
Statistical Learning for Nonlinear Dynamical Systems

with Applications to Aircraft-UAV Collisions

Xinchao Liu1, Xiao Liu1, Tulin Kaman2, Xiaohua Lu3, and Guang Lin4

1Department of Industrial Engineering, University of Arkansas
2Department of Mathematical Sciences, University of Arkansas

3College of Civil Aviation, Nanjing University of Aeronautics and Astronautics
4Departments of Mathematics, Statistics & School of Mechanical Engineering, Purdue University

Online Supplemental Materials

1 Extracting mass matrix and external force from FEA

Constructing the statistical model requires the mass matrix (required by the SVD (13))

and the external force (required by the reduced-order model (15)). Both quantities can

be obtained from FEA that solves (6) numerically using the generalized-α time integration

method for nonlinear structural dynamics (Farhat et al., 2014).

⋄ Equilibrium: Mün+1−αm + fint(un+1−αf
, u̇n) = fext(tn+1−αf

)

⋄ Initial conditions: u0, u̇0, ü0 = M−1 (fext(t0)− fint(u0, u̇0; t0))

⋄ Recurrences:

un+1 = un +∆tu̇n +∆t2((1
2
− β)ün + βün+1) u̇n+1 = u̇n +∆t((1− γ)ün + γün+1)

⋄ Time average:

tn+1−αf
= (1− αf )tn+1 + αf tn un+1−αf

= (1− αf )un+1 + αfun

u̇n+1−αf
= (1− αf )u̇n+1 + αf u̇n ün+1−αm = (1− αm)ün+1 + αmün

where αm and β are the parameters that control the stability of the scheme, αf and γ control

the accuracy of the scheme, and ∆t denotes the computational time step.
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After numerically solving the governing equation (6) by FEA, we can obtain the mass

matrix and forces (which are required by the statistical model). Here, we assume that the

mass matrix is consistent during the entire collision process, and both the mass matrix and

the external forces are determined by all the elements of the discretized structure of interest

(i.e., aircraft nose in the numerical example). The procedure of assembling the mass matrix

and external force is given as follows:

⋄ Input: node matrix H, element matrix E and nodal forces (extracted from FEA)

⋄ MassAssembler3Dshell(H, E), Mm,n =
∫
Ω
ρΦn(x)Φm(x)dxΩ, for m,n = 1, 2, · · · , N .

⋄ ForceAssembler3Dshell(H, E), i.e., f ext
m,i =

∫
Ω
fiΦm(x)dxΩ +

∫
Γs
giΦm(x)dxΓ

2 Double Slit experiment (a linear case of ODE)

As discussed in Section 3.2, for a nonlinear governing ODE (13), the nonlinearity in fint

prevents us from using statistical learning approaches to learn the input-output mapping of

fint. The learning errors are quickly accumulated and magnified due to the chaotic nature of

the nonlinear governing equation (see Section 3). If, on the other hand, the governing ODE

is linear, Appendix B demonstrates the effectiveness of learning a governing ODE using the

statistical hyper-reduction approach.

We consider the classical Thomas Young’s Double Slit experiment governed by a partial

differential equation (i.e., the wave equation commonly found in science and engineering).

∂2u

∂t2
−∆u = fi in Ω (1)

with boundary conditions and initial values

u = u(t) on ΓD, n · ∇u = 0 on ΓN

u = 0 in Ω for t = 0, u̇ = 0 in Ω for t = 0

(2)

where u denotes the quantity of displacement. The wave equation describes wave propagation

in a median such as a liquid and a gas. As shown in Figure 1, the problem under consideration

has a domain composed of a square with two smaller rectangular strips added on one side.
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The Dirichlet boundary condition is imposed on the line segments ΓD = {x : x1 = −0.25},

and the Neumann boundary condition is imposed on the rest of the boundaries. The source

is given by fi(xΓD
) = µ1 sin(µ2πt), where µ1 and µ2 are the parameters of interest.

After discretization with a mesh size of 0.025, a number of 5731 nodes and 2968 elements

are defined on the domain. Hence, we obtain a 2968× 2968 system of ODEs

Mξ̈(t) +Aξ(t) = b(t,µ), t ∈ J (3)

where ξ is the time-dependent nodal displacement, M, A and b are matrices, J is a set of

discretized time steps, and µ = (µ1, µ2)
T is a collection of the parameters of interest.
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Figure 1: Discretization of the domain Ω for the Double Slit experiment

Here, our goal is to (i) use the hyper-reduction approach described in Section 3 to learn

the parameter-output mapping based on the data generated by the governing ODE; and

(ii) predict the solutions at an unknown parameter setting using the statistical model.

To prepare the training dataset, we consider values of µ1 and µ2 from a mesh grid of

{80, 84, 88, 92, 96, 100}⊗{3.0, 3.4, 3.8, 4.2, 4.6, 5.0}, i.e., 36 combinations of µ1 and µ2. Using

10 POD bases, the reduced-order governing physics and compressed snapshot data are pre-

pared using the approach described in Section 3. The Gradient-Boosted Trees are adopted

to learn the mapping fint in the reduced-order model (Zhang and Jung, 2020).
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Figure 2: Nodal displacement fields over time for the double-slit experiment. Left column:
FEM; Middle column: reconstructed displacement fields by keeping only 10 POD bases;
Right column: predicted displacement fields using statistical approaches.

4



The established statistical model is then used to predict the displacement at the input

condition of µ∗
1 = 85 and µ∗

2 = 4.3. The predicted displacement field is given in the right

column of Figure 2. The figure also includes the (actual) displacement generated from FEM

(left column), as well as the reconstructed displacement by keeping only 10 POD bases (cen-

ter column). It is seen that the predicted displacement fields at different time steps well

match the outputs generated by FEM, justifying the hyper-reduction approach outlined by

(14) for linear problems.

3 Comparison studies and discussions

Appendix C provides additional numerical comparison studies and discussions on the pro-

posed approach, focusing on three important aspects: interpretability, accuracy and compu-

tational time.

1). Comparison for interpretability

We first provide a high-level overview to the methods included in the comparison study,

and then, discuss their differences in terms of model interpretability.

• Firstly, the proposed approach can be conceptually represented as:

Proposed Approach: p
mGPR→ ξF

function-to-function regression→ ξq
mFPCA→ q

POD→ u (4)

For any parameters p, the mGPR is used to predict coefficients ξF that determine the

external force. Then, the function-to-function regression is used to predict the coefficients ξq

that determine the reduced-order state. Finally, the reduced-order and fully-order state are

computed from mFPCA and POD, respectively. We see that, the proposed model is highly

interpretable because it explicitly captures the chain relationship: impact conditions→force

generated→deformation caused.

• The first Alternative Approach (denoted by AA1) to be compared with is a GP model

that directly builds the mapping from parameters p to the full-order state at any given time,
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which can be conceptually represented by

Alternative Approach 1 (AA1): p
GP→ q

POD→ u. (5)

Hence, this is a less interpretable and pure data-driven model that directly learns the input-

output relationship without explicitly modeling the relationship between force and deforma-

tion. In addition, we construct AA1 for individual time steps, i.e., we construct a GP spatial

model at each time step without considering the temporal connection.

In particular, let {(pi,q(pi))}Np

i=1, pi ∈ Rp and q(pi) ∈ RK , AA1 considers a multivariate

Gaussian Process Regression (mGPR):

g ∼ MGP(0, k′
q,Λq), q(pi) = g(pi). (6)

Then, the system state at any give time step t is given by û∗(t) = V(q̂∗(t) + q̄(t)) and

cov(û(t), û(t′)) = Vcov(q̂(t), q̂(t′))VT . As one may see, AA1 is computationally less efficient

because it requires a mGPR to be constructed for each time step.

• The second Alternative Approach (denoted by AA2) to be compared with is a GP

model that directly builds the mapping from the parameter p to the reduced-order state at

a given time, which can conceptually represented by

Alternative Approach 2 (AA2): p
GP regression→ ξq

mFPCA→ q
POD→ u (7)

Hence, this alternative approach used the GPR to directly predict the coefficients ξq that

determine the reduced-order state, and subsequently compute the reduced-order and fully-

order states. In other words, AA2 skips the prediction of external force (which is the reason

that leads to surface deformation), and is less interpretable.

In our comparison study, let {(pi, ξ
q(pi))}Np

i=1, pi ∈ Rp and ξq(pi) ∈ RL, AA2 considers
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a multivariate Gaussian Process Regression (mGPR):

g ∼ MGP(0, k′
ξq ,Λξq), ξq(pi) = g(pi). (8)

Once ξ̂q∗ has been obtained, it follows from the mFPCA that q̂∗(t) = q̄(t) + q̂Z
∗ (t) and

cov(q̂(t), q̂(t′)). Finally, based on the POD, the predicted original high-dimensional state

vector u∗(t) is obtained as û∗(t) = Vq̂∗(t) and cov(û(t), û(t′)) = Vcov(q̂(t), q̂(t′))VT .

• The third alternative approach (AA3) only slightly differs from our approach. In the

proposed approach, we establish the mapping between the cumulative force and displace-

ment, while AA3 establishes the mapping between instantaneous force and displacement.

There are two reasons why we chose to model the relationship between cumulative force and

displacement:

(i) from the law of motion, force corresponds to acceleration while cumulative force is

associated with displacement; and

(ii) from the statistical learning perspective, cumulative force is smoother and less volatile

than instantaneous force. To elaborate, the profile of instantaneous force is shown in the

figure on the next page. If we compare the profiles of the instantaneous force to those of the

cumulative force (see Figure 9 in the revised paper), we clearly see the cumulative force is

much smoother.

Precisely due to this reason, if the instantaneous force is used, more mFPCA bases are

needed to retain at least 90% of the total variation. For example, M = 12 only retains

49.61% of the total variation of the instantaneous force profile, while M = 12 can already

capture 97.43% of the total variation of the cumulative force profile (this is what we did

in our approach). Hence, in our comparison study, we let M = 31 for AA3 which explains

96.13% of the total variation. Obviously, a larger value of M makes the dimension of the

problem higher and increases the computational burden (i.e., in the MLE). In summary,
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AA3 is slightly less interpretable from the laws of motion, and computationally less efficient.

Figure 3: The instantaneous external force profiles

2). Comparison for accuracy

Next, we compare the accuracy of different approaches. As discussed above, the proposed

approach explicitly captures the chain relationship (i.e., impact conditions→force→deformation),

while AA1 and AA2 use data-driven approaches to directly capture the input-output relation-

ship as accurately as possible (i.e., impact condition→deformation, or, impact condition→reduced-

order state→deformation). Hence, one might think that the data-driven driven approaches

AA1 and AA2 should be more accurate (we also thought so before the numerical exper-

iment). However, the numerical study shows that the proposed approach has comparable

performance in terms of prediction accuracy while greatly improving the model interpretabil-

ity. This is clearly seen in the figure below, which shows the boxplot of the LOOCV MRE

for all 35 collision conditions for the current method, AA1, AA2 and AA3 at 4, 6, and 8

milliseconds after collision.
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Figure 4: Comparison of LOOCV MRE for the current model, AA1, AA2 and AA3 at
different times after collision: (a) 4ms; (b) 6ms; (c) 8ms.

3). Comparison for computational time

Finally, we compare the computational time of the proposed model, AA1, AA2 and

AA3. Because all models consume the same amount of time in data pre-processing and the

SVD operation, we compare the time required for making statistical inference by different

approaches. As shown in the Figure on the next page, the proposed model in this paper is

the fastest, while AA1 is the slowest one. This is mainly due to the fact that AA1 requires

repeatedly building an mGPR model for each time step. AA3 is also slower because it

requires a larger number of bases to capture the instantaneous force profile which makes the

dimension of the problem higher.
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Figure 5: Comparison of computational time (on a base 10 logarithmic scale) for different
models.

In summary, the proposed approach is more interpretable with comparable accuracy to

other data-driven approaches, and is computationally faster, as summarized in the table

below.

Conclusions about the proposed approach
Interpretability More interpretable than AA1, AA2 and AA3
Accuracy Comparable performance
Computation Fastest among all approaches
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