.16)
15 1.03 (0.75,1.29) 1.08 (0.8,1.35) 1.01 (0.89,1.14) 0.96 (0.84,1.08)
16 0.98 (0.86,1.11) 1.03 (0.91,1.15) 1.19 (0.95,1.42) 1.14 (0.9,1.38)
17 1.06 (0.8,1.32) 0.97 (0.71,1.23) 0.93 (0.7,1.16) 0.93 (0.69,1.16)
18 0.79 (0.37,1.19) 1.09 (0.68,1.5) 0.93 (0.84,1.03) 1.08 (0.98,1.18)
19 0.96 (0.73,1.2) 0.96 (0.72,1.2) 0.96 (0.82,1.1) 0.99 (0.85,1.13)
20 0.73 (0.53,0.93) 0.94 (0.75,1.13) 1.15 (0.95,1.37) 1.01 (0.8,1.21)
21 1.01 (0.74,1.29) 0.94 (0.66,1.21) 1.08 (0.97,1.19) 1.02 (0.91,1.13)
22 1.21 (0.87,1.53) 1.21 (0.89,1.53) 1.02 (0.87,1.16) 1.02 (0.87,1.17)
23 0.96 (0.7,1.23) 1.29 (1.02,1.56) 0.95 (0.84,1.06) 1.01 (0.91,1.12)
24 1.16 (0.79,1.55) 0.69 (0.33,1.06) 1.08 (0.98,1.18) 1.11 (1.01,1.2)
25 1.14 (0.8,1.47) 0.96 (0.63,1.29) 0.8 (0.46,1.13) 0.83 (0.47,1.19)

Table 9: For K = 25 partitions, we report parameter estimates for β1 and β2 for the
simulated count and binary datasets. This includes the posterior mean and 95% credible
intervals for each partition.

38



Count Data Binary Data
Partition β1 β2 β1 β2

1 0.91 (0.68,1.12) 0.99 (0.77,1.21) 0.99 (0.94,1.05) 1.01 (0.95,1.06)
2 1.81 (0.68,2.88) 1.22 (0.15,2.28) 0.99 (0.74,1.24) 0.95 (0.69,1.2)
3 1.07 (0.71,1.43) 0.95 (0.58,1.3) 0.98 (0.9,1.06) 1 (0.92,1.08)
4 0.95 (0.83,1.08) 1.08 (0.95,1.21) 0.93 (0.74,1.12) 0.91 (0.72,1.11)
5 0.94 (0.64,1.25) 0.96 (0.64,1.27) 1.05 (0.93,1.19) 1.03 (0.91,1.16)
6 1.19 (0.85,1.53) 1.03 (0.68,1.36) 1 (0.84,1.17) 1.04 (0.88,1.2)
7 1 (0.69,1.29) 0.95 (0.65,1.24) 1 (0.88,1.11) 1.03 (0.91,1.15)
8 0.94 (0.72,1.16) 0.92 (0.7,1.14) 0.91 (0.78,1.03) 0.87 (0.75,1)
9 0.99 (0.77,1.2) 0.91 (0.7,1.12) 1.03 (0.82,1.22) 1.08 (0.87,1.28)
10 0.84 (-0.08,1.73) 0.26 (-0.59,1.15) 0.94 (0.8,1.09) 0.91 (0.77,1.06)
11 0.83 (0.45,1.23) 1.45 (1.05,1.85) 1 (0.85,1.15) 1.12 (0.97,1.27)
12 1.02 (0.8,1.25) 1.03 (0.8,1.25) 1.02 (0.94,1.08) 1.02 (0.95,1.09)
13 1.01 (0.72,1.29) 1.02 (0.73,1.3) 1.04 (0.88,1.19) 0.96 (0.81,1.12)
14 0.89 (0.27,1.48) 0.54 (-0.04,1.17) 1.01 (0.84,1.18) 1.11 (0.94,1.28)
15 0.79 (0.35,1.24) 0.97 (0.54,1.41) 0.97 (0.87,1.08) 1 (0.89,1.1)
16 1.09 (0.54,1.59) 1.32 (0.81,1.86) 1.12 (0.92,1.32) 1.01 (0.82,1.21)
17 1.12 (0.94,1.32) 1.1 (0.91,1.3) 1.03 (0.88,1.18) 1.02 (0.87,1.17)
18 1.08 (0.65,1.5) 1.06 (0.63,1.5) 1.1 (0.91,1.28) 0.87 (0.7,1.05)
19 1.02 (0.76,1.29) 1.08 (0.81,1.35) 1.06 (0.67,1.46) 0.98 (0.57,1.39)
20 0.9 (0.72,1.09) 1.17 (0.99,1.36) 0.95 (0.78,1.11) 1.04 (0.87,1.2)
21 1.06 (0.8,1.32) 0.97 (0.72,1.24) 1.02 (0.92,1.12) 0.99 (0.89,1.09)
22 0.96 (0.48,1.48) 0.52 (0.03,1.03) 1.19 (0.95,1.42) 1.13 (0.9,1.38)
23 0.79 (0.38,1.2) 1.1 (0.67,1.51) 0.94 (0.71,1.18) 0.93 (0.7,1.15)
24 0.83 (0.41,1.26) 1.06 (0.64,1.51) 0.93 (0.84,1.03) 1.08 (0.98,1.18)
25 0.96 (0.72,1.2) 0.96 (0.72,1.2) 0.96 (0.82,1.1) 0.99 (0.86,1.13)
26 0.67 (0.42,0.92) 0.88 (0.62,1.13) 0.98 (0.78,1.19) 1.1 (0.89,1.31)
27 0.82 (0.52,1.16) 1.04 (0.72,1.35) 1.18 (0.97,1.39) 1 (0.79,1.2)
28 1.04 (0.79,1.28) 0.99 (0.76,1.25) 1.02 (0.9,1.13) 1.08 (0.96,1.19)
29 1.01 (0.75,1.29) 0.94 (0.66,1.2) 1.05 (0.89,1.22) 1.04 (0.88,1.2)
30 1.07 (0.66,1.47) 0.81 (0.4,1.21) 1.08 (0.97,1.19) 1.02 (0.91,1.13)
31 1.21 (0.89,1.54) 1.19 (0.88,1.53) 0.89 (0.62,1.14) 1.2 (0.95,1.47)
32 1.08 (0.77,1.38) 1.11 (0.81,1.42) 1.02 (0.87,1.16) 1.02 (0.87,1.17)
33 0.97 (0.69,1.23) 1.29 (1.01,1.56) 1 (0.87,1.13) 1.04 (0.91,1.18)
34 1.16 (0.79,1.55) 0.68 (0.31,1.05) 0.85 (0.66,1.03) 0.96 (0.78,1.13)
35 1.14 (0.76,1.52) 0.82 (0.44,1.19) 1.08 (0.98,1.18) 1.11 (1.01,1.2)
36 1.13 (0.45,1.88) 1.42 (0.74,2.13) 0.8 (0.48,1.14) 0.83 (0.47,1.18)

Table 10: For K = 36 partitions, we report parameter estimates for β1 and β2 for the
simulated count and binary datasets. This includes the posterior mean and 95% credible
intervals for each partition.

39



References

Banerjee, A., Dunson, D. B., and Tokdar, S. T. (2013). Efficient Gaussian process regression

for large datasets. Biometrika, 100(1):75–89.

Banerjee, S. and Gelfand, A. E. (2006). Bayesian wombling: Curvilinear gradient assess-

ment under spatial process models. Journal of the American Statistical Association,

101(476):1487–1501.

Banerjee, S., Gelfand, A. E., Finley, A. O., and Sang, H. (2008). Gaussian predictive

process models for large spatial data sets. Journal of the Royal Statistical Society: Series

B (Statistical Methodology), 70(4):825–848.

Bradley, J. R., Cressie, N., Shi, T., et al. (2016). A comparison of spatial predictors when

datasets could be very large. Statistics Surveys, 10:100–131.

Bradley, J. R., Holan, S. H., and Wikle, C. K. (2019). Bayesian hierarchical models with

conjugate full-conditional distributions for dependent data from the natural exponential

family. Journal of the American Statistical Association, 0(ja):1–29.

Christensen, O. F., Roberts, G. O., and Sköld, M. (2006). Robust Markov chain Monte
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