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Abstract

Gaussian process surrogates are a popular alternative to directly using computationally ex-
pensive simulation models. When the simulation output consists of many responses, dimension-
reduction techniques are often employed to construct these surrogates. However, surrogate
methods with dimension reduction generally rely on complete output training data. This article
proposes a new Gaussian process surrogate method that permits the use of partially observed
output while remaining computationally efficient. The new method involves the imputation of
missing values and the adjustment of the covariance matrix used for Gaussian process inference.
The resulting surrogate represents the available responses, disregards the missing responses,
and provides meaningful uncertainty quantification. The proposed approach is shown to offer
sharper inference than alternatives in a simulation study and a case study where an energy
density functional model that frequently returns incomplete output is calibrated.
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1 Introduction

Computer simulations are used to understand and analyze systems where directly experimenting

on the real system is difficult or infeasible. The output of a simulation model depends on a user-

specified input configuration that defines the physical and controllable properties of the system.

When a user simulates the system, also referred to as running the simulation, they receive out-

puts related to quantities of interest to the user. Running a simulation can be computationally

expensive; each run can cost thousands of core-hours, see for examples the simulation of storm

surge (Plumlee et al., 2021a), influenza spread (Venkatramanan et al., 2021), and nuclear dynam-

ics (Phillips et al., 2021). Because these simulations are expensive, it is often helpful to build an

emulator, or “surrogate,” trained on simulation data to predict at unsimulated (i.e., out-of-sample)

configurations.

Surrogate technology is often deployed for calibration (Kennedy and O’Hagan, 2001), where an

input configuration is represented by a multidimensional parameter. When run at a parameter,

the simulation returns a high-dimensional output consisting of multiple responses collected on

a set of fixed locations. While there are many variations of the exact type of inference (Tuo

and Wu, 2015; Gramacy et al., 2015; Plumlee, 2017), the overall goal is to learn the parameters

by aligning the physical observations with the simulation outputs using computational tools like

Markov Chain Monte Carlo (MCMC). Because simulation runs are expensive, it is not possible to

run the simulation the millions of times needed for MCMC. Instead, the idea is to run the simulation

model for a set of representative parameters and to collect the simulation output from each run;

consequently, the surrogate is constructed as the prediction conditional on the simulation output

data. Important to solving the calibration problem is that the surrogate produces a measure of

uncertainty in the surrogate’s predictions.

The most prominent tool for building statistical surrogates involves Gaussian processes (GPs)
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(Santner et al., 2018; Gramacy, 2020). GPs offer both an accurate prediction and a measure of un-

certainty. The case of high-dimensional outputs leads to the computational intractability of many

surrogate construction tools. Two approaches have been proposed to remedy this computational

challenge. The first one employs a Kronecker structure of the covariance function of the GP, which

assumes a separation between parameters and locations (Rougier, 2008; Hung et al., 2015; Guillas

et al., 2018; Marque-Pucheu et al., 2020). The second approach employs a dimension-reduction

step for the outputs before the building of surrogates (Bayarri et al., 2007; Higdon et al., 2008; Gu

and Xu, 2020). This is in contrast to data-reduction procedures that seek to choose a smaller set

of points to represent the entire parameter space (e.g., the selection of support points (Mak and

Joseph, 2018)). Examples of dimension-reduction procedures include extractions of principal com-

ponents (Higdon et al., 2008; Lawrence et al., 2017; Gu and Xu, 2020), wavelet coefficients (Bayarri

et al., 2007), and calibration-optimal bases (Salter et al., 2019) from the simulation output data.

(Salter et al. (2019) require the knowledge of physical observations, in addition to the simulation

output.) These procedures require complete data, meaning for each run, the entire output has to

be returned by the simulation. However, in seeking high levels in both performance and fidelity,

modern simulation codes may produce partially observed outputs. Hung et al. (2015) have de-

veloped an EM algorithm to address the issue of partially observed output prior to constructing

a surrogate, and their method is included for comparison in this article (see Section 5). In this

article, we focus on extending the second approach to incorporate partially observed outputs.

The presence of partially observed output can be attributed to various causes of code failures.

One cause is failure in parallel computing environments where separate computations are scattered

over a large number of computing nodes. If a computing node experiences failure during calcu-

lations, only some of the calculations may be completed. Another cause is related to numerical

calculations embedded in simulation codes. For example, in a simulation that involves solving a
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system of nonlinear equations, if the system corresponding to a response is inconsistent or par-

ticularly ill-conditioned, then no meaningful solution may be found numerically. Another cause

comes from simulations where some responses in an output are undefined. It is not always easy to

identify a single underlying cause. Consider a parallel computing environment where a response

is not returned because a simulation is terminated by the environment when it exceeds a time

limit. The response could be missing because the time limit was set too low, but it could also

be missing because the numerical calculations within the simulation would never have terminated.

Regardless of the cause, the presence of partially observed outputs renders most surrogate methods

inapplicable. Partially observed outputs can be viewed in the context of data missingness. There

are several classical categories of missingness mechanisms considered by statisticians: missing com-

pletely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). In

practice the underlying causes of partially observed output are difficult to untangle because of the

typically deterministic nature of computer code. Failure in computing nodes seems as though it

can be considered MCAR, but in many cases it is MAR because run time depends on the input

and longer simulations are more likely to encounter a failure than a shorter one. There are many

examples of missingness in simulation codes, including climate studies (Chang et al., 2014; Ma

et al., 2022); fluid dynamics (Huang et al., 2020); nuclear physics (Bollapragada et al., 2021); and

weather dynamics (Plumlee et al., 2021a).

Despite the common occurrence of partially observed output, there are few methods available

for high-dimensional surrogate construction in this setting. The näıve approach would be to simply

discard the dimension-reduction step entirely and treat each response separately. In this case, one

discards the missing responses and pushes forward with surrogate construction with the available

responses. The näıve approach includes locations as additional input dimensions. This inclusion

allows for the correlation structures among both parameters and locations to be modeled, similar

4



to the inclusion of time index as an additional input (Bayarri et al., 2009). However, this approach

can easily exceed the limit of standard GP inference when the number of data points goes above

several thousands. The only recourse while staying with GP inference then leaves GP approxima-

tions, which are still significantly more expensive than dimension-reduction approaches and lead

to decreased accuracy. Another approach is to neglect correlations between locations and build an

independent surrogate for each location. When the output contains a small number of responses,

building separate surrogates often suffices (Baker et al., 2022). However, as the number of re-

sponses increases, this approach is prohibited by its computational burden. Simplistic imputation

is yet another option, where one imputes the missing values and then builds a surrogate using

dimension-reduction tools (e.g., Plumlee et al. (2021a)). The imputation process can be done in

various ways besides prediction, such as a “constant-liar” imputation used in optimization (e.g.,

Chevalier and Ginsbourger (2013)). For purposes of uncertainty quantification, these methods are

dangerous as they will interpolate the imputed values with zero residual uncertainty. For example,

if the entire output from a run is missing, the imputation approach would simply interpolate the

imputed values instead of representing them as missing, which seems contrary to the goals of a

surrogate to faithfully represent the predictive uncertainty.

In this article we propose a new GP surrogate method that operates well in the presence

of partially observed simulation output. The new method retains the computational efficiency

found with dimension-reduction methods like those described in Higdon et al. (2008). However,

in contrast to previous such approaches, the new method is not limited to complete data. This

method involves two components: the imputation of missing values in the data using the principal

components and an adjustment to the covariance matrix used in GP prediction. The adjustment to

the covariance matrix ensures that one does not interpolate the imputed values at the missingness

locations. The resulting surrogate permits the use of data with partially observed output, and

5



it has two appealing properties: (i) In the case where complete data is observed for a run, the

resulting surrogate will interpolate those results and (ii) in the case where no data is observed for

a run, the associated data row (even though imputed) will be ignored. The new surrogate method

demonstrates robustness empirically under various missingness mechanisms, and provides improved

uncertainty quantification in calibration.

The organization of this article is as follows. Section 2 describes the Fayans energy density

functional (EDF), the simulation model that motivates this surrogate development. Section 3

introduces the setting and notation employed, and reviews the principal component GP method for

surrogate construction. Section 4 details the imputation and covariance adjustment components

in the new surrogate method alongside its properties. Section 5 details a numerical experiment to

illustrate the surrogate performance under multiple missingness scenarios. Section 6 discusses the

calibration of the Fayans EDF model. Section 7 provides further discussions and closes the article.

2 Fayans energy density functional

The development of our proposed surrogate method is motivated by problems such as the cali-

bration of the Fayans EDF (Fayans, 1998; Fayans et al., 2000). The development and refinement

of EDF models have proven effective in understanding atomic nuclei (Reinhard and Nazarewicz,

2017). The EDF model investigated in this article was developed by S. A. Fayans and collaborators

for describing ground-state properties of nuclei (Fayans, 1998; Fayans et al., 2000), and has since

been used for nuclei predictions (e.g., see Yu and Bulgac (2003); Reinhard and Nazarewicz (2017)).

Bollapragada et al. (2021) provides a full description of the numerical implementation under con-

sideration in this article. The model takes a 13-dimensional parameter as input and outputs 198

responses. Each response corresponds to a spherical, ground-state, even-even nuclear configuration

and an observable class. A total of 72 nuclear configurations and 9 observable classes are consid-
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Figure 1: Illustration of partially observed output in our case study (Section 6). Each horizontal
line (1–500) is a length 198 simulation output. A dark patch indicates where a response is missing.
The horizontal lines are sorted by number of missing values in the output.

ered, totalling to the 198 responses. The list of responses can be found in Table 1 of Bollapragada

et al. (2021).

The main relevant feature of this model is that it occasionally produces partial outputs, i.e.,

within one output, some out of the 198 responses are missing due to code failures, presenting a chal-

lenge in constructing a surrogate effectively. Missingness often occurs because an iterative method

for solving equations is used in model evaluation, and failure is reported when the method fails to

achieve a prescribed accuracy tolerance within an allotted internal iteration budget. Bollapragada

et al. (2021) outline the intricacies of possible failures and show that it is not likely the output is

MCAR. However, no systematic missingness mechanism is proposed. In previous analyses of an-

other EDF model, ≈ 9% of the model outputs were discarded due to such types of failures (Higdon

et al., 2015).

In Section 6 we use a dataset of 500 parameters to construct a surrogate and calibrate the

Fayans EDF model. An illustration of this is presented in Figure 1, where out of 500 runs of the

model, near 60% (359/500) have at least one missing value.
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In calibrating the Fayans EDF model, Bollapragada et al. (2021) have previously employed a

point minimization of the total mean-squared loss, or χ2 loss, with respect to the parameters. Other

works calibrated other EDFs in a similar manner, with minimization of the χ2 loss (Dobaczewski

and Olbratowski, 2005; Kortelainen et al., 2010, 2012, 2014; Reinhard and Nazarewicz, 2017). Such

approaches do not directly result in the uncertainty quantification sought by nuclear physicists

(Dobaczewski et al., 2014). For some other EDFs, uncertainty quantification was performed under

a Bayesian framework by Higdon et al. (2015) and McDonnell et al. (2015), but these works assume

no missing data (or simply remove output with missing data).

The existing literature does not contain a viable methodology to solve problems like this one.

One method is proposed in Ma et al. (2022) to extract functional principal components, which

originates from the analysis of partially observed longitudinal data. The locations in Ma et al. (2022)

are irregularly spaced between output dimensions, producing partial, often sparse, output at each

dimension. In our problem, all responses are expected for each parameter, but missing values may

arise for some responses because of various code failures. Lawrence et al. (2017) have proposed to

extract principal components using complete output data, and project the partially observed output

data onto a subset of basis vectors to obtain the weight coefficients. This treatment of partially

observed output data is effective when the locations of missing data are regular. Similarly, in Gu

and Xu (2020), the output data are modeled to follow a partition of complete and missing data

blocks. The complete data block is then used for principal component analysis following Higdon

et al. (2008). In their case, the complete data block contains a large proportion of the output

data. However, it is not applicable in our setting since our missing values are irregular. Thus the

equivalent complete data block retains only a small proportion of the output data, resulting in

inaccurate estimation of the principal components. Another method is proposed by Hung et al.

(2015), in which an expectation-maximization procedure is developed to tackle the issue of missing
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data, coupled with a separable correlation function that reduces the computational cost. The

scale of their intended application is quite small, preventing direct application for our intended

application. Hung et al. (2015) have studied a problem with 30 runs and only a few runs with

missing data; whereas in the Fayans EDF case, the number of simulation runs is 500, and over half

of them result in a partially observed output, recall Figure 1. Hung et al. (2015) is revisited in the

numerical experiments in Section 5.

3 High-dimensional surrogates

This section introduces the notations used in this article and reviews standard GP modeling and

its principal component based extension to high-dimensional surrogate construction (Higdon et al.,

2008).

3.1 Setting and notations

We label the user-specified parameter θ ∈ Rd. Because surrogate inference is often deployed in

calibration settings, θ is referred to as a “parameter.” We assume that for a simulation run at

θ, the simulation output f(θ) ∈ Rm is collected over a fixed set of locations, labeled as X =

(x1, . . . ,xm), and thus f(θ) = (f(θ,x1), . . . , f(θ,xm))T, meaning the simulation evaluated at θ

will produce an output vector f(θ) consisting of m elements. Each element in f(θ) is considered

an individual response. For example, in the Fayans EDF, the user-specified θ represents a 13-

dimensional parameter and x ∈ X defines a nuclear configuration that corresponds to a response

where m = 198 (see Section 2).

We presume that we have generated some parameters (θ1, . . . ,θn) from a designed computer

experiment (such as a Latin Hypercube sample (McKay et al., 1979) or optimized variations thereof

(Joseph et al., 2015)), and the collection of simulation responses is arranged as the n ×m matrix
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F = (f(θ1)
T, . . . ,f(θn)T)T. Each row represents the simulation output for one parameter at all

locations x ∈ X . Each column represents the response collected at all parameters in the computer

experiment. Since individual responses may be missing, we denote N as the total number of

available responses. If the collection has complete data, N = nm. For any matrix A, we use Ai,·

to refer to the ith row, Aj to refer to the jth column of A. We use AIJ to denote a submatrix

of A with entries from the set of row indices I ⊆ {1, . . . , n} and column indices J ⊆ {1, . . . ,m}.

Commas will be used to separate the row and column indices when the notation is ambiguous.

3.2 Gaussian process surrogates

A surrogate is constructed to enable the prediction of output at an unsimulated parameter. A

good surrogate is designed to provide a predictive distribution, which can then be converted to

point estimates and uncertainty around those estimates. In this article, a surrogate provides a

predictive distribution for f(θ) with a mean µ(θ) and a covariance matrix Σ(θ). GPs offer a

path to do exactly this with a multivariate normal predictive distribution (Santner et al., 2018;

Gramacy, 2020). GP is a common choice to build a surrogate because of its flexibility and ability

to interpolate.

3.2.1 Univariate GP

This section will review the basics behind GP inference. Consider g(θ) as a univariate function

that takes θ as its input. A GP model with mean function γ(·), scale parameter λ, and correlation

function ρ(·, ·) assumes that for any collection of n scalar outputs (e.g., g = (g(θ1), . . . , g(θn))T),

follows a multivariate normal distribution with mean γ = (γ(θ1), . . . , γ(θn))T and covariance matrix

λR where R = (ρ(θi,θj))
n
i,j=1. Typical choices for ρ include a squared exponential or a Matérn

correlation function (Handcock and Stein, 1993), but this choice does not impact the rationale
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of our method and is left open in this article. Using the GP as a surrogate means that the

predictive distribution given g at any test parameter θ is a normal distribution with mean γ(θ) +

rT(θ)R−1(g−γ) and variance λ
(
ρ(θ,θ)− rT(θ)R−1r(θ)

)
, where r(θ) = (ρ(θ,θ1), . . . , ρ(θ,θn))T

is the correlation between θ and (θ1, . . . ,θn). The standard form of this inference thus requires

R−1(g− γ), which costs typically O(n3) operations to compute (though approximations do exist).

The computational cost is a significant obstacle that requires consideration while conducting

GP inference. It is critical that the construction of the surrogate and predictions via the surrogate

should be fast compared to running the simulation itself (Gramacy, 2020). In the high-dimensional

case, the total number of responses is N = nm. One could use off-the-shelf GP inference, where

each response received from the simulation is individually modeled over both θ and x, i.e., the

previously mentioned näıve approach, typically uses O(N3) computations to obtain the necessary

matrix inverses and determinants. When N is moderately large (e.g., 104), näıvely using GP

inference is difficult because of this computational burden. For our case study, m = 198 and hence

N ≤ 104 would constrain us to roughly n less than about 50. The accuracy of a GP surrogate is

tied to n, and the practical results for our case study found that at n = 50 the surrogate is not

sufficiently accurate. Researchers have considered this setting before and noted that the problem

arises when the model output is multivariate with many responses. A high-dimensional output

happens when the number of responses m gets large (often above > 20). There are a few choices

for high-dimensional GP surrogates (Bayarri et al., 2007; Higdon et al., 2008; Conti and O’Hagan,

2010), with the majority of these methods seeking to reduce the required computations to O(n3),

such that the computational burden effectively depends only on n.

3.2.2 High-dimensional GP surrogates

Higdon et al. (2008) describe a powerful tool for building surrogates in high-dimensional output
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settings. Examples of successful applications include nuclear physics (Higdon et al., 2015) and

storm surge (Kyprioti et al., 2021) modeling. The method works by leveraging a low-rank repre-

sentation for the m-dimensional output by applying a singular value decomposition to the matrix

F . Specifically, this method seeks Φ, where Φ is an m×κ matrix defined by a set of κ orthonormal

(i.e., ΦTΦ = I) m-dimensional basis vectors. These are chosen such that for some reasonable

m-dimensional centering vector c, we have F − 1nc
T ≈ (F − 1nc

T)ΦΦT, meaning we can ap-

proximately recover our simulation outputs using only the n × κ matrix G = (F − 1nc
T)Φ. The

centering vector is often chosen as the mean of each column in F . Then, the original data F are

nearly recovered by 1nc
T +GΦT. The value of κ is typically chosen to offer sufficient recovery of

F from G. This representation method is especially effective when there is a strong relationship

among the responses of the simulation output because then κ can be made small (i.e., κ � m).

Suppose g(θ) = ΦT(f(θ)− c). Then, the surrogate for the simulation is constructed as c+ Φg(θ).

Thus our goal shifts from building a surrogate on an m-dimensional output f(θ) to building a

surrogate on a κ-dimensional output g(θ).

Our goal is now to use information in the matrix G to infer on the projected output g(θ) for

any θ. Due to the orthogonal construction of Φ, each component of g(·) = (g1(·), . . . , gκ(·))T is

modeled using an independent GP. Each gk(·) then follows

gk(·) ∼ GP (0, λkρk(·, ·)) , (1)

where, for component k, λk > 0 is a scale parameter, ρk(·, ·) is a correlation function, and we

have set the mean to be zero for ease of exposition. With data column Gk, under the GP model,

prediction for gk(θ) follows a normal distribution with mean and variance given by

µ̂k(θ) = rTk (θ)R−1k Gk and σ2k(θ) = λk

(
ρk(θ,θ)− rTk (θ)R−1k rk(θ)

)
, (2)
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where rk(θ) = (ρk(θ,θ1), . . . , ρk(θ,θn))T and Rk = (ρk(θi,θj))
n
i,j=1. From this, the surrogate is

then defined by

µ(θ) = c+ Φ(µ̂1(θ), . . . , µ̂κ(θ))T and Σ(θ) = Φ


σ21(θ) . . . 0

...
. . .

...

0 . . . σ2κ(θ)

ΦT. (3)

We refer to this method of constructing a surrogate as Principal Component Gaussian Process

(PCGP). For PCGP methods, Σ(θ) is not of full rank when κ < m, thus the predictive distri-

bution is often degenerate. However, similar to Higdon et al. (2008), when a surrogate is used

to facilitate parameter calibration, Σ(θ) is summed with a (typically diagonal) strictly positive

definite observation error covariance matrix (see Section 6.1). The resulting sum of the matrices is

then full rank and thus Σ(θ) not being strictly positive definite does not pose a problem.

The inferences in (3) are used to provide the mean and covariance of the surrogate for f(θ).

If there are partially observed simulation outputs, there are reasonable ways to approximate the

principal component matrix Φ and the centering vector c (see, e.g., Roweis (1997); Tipping and

Bishop (1999)). The details of approximating Φ, an expectation-maximization algorithm inspired

by Roweis (1997), are included in the Supplementary Material (Chan et al., 2023). However,

partially observed simulation output in F means that G cannot be computed. Take the ith row of

the data for example, if f(θi)
T has one or more missing responses, then Gi,· cannot be computed.

When m is large, it can often be the case that at least one response can be missing in a row, which

leaves the rest of the data in the same row unusable without remedy. We then risk tossing out

a large amount of data because of a few failures. Higdon et al. (2008) also commented on the

necessity of complete data for the use of PCGP. This leaves us at a crossroads. If we use the PCGP

approach, we cannot handle missing data. If we do not adopt the PCGP approach, the surrogate
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computation may be impossible due to the explosive increase in required computations. This article

explains how one can expand the PCGP surrogate methodology to handle missing data.

4 Fast surrogates with missing data

We now introduce our method for constructing a surrogate for high-dimensional outputs in the

presence of missing data. Specifically, we propose an imputation method for the missing observa-

tions during the computation of G alongside a novel adjustment of the covariance matrix. The

resulting method is computationally inexpensive and therefore the benefit of fast construction using

PCGP is retained.

Section 4.1 describes and illustrates the desired properties of the proposed surrogate. Sec-

tions 4.2 and 4.3 detail the imputation and covariance adjustment procedures. Section 4.4 shows

how the proposed method delivers the desired surrogate properties. Section 4.5 describes the hy-

perparameter estimation used in the construction of the surrogate. Section 4.6 provides additional

justification for the choice of covariance adjustment.

4.1 Desired surrogate properties

In constructing this surrogate, we consider it necessary to have two desirable properties, the recovery

of complete data rows and the ignorance of entirely missing data rows. Meaning, we want to nearly

interpolate to chosen precision where the output is complete and disregard where the output is

entirely missing.

The motivation for these desired properties can be explained through a thought experiment.

Let the collected data F be an n×m matrix, corresponding to simulation outputs at the parameters

(θ1, . . . ,θn). Let F only have data available in n0 < n rows, and for these rows, the outputs are

complete. Let the n0×m matrix F (0) denote the available data rows; without loss of generality, we
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take F
(0)
i,· = Fi,· for all i ≤ n0. We assume that all of the remaining rows are entirely missing; this

can occur, for example, when the computer running the simulations went down after completing n0

rows. Suppose we separately construct two surrogates using a proposed method: one with data F

and one with data F (0). Let the surrogate with F be described by (µ(θ), Σ(θ)), and the surrogate

with F (0) be described by (µ(0)(θ), Σ(0)(θ)). The recovery of complete data rows means that

the surrogate should nearly interpolate for the rows with complete data; that is, µ(θi) ≈ f(θi)

and µ(0)(θi) ≈ f(θi) for all i ≤ n0. The only interpolation error that should exist is due to the

dimension reduction (κ < m) representation we have chosen. The ignorance of entirely missing

data rows means that the surrogate should not depend on any of the rows f(θi)
T for any i larger

than n0; that is, µ(θ) = µ(0)(θ) and Σ(θ) = Σ(0)(θ) for any θ.

Let us see how obvious approaches, namely the näıve and simplistic imputation approaches

described in the introduction, fare with respect to these goals. The näıve method, where one treats

each data point individually, would interpolate all observed points and ignore the remainder. Thus

it meets our goals, but this method becomes computationally intractable in our settings because of

the large N problem. The simplistic imputation approach would impute all rows when dealing with

F and then interpolate that imputation. This implies it would nearly interpolate all observed rows,

but the predictions from the simplistic imputation approach using F (0) and F are inconsistent.

This inconsistency implies that throwing out or keeping rows with fully missing output will give

different predictions.

The method proposed in this article is able to nearly interpolate complete rows and ignore

missing rows similar to the näıve method, yet it remains computationally tractable. While these

criteria do not guarantee interpolation of outputs in the partially observed output case, it is our

expectation and experience that by matching these two extremes, the predictions in the partially

observed case offer notably better predictions than the simplistic imputation approach. We later
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justify this with simulation experiments in Section 5.

4.2 Gaussian process-based imputation

We will assume the GPs modeling gk(·) are stationary, and thus, without loss of generality, let

ρk(θ,θ) = 1 for k = 1, . . . , κ. Furthermore, this section will assume the centering constant c = 0 for

ease of exposition. If we consider the relationship that our output is (nearly) Φg(θ), its covariance,

following (1), is of the form

ΦCov(g(θ))ΦT = ΦΛΦT, (4)

where Λ is the diagonal matrix diag(λ1, . . . , λκ), due to the independence among the κ GPs in (1).

These values are presumed decided in advance. For example, a reasonable choice deployed in our

examples sets λ1, . . . , λκ to the square of the corresponding singular values from the decomposition

of F .

The covariance matrix in (4), similar to the one in (3), is not of full rank. Therefore, it is difficult

to use (4) because the low-rank nature implies that one can have effectively “fully observed” f(θ)

after observing only κ entries. Instead, we will use a full-rank extension of this matrix. Pick ε > 0

such that λk > ε for all k ≤ κ. This choice of ε ensures that this covariance matrix extension for

f(θ), defined as

B = Φ(Λ− εI)ΦT + εI, (5)

is of full rank, and thus B and any principal submatrix of B are invertible.

Using the covariance matrix in (5), we impute the missing observations to build G̃, an n × κ

matrix with complete entries, to replace G.

Let J (i) ⊆ {1, . . . ,m} be the set of column indices where data are not missing in f(θi)
T. Then,

let Fi,J (i) = (f(θi,xj))
T
j∈J (i) be the row vector that contains the available data for parameter
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θi and BJ (i),·,BJ (i),J (i) be the submatrices corresponding to the indices. Because this section

assumes a centering vector of zeros,

 f(θi)

F T
i,J (i)

 ∼ N

0

0

 ,

 B BT
J (i),·

BJ (i),· BJ (i),J (i)


 ,

where this is a degenerate multivariate normal distribution. Subsequently the conditional mean

and covariance of f(θi) given F T
i,J (i), following standard normal theory (e.g., Gelman et al. (2013)),

are

E(f(θi)|F T
i,J (i)) =

(
Fi,J (i)B

−1
J (i),J (i)BJ (i),·

)T
and

Cov(f(θi)|F T
i,J (i)) = B −BT

J (i),·B
−1
J (i),J (i)BJ (i),·,

respectively. We propose then to infer Gi,k using the conditional quantities

G̃i,k = Fi,J (i)B
−1
J (i),J (i)BJ (i),·Φ·,k and (6)

uik = ΦT
·,k

(
B −BT

J (i),·B
−1
J (i),J (i)BJ (i),·

)
Φ·,k. (7)

This proposed inference is the key insight for our approach. While (6) is a reasonable use of

our principal components for imputation, (7) is a valuable measure of goodness for the imputation,

since the conditional variances reflect the imputation uncertainty. The quantities uik from (7) are

used to adjust our GP’s covariance matrix to account for the uncertainty due to imputation. For

the suggested inferences to be practically useful, the inversion of the submatrix of B should be

efficient. The details of such inversion are provided in the Supplementary Material (Chan et al.,

2023).

17



4.3 Covariance adjustment

The additional uncertainty from the imputation of missing data needs to be accounted for. We

propose adjusting the covariance matrix by adding an extra term to Rk, the original covariance

matrix in (2), in order to model the increase in variance of prediction due to imputation. Defining

the scaled predictive variances by wik = uik/λk, the proposed adjusted covariance matrix is

R̃k = Rk + βkdiag(v1k, . . . , vnk), where vik = min

{
η,

wik
(1− wik)α

}
, (8)

where η > 0 is a large constant introduced to prevent infinite values from corrupting our linear

algebra, and α > 0 and βk > 0 are hyperparameters that affect the magnitude of the additional

term. In particular, α controls the penalty for extreme missingness in an output and βk controls

the amplification of additional variances for component k. In the case if we set βk = 0, the variance

added from imputation is not accounted for, and the imputed values are treated as observed and

interpolated.

Using (6) on every row with missing data, G̃k is the completed kth column of the low-

dimensional data. Combining that with our covariance in (8) gives that prediction for gk(θ) with

µ̃k(θ) = rTk (θ)R̃−1k G̃k and (9)

σ̃2k(θ) = λk

(
ρk(θ,θ)− rTk (θ)R̃−1k rk(θ)

)
, (10)

where vk = (v1k, . . . , vnk)
T. The completed version of the surrogate provides a prediction for f(θ)
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that has a multivariate normal distribution with updated mean and covariance

µ(θ) = Φ(µ̃1(θ), . . . , µ̃κ(θ))T, and Σ(θ) = Φ


σ̃21(θ) . . . 0

...
. . .

...

0 . . . σ̃2κ(θ)

ΦT. (11)

Recall that for this section we set c = 0, thus these terms agree closely with the PCGP terms in

(3), where we have only modified the predictions of means and variances. If there is no missingness

in our simulation output, the expressions in (3) and (11) will exactly agree.

4.4 Properties of the proposed surrogate

The following result guarantees that if there is no missing data in the ith row (i.e., J (i) =

{1, . . . ,m}), then G̃i,· recovers Gi,· without additional uncertainty.

Theorem 1 (Recovery of fully observed row). If J (i) = {1, . . . ,m}, then µ̃k(θi) = f(θi)
TΦ·,k and

σ̃2k(θi) = 0 for k = 1, . . . , κ.

The proof is given in the Supplementary Material (Chan et al., 2023). On the other hand,

notice that if there is no data in the ith row (i.e., J (i) is the empty set), then

uik = ΦT
·,k

(
Φ(Λ− εI)ΦT + εI

)
Φ·,k = λk − ε+ ε = λk.

Our next result establishes that our method naturally ignores these rows of missing data.

Theorem 2 (Ignorance of missing rows). Define the kth surrogate component, where all rows with

entirely missing data are excluded from construction, by µ̃
k

and σ̃2k from (9) and (10), respectively.

If J (i) = ∅, then for any α > 0, βk > 0, θ, and k ∈ {1, . . . , κ}, we have that µ̃k(θ) − µ̃
k
(θ) → 0

and σ̃2k(θ)− σ̃2k(θ)→ 0 as η →∞.
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The proof is provided in the Supplementary Material (Chan et al., 2023). Although Theorem 2

is stated in a limit as our numerically stabilizing parameter η goes to infinity, we note that in our

deployments on real problems that setting η to 10 results in reasonable ignoring behavior.

4.5 Estimation of hyperparameters in surrogate construction

To construct the surrogate is to fit the hyperparameters for all k = 1, . . . , κ components. Besides

the covariance adjustment coefficient βk, additional hyperparameters are implicitly included in the

notation of the covariance function ρk(θ,θ
′) = ρk(θ,θ

′;ψk), where ψk encapsulates the covariance

function hyperparameters. Within this section, we use the notation R̃k(βk,ψk) to highlight the

dependence of the adjusted covariance matrix R̃k on both βk and ψk. The surrogate construction

involves the optimization of the log-likelihood with respect to the hyperparameters, which can be

simplified to

(
β̂k, ψ̂k

)
= arg max

βk,ψk

{
− 1

2
log |R̃k(βk,ψk)| −

1

2λk
G̃T
k R̃k(βk,ψk)

−1G̃k

}
,

where |A| returns the determinant of A. The evaluation of the log-likelihood involves the decompo-

sition of the covariance matrix that costs O(n3) operations, where n is the number of parameters. In

our deployment, we use a gradient-based L-BFGS optimization solver to approximate the maximum

likelihood estimate.

4.6 Rationale for the extra term

We now provide justification for the choice of the extra term in (8) alongside hyperparameter α.

While wik can be used directly as the added variance terms, it is insufficient to represent the

intuition that (i) if the row has complete data, no adjustments should be made, and (ii) if no data

are observed in the row, the added term should be infinite, because we have no information about
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Figure 2: Illustrations of the effect of hyperparameter α in the variance term vik. Except for α = 0,
vik approaches infinity as wik approaches 1.

the row. In the case where α = 0, vik = wik does not achieve infinity when no data are observed.

When α > 0, the added term vik = 0 when wik = 0, and vik = ∞ when wik = 1. Moreover,

the magnitude of α controls the rate of increase of variance vik as wik increases. The variance

term vik represents the uncertainty introduced from observing only at the index set J (i) for row

i. As α increases, vik increases with a faster rate to infinity as wik approaches 1. The effect of

α is illustrated in Figure 2. The hyperparameter βk is introduced to control the inflation (or

deflation) of additional variances for the kth surrogate component. The βk value can vary across

the components. When βk = 0, the additional variances have no effect to the surrogate, as if there is

no uncertainty due to data missingness. When βk is infinite, the overwhelming additional variances

will cause any row with any amount of missing data to be ignored. When βk = 1, no adjustment

is made. The hyperparameters βk, k = 1, . . . , κ, are estimated in the surrogate construction.

A numerical experiment is presented in Supplementary Material (Chan et al., 2023) that inves-

tigates the choice of α and if βk should be either equal to 1 or optimized as a hyperparameter. We
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found the best behavior when the βk are optimized and found α > 0.5 could negatively impact the

prediction accuracy. We suggest α = 0.3 as a default choice.

5 Numerical experiments

We now present the numerical experiment for evaluating the performance of our proposed surrogate

method.

5.1 Setup of numerical experiments

We compare the proposed method with other methods that employ common strategies for dealing

with missing data. A total of six methods are considered. We label our method as “PCGPwM,”

for PCGP with Missingness. Among the other methods, the first method (“GP-OM”, standing

for GP-Omit-Missingness) is to omit the missing data, which is the näıve approach that treats

the N responses individually and discards the missing points. The second method (“colGP”) is to

treat locations as independent and construct a GP for each of m locations. Gu and Berger (2016)

refer to colGP as the “Many Single” emulator approach and have commented on its computational

intractability when m is large. Gu and Berger (2016) resolves this computation issue by aligning

common Gaussian process parameters across locations, but this fix is not needed here as our m is

relatively small. We consider the expectation-maximization-based method by Hung et al. (2015)

as the third method (“EMGP”). The next two methods involve the simplistic imputation approach

with two different imputation procedures. The two imputation procedures considered are the k-

nearest neighbor method (see, e.g., Altman (1992)), and Bayesian ridge regression (Tipping, 2001).

Since the PCGP method is used on the imputed data, these two methods are termed “PCGP-

kNN” and “PCGP-BR,” respectively. In addition to these methods, we compare PCGPwM with a

baseline method where the principal components are assumed known. This comparison is reported
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in the Supplementary Materials (Chan et al., 2023).

GP-OM treats the missing data as if they were not present. We discard any response that

is missing. After omitting the missing data, the remaining data do not necessarily form a data

matrix. For example, one row may have no missing data, while another row may have one or

more entries removed. Instead, the remaining data are stacked into a column and a single GP

is constructed as a surrogate. Due to the stacking of data, this method becomes intractable as

the computational complexity is O(N3), with N being the number of available data points. The

colGP method treats each x ∈ X as independent locations and constructs m GPs. If m is large,

computational costs may not permit the use of colGP simply due to the number of GPs to be

constructed. The EMGP method estimates the missing values via an EM algorithm and uses a

separable covariance matrix to speed up its GP construction. For each of the simplistic imputations,

the missing data are first imputed and PCGP is then applied to construct the surrogate. The k-

nearest neighbor method imputes the missing value by averaging the k closest available data points,

using the Euclidean distance between couples (θ,x). The Bayesian ridge regression fits a regression

model and imputes the missing values with the predictions of the model. In the implementation

of the imputation methods using scikit-learn (Pedregosa et al., 2011), missing values in each

data column are imputed in a round-robin fashion for 10 iterations, and the result from the final

iteration is returned. See the package documentation on IterativeImputer for details.

We use four functions as test examples, namely the borehole function, piston function, wing-

weight function, and OTLcircuit function. These are common test functions for emulation and

uncertainty quantification, located at http://www.sfu.ca/~ssurjano/index.html. The input

variables of each function are partitioned into (θ,x). Our proposed method does not address the

source of missingness in the data. To test the robustness of the method, we generate partially

observed output with the three missing mechanisms mentioned in Section 1. The missing mech-
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anisms are MCAR, MNAR, and MAR. Under MCAR, any response has the same probability of

missing. Under MNAR, the response missingness depends on unobserved quantities, for example,

the value of the response. Under MAR, the response missingness only depends on quantities that

are observed, for example, the parameter and location in our case. For each of these missingness

mechanisms, the percentage of missingness is specified. The methods are tested at 1%, 5%, and

25% missingness levels. With MNAR, values of the borehole and the wingweight functions are

missing when the evaluated function value exceeds a threshold; and the values of the OTLcircuit

and the piston functions are missing according to the probability determined by a logistic model

over the fixed locations. With MAR, The missingness is randomly assigned over a subset of the

fixed locations. The test functions and the details of the MNAR and MAR generation are included

in the Supplementary Material (Chan et al., 2023).

The size of the output, m, is set as 15. The set of locations, (x1, . . . ,xm), This is determined

using x’s that are uniformly sampled from their respective ranges. The number of parameters, n,

are set to take values n = 50, 100, 250, 1000, and 2500. The parameters are sampled using a Latin

Hypercube design (Santner et al., 2018) in the unit hypercube, and then scaled to their respective

ranges. Denoting a missingness scenario to be the missing mechanism and the missing fraction

combined, nine scenarios are considered: (MCAR, 1%), (MCAR, 5%), (MCAR, 25%), (MNAR,

1%), (MNAR, 5%), (MNAR, 25%), (MAR, 1%), (MAR, 5%), and (MAR, 25%). We construct a

surrogate using each method, by supplying it the output of the model, for each combination of n

and missingness scenario. To efficiently compare the methods, we fix the locations, the parameters,

and the set of missing values across the four methods in one replication. Each experiment is run for

20 replications for all test functions. Each replication is given 1 hour of run time and is canceled if

the surrogate construction and prediction takes longer than that.

All methods are implemented through the Python package surmise (Plumlee et al., 2021b),
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a modular package that interfaces different statistical emulation and calibration methods. Our

proposed method is implemented under the name PCGPwM. For GP-OM, GPy (GPy, since 2012) is

used to construct the surrogate. The colGP method is implemented under the name colGP. The

EMGP method is implemented under the name EMGP. For PCGP-kNN and PCGP-BR, first the

imputations are performed with scikit-learn (Pedregosa et al., 2011), then the completed data

are supplied to the PCGP method to construct a surrogate. The simplistic imputation approach is

implemented under the name PCGPwImpute with an option of which imputation method to use.

5.2 Results of comparison experiments

This section will discuss representative results for the (MNAR, 5%) missingness scenario. For a

full description of the results of our simulation, we direct the reader to the Supplementary Material

(Chan et al., 2023).

All methods are competitive in computation, except GP-OM, which costs roughly 30 times as

long for all n. Näıvely omitting missing values in the data destroys the regular structure, and

further leads to tractability issues. In addition, EMGP does not complete at the largest data size

within the time limit. The remaining constructions are completed under the time limit. Note

that although the colGP method completes all surrogate constructions within time limit here with

m = 15, its computation time may be prohibitive as m is too large, further explored in Section 5.3.

The quality of the surrogate methods is measured by the root mean squared error (RMSE),

the coverage probability of the 90% prediction interval (90% coverage), and the width of the same

interval (90% width). While RMSE concerns the predictive accuracy of the mean, 90% coverage

and 90% width are empirical measures of the quality of the surrogate’s uncertainty quantification.

The measures are evaluated against holdout simulation runs, and any missing values in the runs

are excluded from evaluation.
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Figure 3 shows the RMSEs for the surrogate methods being compared. For the borehole and

the wingweight functions, the RMSE decreases for all methods except the simplistic imputation

methods as N increases; whereas for the piston and the OTLcircuit functions, the RMSEs decrease

for all methods. GP-OM shows to be generally not competitive in both its computation time

and predictive accuracy. The simplistic imputation methods, PCGP-kNN and PCGP-BR, fail

to circumvent the issue of missing values, especially when the missingness is MNAR. Since the

simplistic imputation approach relies on the availability of close neighbors to the missing points, if

the function values are never observed within a certain region, the missing values would be imputed

with far-away values of little relevant information. As a result, they result in poor predictions. The

EMGP method performs comparably with the simplistic imputation methods, sometimes better,

in the case of the wingweight function. The colGP method performs well across all methods

in predictive accuracy, especially in the piston and OTLcircuit test functions. The continuous

improvement with colGP as N increases shows a potential drawback in using principal-component

methods for dimension reduction. Similar conclusions are drawn for (MNAR, 1%) and (MNAR,

25%). We find that in the case of MCAR and MAR, the accuracy of all methods improves as N

grows, where PCGPwM performs better than all methods except for colGP.

The 90% coverage records how often the simulation response is contained in the interval pro-

duced by the surrogate. The quality of the surrogate is measured by comparing the 90% empirical

coverage with the nominal level (in this case, 90%). A coverage close to the nominal level with a

narrow width is an indication of a good surrogate. GP-OM results in overcoverage in the borehole

function and significantly undercoverage in the remaining functions. By investigating the interval

widths, we observe that GP-OM produces a prediction interval too wide in the borehole and too

narrow in the others. The EMGP method attains adequate coverage in the piston and wingweight

functions, while undercovers in the borehole and wingweight function. As the data size grows,
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Figure 3: Comparison (log-log scale) of prediction accuracy of surrogate methods for (MNAR, 5%)
scenario.

the coverage for the wingweight function increases and attains the prescribed level. The simplistic

imputation methods, PCGP-kNN and PCGP-BR, exhibit overcoverages in the borehole and wing-

weight functions, as a result of wide intervals. PCGPwM achieves the prescribed coverages while

being able to provide sharper predictions, indicated by narrower intervals. In the MCAR and MAR

scenarios, both the coverage and the prediction interval widths improve as N grows for all methods.

Overall, the proposed PCGPwM method performs generally well in terms of RMSEs and is

robust to different types of data missingness. The method also preserves the efficiency of surrogate

construction found in dimension-reduction methods such as PCGP (Higdon et al., 2008).

27



5.3 Additional comparisons of PCGPwM and colGP at higher output dimen-

sion

The predictive performance of colGP is laudible but it may be slow to construct at higher output

dimensions. To further compare PCGPwM and colGP in terms of computational cost, we have

conducted an additional experiment. We have increased the output dimension to m = 200 and

focused on the performance at larger n = 1000, and 2500 with the borehole function. A maximum

of 4 hours is permitted for each surrogate construction. Table 1 reports the respective construction

time, RMSE, 90% coverage, and 90% width. PCGPwM achieves a higher RMSE than colGP, but

maintains the right coverage with a narrower width. At n = 2500, the construction time of colGP

exceeds the allowed time limit with higher dimensions and the computation is aborted. According

to the time scaling, the construction time would have taken colGP an estimated 18 hours.

Construction time (s) RMSE (×10−4) 90% coverage 90% width

n PCGPwM colGP PCGPwM colGP PCGPwM colGP PCGPwM colGP

1,000 640 4,225 3.9 2.5 0.912 0.962 0.764 0.920
2,500 9,680 – 0.62 – 0.981 – 0.571 –

Table 1: Construction times (in seconds) and predictive accuracies of PCGPwM and colGP at
output dimension m = 200.

6 Case study: Calibrating the Fayans energy density functional

The section describes the case study mentioned in Section 2 that relies on the described surrogate

method to conduct calibration. We review a surrogate-based calibration framework in Section 6.1.

We present the results of applying the proposed method to the case of calibrating the Fayans EDF

in Section 6.2.
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6.1 Bayesian calibration with a surrogate

Suppose y = (y1, . . . , ym)T is a set of observations from the physical system that the simulation f(θ)

is representing. The differences between the observations and the simulation responses are assumed

to follow a multivariate normal distribution with zero mean and covariance W . This follows the

canonical Kennedy and O’Hagan (2001) framework with the assumption that a systematic bias is

negligible. The Kennedy and O’Hagan (2001) framework has generated much research interest;

for examples, see Higdon et al. (2004); Williams et al. (2006); Bayarri et al. (2007); Higdon et al.

(2008); Brynjarsdóttir and O’Hagan (2014).

Let π denote a probability density and π(θ|y) be the conditional probability density of θ given

y. The purpose for calibration is to infer about the parameter θ. In the Bayesian setting, we are

interested in the quantity π(θ|y), which is the posterior density of θ. By Bayes rule, given a prior

density π(θ), we have π(θ|y) ∝ π(y|θ)π(θ), where ∝ denotes equality up to a constant multiplier.

Given the distribution of the differences, the expression is expanded to be

π(θ|y) ∝ |W |− 1
2 exp

(
−1

2
(y − f(θ))TW−1(y − f(θ))

)
π(θ),

where W is the covariance matrix of the observation error. Often in a physical experiment, this

covariance matrix is diagonal, as in the Fayans EDF model.

Since missing data may be present, f(θ) refers to the hypothetical output responses at a given

parameter. When a surrogate, defined by µ(θ) and Σ(θ), constructed with data F is used in place

of the simulation model, which is a common strategy in the calibration literature, the posterior

density is revised as

π(θ|y,F ) ∝ |W + Σ(θ)|− 1
2 exp

(
−1

2
(y − µ(θ))T (W + Σ(θ))−1 (y − µ(θ))

)
π(θ), (12)
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by considering the joint distribution of y and F being again multivariate normal. For a fixed

simulation model sample F (with missing data), this expression can be used to draw from the

posterior using MCMC methods.

6.2 Surrogate construction and calibration for the Fayans EDF

In this section we apply the previously described surrogate methods for the calibration of the

Fayans EDF model to provide uncertainty estimates for the parameter, using the knowledge of

point minimizers obtained from the previous study. The first method is the proposed PCGPwM

method. The second uses the simplistic imputation approach with PCGP-kNN. The third uses the

colGP method, and the last method is simply to only use data rows with complete data. GP-OM

discussed in the preceding section is not usable in this setting due to the data size causing it to be

computationally infeasible: we estimate that the surrogate construction alone would take more than

30 days, before any calibration can be performed. The EMGP method is not applicable either, due

to its computational instability. In the original paper by Hung et al. (2015), an isotropic correlation

function is used for the categorical variable, which has two levels. In the Fayans EDF model, the

categorical variable has nine levels. To adopt the EMGP method, the correlation is chosen to be

1 if the categorical variable is the same, and 0 if not. However, the hyperparameter estimation for

the EMGP consistently fails to converge for this application.

We construct the surrogates using simulation outputs of 500 well-spaced parameters. All pa-

rameters reside close to a local minimizer of the χ2 loss from Bollapragada et al. (2021). The

parameter space is previously scaled to a unit hypercube such that the dimensions are compara-

ble. To recover the unscaled parameter the centroid of the unscaled hypercube and the scale for

each dimension are provided in Table 7 in the Supplementary Material (Chan et al., 2023), which

reproduces Table 5 of Bollapragada et al. (2021).
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The simulation outputs are partially observed, where approximately 10% of the 99,000 responses

are missing. Figure 1, as seen in the introduction, shows the missing value pattern in the sampled

outputs arranged by increasing number of failures in parameters. Only 141 rows have complete

data.

To calibrate the Fayans EDF, the constructed surrogates are then supplied to the calibrator

module in surmise. The chosen prior is the Beta(2, 2) distribution over each dimension of the

scaled parameter, representing the stability region studied in Bollapragada et al. (2021). The

choice Beta(2, 2) reflects the understanding that the parameters closer to the centroid of the scaled

hypercube are more plausible. The prior density outside the scaled hypercube is zero, which reflects

the boundary of stability region defined by the lower and upper bounds. The prior is then

π(θ) ∝
d∏
l=1

θl (1− θl) ,θ ∈ [0, 1]d,

where θl is the lth element of θ. With π(θ) specified, the posterior is then given by (12). Samples

are drawn from the posterior by the Langevin Monte Carlo method (Roberts and Stramer, 2002), an

MCMC method that utilizes gradient information at the current iterate. In addition, the sampling

method is strengthened by incorporating parallel tempering (Geyer, 1991; Gelman et al., 2013).

The method is implemented in the utility module of surmise under the name PTLMC. We note that

the closed-form nature of our surrogate allows for easy deployment of gradient-based approaches.

To investigate the utility of the surrogate-based inference using these methods, we compare

the posterior distributions. Since the considered parameter space is scaled around the centroid

of the hypercube, we expect the posterior means to be close. This is verified in our computation

that the posterior means estimated using all surrogate methods considered are found to be close

to each other. We are then concerned with the precision of the posterior, the idea being that a
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more precise surrogate in this setting should lead to a narrower posterior on the parameters. This

can be seen in expression (12), where a decrease to the surrogate covariance matrix Σ(θ) yields

a more concentrated posterior, given a fixed µ(θ). The precision of the surrogate is measured by

the widths of the intervals between the 5% and 95% quantiles (called the 90% width) for each

parameter relative to the upper and lower bounds. Table 2 contains the 90% widths relatively

scaled from all surrogates. The credible intervals from all the surrogates shrink compared with the

Beta(2, 2) 90% relative width, 0.730. PCGPwM results in the smallest intervals all but two of the

model parameters. This constraining of plausible parameter region is attributed to the improved

surrogate offering more precise predictions of simulation responses. The benefit for this case study

is that the analysis using the proposed surrogate method provides the uncertainty estimates for

the parameter of the Fayans EDF model in contrast to previous studies. We find that there are

considerable differences in the resulting interval widths, with some parameters (e.g., f ξex and hξ+)

being estimated more precisely, and some parameters (e.g., E/A,K, and L) having smaller precision

improvements. To more concretely understand the benefit, if we only use the complete output data

to build our surrogate, the resulting posterior intervals would have been 6%–58% wider.

Table 2: Posterior 90% widths relative to their respective ranges for the 13-dimensional parameter
using different emulation techniques.

EDF Parameters PCGPwM PCGP-kNN colGP Complete Data Prior, Beta(2, 2)

ρeq 0.355 0.500 0.546 0.491 0.730
E/A 0.345 0.463 0.389 0.607 0.730
K 0.455 0.493 0.361 0.643 0.730
J 0.303 0.557 0.535 0.497 0.730
L 0.437 0.484 0.393 0.576 0.730
hv2− 0.370 0.462 0.401 0.587 0.730
as+ 0.421 0.569 0.654 0.450 0.730
hs∇ 0.337 0.405 0.351 0.637 0.730
κ 0.339 0.479 0.461 0.614 0.730
κ′ 0.198 0.319 0.273 0.421 0.730

f ξex 0.125 0.345 0.246 0.300 0.730

hξ∇ 0.386 0.530 0.347 0.536 0.730

hξ+ 0.128 0.367 0.215 0.254 0.730
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7 Conclusion

This article details a new surrogate construction method developed to handle missing data. The

construction relies on an imputation of the missing data and a covariance adjustment to account

for the added uncertainty due to imputation. This method is efficient and adds minimal burden

on computations. The surrogate construction is effective in ignoring entirely missing data in a

multivariate output context. Furthermore, it retains the efficiency of modern approaches to building

surrogates of high-dimensional output data.

It is expected that as nascent models are used in large computing environments, partially ob-

served output data will become more prevalent. For example, Lin et al. (2021) conduct their

inference by constructing a missingness classifier in addition to a surrogate using available simula-

tion data. When missingness is important to inference, the method proposed in this article could

be used in to help with the surrogate to prevent tractability issues.

Supplementary Materials

The supplementary materials contain (i) proofs for Theorems 1 and 2, (ii) technical details for

computation, (iii) descriptions of test functions, (iv) full results from the numerical experiments,

(v) the original scaling of the Fayans EDF parameter space, and (vi) the code and data for the

Fayans EDF case study.
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Supplementary materials to “Constructing a simula-
tion surrogate with partially observed output”

Moses Y-H. Chan, Matthew Plumlee

Department of Industrial Engineering and Management Sciences,

Northwestern University

and

Stefan M. Wild

Applied Mathematics and Computational Research Division,

Lawrence Berkeley National Laboratory

NAISE, Northwestern University

This document includes the supplementary material to the main article “Constructing a sim-

ulation surrogate with partially observed output”. The supplementary materials are organized in

the following order:

Section A – G: Proofs and technical details for computation.

Section H: Test functions for the numerical experiments.

Section I: Full numerical experiment results.

Section J: Original scaling of the Fayans EDF parameter space.

Section K: Code and data for the Fayans EDF case study.

A Proof of Theorem 1

Proof. First, we note that G̃i,· = Gi,· and uik = 0 for all k because

G̃i,· = ΦTBT
J (i),·B

−1
J (i),J (i)F

T
i,J (i) = ΦTBB−1F T

i,· = Gi,·,

and for all k,

uik = ΦT
·,k

(
B −BB−1BT

)
Φ·,k = 0.
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Then we observe thatrk(θi) is the i row of Rk, and thus rTk (θi)R
−1
k = ei, where ei is the ith vector

of the identity matrix. We conclude that

µ̃k(θi) = eTi G̃·,k = G̃ik = Gik = f(θi)
TΦ·,k,

and

σ̃2k(θi) = λk

(
ρk(θi,θi)− eTi rk(θi)

)
= λk (ρk(θi,θi)− ρk(θi,θi)) = 0.

B Boundedness of wik

Lemma 1. For any J (i) ⊆ {1, . . . ,m}, wik given in expression (7) is bounded between 0 and 1.

Proof. For this proof we will shorten J (i) to J and drop the subscript i from wik. We have that

λkwk = ΦT
k

(
B −BT

J ,·B
−1
JJBJ ,·

)
Φk.

Without loss of generality, say that I = {1, . . . , t} and J = {t+ 1, . . . ,m}. The matrix B can

then be written as

B =

BII BIJ

BJI BJJ

 .

Letting v = ΦIk and u = −B−1JJBJIv, we have that

vTBIJB
−1
JJBJIv = −uTBJJu− 2uTBJIv,

and conclude that

vT
(
BII −BIJB−1JJBT

IJ

)
v = vTBIIv + uTBJJu+ 2uTBJIv

=
(
v u

)BII BIJ

BJI BJJ

v
u

 . (13)

Note that B = Φ(Λ−εI)ΦT+εI. By construction, since each diagonal element of Λ is larger than

ε, B is the sum of two positive-definite matrices and is thus positive definite. Since the right-hand

side in (13) is larger than zero, we have that wk ≥ 0.
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Now, since BJJ is positive definite, B−1JJ is positive definite and thus

(BJ ,·Φk)
TB−1JJ (BJ ,·Φk) ≥ 0.

We conclude that

ΦT
k

(
B −BT

J ,·B
−1
JJBJ ,·

)
Φk ≤ ΦT

kBΦk.

Finally, we note that by the orthogonality of Φ and letting ek be the kth vector of the identity

matrix, we have that

ΦT
kBΦk = ΦT

k (Φ(Λ− εI)ΦT + εI)Φk = eTk (Λ− εI)ek + ε = λk,

and thus wk ≤ 1.

C Inverse of matrices with an increasing diagonal

Lemma 2. If the norm of an n-by-n matrix A is bounded (i.e., ‖A‖ < L), then limη→∞(A +

ηI)−1 = 0.

Proof. For η ≥ L, ‖η−1A‖ < 1. Consequently, for the partial sum Tr = I +
∑r

j=1(−1)jη−jAj , we

have that limr→∞ Tr = (I + η−1A)−1 (Gentle, 2007, p.135). Consider the norm of the partial sum,

‖Tr‖ =

∥∥∥∥∥∥I +
r∑
j=1

(−1)jη−jAj

∥∥∥∥∥∥ ≤ ‖I‖+
r∑
j=1

η−j‖A‖j ≤ n− 1 +
1− η−(r+1)

1− η−1 → n− 1 +
1

1− η−1 ,

as r →∞. The sequence of matrices {Tr}∞r=1 uniformly converges over the entries, therefore,

lim
η→∞

(A+ ηI)−1 = lim
η→∞

lim
r→∞

η−1Tr = lim
r→∞

lim
η→∞

η−1

I +
r∑
j=1

(−1)jη−jAj

 = 0.

D Proof of Theorem 2

Proof. From Lemma 1 in Supplementary Material B, without loss of generality, partition {1, . . . , n}
into Q = {1, . . . , t} and S = {t + 1, . . . , n}, where wik < 1 for i ∈ Q and wik = 1 for i ∈ S. Let
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Qk be an n-by-n diagonal matrix with diagonal entries
(

w1k
(1−w1k)α

, . . . , wtk
(1−wtk)α , 0, . . . , 0

)
. Let S

be

0t×(n−t)

In−t

. Then, once η is big enough such that for all sets J ⊆ {1, . . . ,m} with at least one

entry, wik
(1−wik)α < η, the adjusted covariance matrix can be rewritten as

Rk + βkdiag(vk) = Rk + βk(Qk + ηSST).

Without loss of generality, let βk = 1. We drop the subscript k for the remainder of the proof for

brevity. Partition the covariance matrix as

R+Q+ ηSST =

(R+Q)QQ RQS

RSQ RSS + ηI

 .

Recall that for an invertible matrix M =

W X

Y Z

, the inverse (Gentle, 2007, p.95) is

M−1 =

W X

Y Z

−1 =

 (W −XZ−1Y )−1 −W−1X(Z − YW−1X)−1

−Z−1Y (W −XZ−1Y )−1 (Z − YW−1X)−1

 .
The norm ‖RSS‖ is bounded by the largest singular value ofRSS . Using Lemma 2 in Supplementary

Material C,

lim
η→∞

(RSS + ηI)−1 = 0,

lim
η→∞

(
RSS + ηI −RSQ(R+Q)−1QQRQS

)−1
= 0.

By the Woodbury identity (Gentle, 2007, p.221),

(
(R+Q)QQ −RQS(RSS + ηI)−1RSQ

)−1
= (R+Q)−1QQ + (R+Q)−1QQRQS

(
RSS + ηI −RSQ(R+Q)−1QQRQS

)−1
RSQ(R+Q)−1QQ

→ (R+Q)−1QQ.

To summarize, as η →∞,

(
R+Q+ ηSST

)−1
→

(R+Q)−1QQ 0t×(n−t)

0(n−t)×t 0(n−t)×(n−t)

 .
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Therefore, for any length-n vector a,

((
R+Q+ ηSST

)−1
a

)
Q
→ (R+Q)−1QQ aQ,

((
R+Q+ ηSST

)−1
a

)
S
→ 0.

Pulling these results through our equations for predictions (i.e., (9) and (10)), we conclude that

the limits of µ̃k(θ) and σ̃2k(θ) will not depend on any row i with wik = 1, and thus the result

holds.

E Estimating Φ

The principal component matrix Φ is estimated with missing values in the observed simulation

output F . For a certain row i, the index set J (i) contains the indices where data are not missing.

Denote the missing index set as ∼J (i) = {1, . . . ,m} \ J (i). The principal component matrix Φ is

approximated via Algorithm 1 which mirrors the typical EM structure. The simulation output F

is assumed to be scaled to zero mean and unit variance in its columns. The E step is standard,

employing conditional equations regarding multivariate normal distribution. However, we note that

the M step does not result in the exact optimizer since εM > 0. In our implementation, εM = 10−5

provides reasonable performance and ensures the procedure is numerically stable.

Algorithm 1: EM algorithm for estimating Φ

/* Initialization with column means of non-missing values */

1 for j ∈ {1, . . . ,m} do
2 Let I(j) = {i : j ∈ J (i)}.
3 forall i /∈ I(j) do f̃j(θi) = 1

|I(j)|
∑

i∈I(j) fj(θi). /* missing */

4 forall i ∈ I(j) do f̃j(θi) = fj(θi). /* non-missing */

5 end
/* EM algorithm */

6 while convergence criterion not met do

7 Obtain Φ,Λ via SVD of F̃ = (f̃(θ1)
T, . . . , f̃(θn)T)T. /* M step */

8 for i ∈ {1, . . . , n} do /* E step */

9 f̃∼J (i)(θi) = Φ∼J (i),·(Λ− εI)ΦT
J (i),·

(
ΦJ (i),·(Λ− εI)ΦT

J (i),· + εMI
)−1

fJ (i)(θi).

10 end

11 end
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F Computing Inverse of BJ (i),J (i)

The main inferences introduced in (6) and (7) depend on inverting the matrix BJ (i),J (i). Recall

the definition of the covariance matrix

B = Φ diag (λ1 − ε, . . . , λκ − ε) ΦT + εI.

Let Λε = diag (λ1 − ε, . . . , λκ − ε). Now consider the inverse of B by using the Woodbury matrix

identity,

B−1 =
(
εI + ΦΛεΦ

T
)−1

= ε−1I − ε−2Φ
(
Λ−1ε + ε−1I

)−1
ΦT

= ε−1I − ε−1Φ diag

(
λ1 − ε
λ1

, . . . ,
λκ − ε
λκ

)
ΦT

= ε−1
(
I −Φ diag

(
λ1 − ε
λ1

, . . . ,
λκ − ε
λκ

)
ΦT

)
.

The expression above is simple to compute and requires no matrix inversion. But we are concerned

about the inverse of the submatrix BJ (i),J (i), where

BJ (i),J (i) = εI + ΦJ (i),·Λε ΦT
J (i),·.

Also by Woodbury identity, we then have

B−1J (i),J (i) =
(
εI + ΦJ (i),·Λε ΦT

J (i),·

)−1
= ε−1I − ε−2Φ

(
Λ−1ε + ε−1ΦT

J (i),·ΦJ (i),·

)−1
ΦT.

The resulting expression cannot be further simplified since ΦT
J (i),·ΦJ (i),· no longer equals the iden-

tity matrix or some simple known form. However, the algebraic manipulation may still be beneficial

when we consider only the inverse of the inner κ-by-κ matrix, as opposed to the generally larger

matrix BJ (i),J (i).
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G Investigation on α, βk values

We construct surrogates for the four test functions with MCAR responses at 5%. The details of

the test functions are given in Supplementary Material H. The root mean squared error (RMSE)

between the function values and the surrogate’s predicted values was evaluated with a set of holdout

simulation runs. Figure 4 shows the RMSE for selected α values with βk = 1 or βk optimized. The

RMSE generally increases as α increases. When βk’s are fixed to be 1, the error increases for larger

ranges of α, specifically for the wingweight function, the error continuously increases for α > 0. The

benefit in including βk’s is shown in the generally lower RMSE achieved. We suggest to include

βk’s in the hyperparameter estimation in constructing the surrogate. When βk’s are optimized,

smaller α values are preferred.

Figure 4: RMSE with α ∈ [0, 1] and βk’s either optimized or = 1.

H Test functions

This section provides details of the four test functions used in evaluating the performance of the

algorithm. The subscripts in the expressions in this section refer to the elements in each of the
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dimension of vector variables θ and x, whereas in all other sections, the subscripted θi and xj refer

to the ith parameter and the jth locations, respectively. The reference parameter θ? refers to the

center of the parameter space, for example (0.5, 0.5, 0.5)T in a 3D unit hypercube.

For all functions, under MCAR, missingness is assigned with equal probability everywhere with

the desired percentage. Under MAR, missingness is randomly assigned to a subset of locations,

according to the missing-at-random scheme reported in Muzellec et al. (2020). For MNAR, the

missingness mechanism is included in each function below.

H.1 Modified Borehole function

This test function is developed for the purpose of calibration and is modified from the Borehole

function (Santner et al., 2018). The function is defined as

f(θ,x) =
2π(θ1 − x1)

2(θ2/x22) + θ3
exp (θ4x2) , (14)

where the ranges of the variables are included in Table 3. The first four variables are to be tuned

as the parameter, and the last two variables are fixed as locations.

θ θ1 [990, 1110]
θ2 [0.074, 1.12]
θ3 [0.05, 0.5]
θ4 [-0.5, 0.5]

x x1 [700, 820]
x2 [0.05, 0.5]

Table 3: Variable ranges for borehole function in (14).

Furthermore, a missingness of MNAR is introduced into the model evaluations, in the following

manner:

f(θ,x)←


f(θ,x), if f(θ,x) ≤ c1f(θ?,x)

NA, otherwise,

where θ? is the center of the standardized parameter space U [0, 1]4. The constant c1 > 0 is adjusted

to achieve a desired probability of missingness.
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H.2 Piston function

The piston function (Ben-Ari and Steinberg, 2007) is given as

f(θ,x) = 2π

√
M

k + S2 P0V0
T0

Ta
V 2

, (15)

where

V =
S

2k

(√
A2 + 4k

P0V0
T0

Ta −A
)
,

A = P0S + 19.62M − kV0
S
,

and where the variable partition (θ,x) and their ranges are shown in Table 4.

Variable Range

θ k [1000, 5000]
P0 [90000, 110000]
Ta [290, 296]

x M [30, 60]
S [0.005, 0.02]
V0 [0.0002, 0.01]
T0 [340, 360]

Table 4: Variable ranges for the piston function in (15).

The function produces a MNAR that follows the “logistic missing not-at-random” scheme used

in Muzellec et al. (2020), where the probability of an entry missing is according to a logistic model

over the columns.

H.3 Wingweight function

The wingweight function (Forrester et al., 2008, ch. 1) is given as

f(θ,x) = 0.036S0.758
w W 0.0035

fw

(
A

cos2(Λ)

)0.6

q0.006λ0.04
(

100tc
cos(Λ)

)−0.3
(NzWdg)

0.49 + SwWp, (16)

and the variable partition (θ,x) and the respective ranges are shown in Table 5.
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Variable Range

θ A [6, 10]
Λ [−10◦, 10◦]
q [16, 45]
λ [0.5, 1]

x Sw [150, 200]
Wfw [220, 300]
tc [0.08, 0.18]
Nz [2.5, 6]
Wdg [1700, 2500]
Wp [0.025, 0.08]

Table 5: Variable ranges for wingweight function in (16).

The function produces a MNAR in the following manner:

f(θ,x) =


f(θ,x), if f(θ,x) ≤ c2f(θ?,x)

NA, otherwise,

where θ? is the center of the standardized parameter space U [0, 1]4. The constant c2 > 0 is adjusted

to achieve a desired probability of missingness.

H.4 OTLcircuit function

The OTLcircuit function (Ben-Ari and Steinberg, 2007) is given as

f(θ,x) =
(Vb1 + 0.74)β(Rc2 + 9)

β(Rc2 + 9) +Rf
+

11.35Rf
β(Rc2 + 9) +Rf

+
0.74Rfβ(Rc2 + 9)

(β(Rc2 + 9) +Rf )Rc1
, (17)

where

Vb1 =
12Rb2

Rb1 +Rb2
,

and the variable partition (θ,x) and the respective ranges are shown in Table 6.

The function produces a MNAR that follows the“logistic missing not-at-random” scheme used

in Muzellec et al. (2020), where the probability of missing is according to a logistic model over the

columns.

51



Variable Range

θ Rf [0.5, 3]
β [50, 300]

x Rb1 [50, 150]
Rb2 [25, 70]
Rc1 [1.2, 2.5]
Rc2 [0.25, 1.2]

Table 6: Variable ranges for the OTLcircuit function in (17).

I Full results for surrogate comparison experiment

This section presents the full simulation results following the numerical experiments detailed in the

main article. The surrogate methods compared are the proposed method PCGPwM, two simplis-

tic imputation methods PCGP-kNN and PCGP-BR, EMGP, colGP, and GP-OM. The surrogate

methods are tested under nine missingness scenarios: (MCAR, 1%), (MCAR, 5%), (MCAR, 25%),

(MNAR, 1%), (MNAR, 5%), (MNAR, 25%), (MAR, 1%), (MAR, 5%), and (MAR, 25%), where

results for the scenario (MNAR, 5%) is reported in the main text of the article. To summarize

the metrics of surrogate quality, the test RMSE is recorded to measure the accuracy of the surro-

gate; the 90% coverage and the 90% width are used to assess the uncertainty quantification of the

surrogate.

I.1 Results under MNAR

The results under MNAR are presented, in the order of 1%, 5%, and 25%.

Figure 5 shows the test RMSEs for the surrogate methods under 1% missingness. The simplistic

imputation methods fail to reduce the errors (i.e., fail to improve surrogate predictions) as N grows

for two of the functions (borehole and wingweight). The corresponding missingness mechanism is

MNAR, depending on the unobserved function value. The simplistic imputation methods reduce

the errors in the other two functions (piston and OTLcircuit). The RMSEs from PCGPwM and the

other methods decrease as N increases in all four functions. The EMGP method consistently results

in larger error than PCGPwM, and colGP. The colGP method performs well across functions.

However, colGP will not be able to compete in terms of its computation time at higher output

dimensions.

Figure 6 shows the 90% coverage under 1% missingness, and Figure 7 shows the 90% width.

GP-OM results in a high coverage in the borehole function but poor coverages in the other func-
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tions. The 90% widths show that GP-OM results in a confidence interval too wide in the borehole

and too narrow in the others. The EMGP method achieves the prescribed coverage in the piston

and OTLcircuit functions, while undercovering in the borehole function. The coverage from EMGP

improves as N grows and achieves the prescribed level for larger Ns. PCGPwM, the simplistic im-

putation methods, and colGP result in adequate coverages in all functions. However, the simplistic

imputation methods maintain wider intervals than PCGPwM in all four cases.

Figure 5: Comparison of prediction accuracy of surrogate methods, under 1% MNAR.

Figure 8 shows the test RMSEs under 25% MNAR. Similar conclusions to the 1% case can be

drawn about the simplistic imputation methods, where they fail to improve in two functions given

more data. The other methods exhibit similar behaviors in predictive accuracy.

Figure 9 shows the coverages under 25% MNAR and Figure 10 shows the widths of the intervals.

We observe that GP-OM and the simplistic imputation methods result in similar behavior as the

other cases, meaning that GP-OM results in high coverage in only one function, and the simplistic

imputation method achieves high coverage with generally wide intervals. PCGPwM results in

adequate coverages with narrower intervals for all functions except the OTLcircuit function for

n = 2500.
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Figure 6: Comparison of 90% coverage of surrogate methods, under 1% MNAR.

I.2 Results under MCAR

The results under MCAR are presented, in the order of 1%, 5%, and 25%.

Figure 11 shows the test RMSEs for the surrogate methods under 1% MCAR. The RMSEs

decrease as N increases for all methods in all four test functions. Among the principal component-

based methods, PCGPwM generally achieves lower errors than the simplistic imputation methods.

The colGP method performs well across the functions, and the EMGP method generally results in

higher error compared to the other methods.

Figure 12 shows the 90% coverages, and Figure 13 shows the corresponding 90% width of the

intervals. Similar to the MNAR case, GP-OM produces a high coverage in the borehole function,

but near-zero coverages in the others. The corresponding 90% widths reflect the high coverage

with wide intervals and the undercoverages with intervals that are too narrow. The EMGP method

achieves adequate coverage for the piston and OTLcircuit functions, but undercovers in the bore-

hole function. The coverage for the wingweight function improves as N increases and achieves

the prescribed level at larger Ns. All the other methods achieve adequate coverages, where the

corresponding widths decrease as N increases. PCGPwM generally produces narrower widths than

do the simplistic imputation methods while attaining comparable coverages.
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Figure 7: Comparison of 90% width of surrogate methods, under 1% MNAR.

Figure 14 shows the test RMSEs under 5% MCAR. Figures 15 and 16 show the 90% coverages

and the 90% widths, respectively. The results of the surrogate accuracy with 1% MCAR extends

to the scenario with 5% MCAR, except the levels of coverage for PCGPwM has decreased in large

N . The 90% widths decrease for all methods as N increases.

Figure 17 shows the test RMSEs under 25% MCAR. The RMSEs for all the methods generally

decrease with N . Figures 18 and 19 show the 90% coverages and the 90% widths, respectively. Sim-

ilar conclusions can be drawn for GP-OM, compared to lower missingness scenarios. The simplistic

imputation methods maintain adequate coverages while maintaining slightly wider intervals when

compared with PCGPwM. The EMGP method exhibits similar behavior, where coverage improves

with the borehold and wingweight functions as N increases.

I.3 Results under MAR

The results under MAR are presented, in the order of 1%, 5%, and 25%. The numerical results

under MAR follow similar trends as MCAR for all percentages of missingness. We refer the analysis

to the reporting of results in the MCAR section. Figures 20, 23, and 26 present the corresponding

RMSEs. Figures 21, 24, and 27 present the 90% coverages. And Figures 22, 25, and 28 present the

90% widths.
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Figure 8: Comparison of prediction accuracy of surrogate methods, under 25% MNAR.

I.4 Comparison of PCGPwM against a baseline method

We compare PCGPwM against a baseline method where we build the principal components as if

the complete data are provided (i.e., Φ and Λ). We label it the “PCGP-benchmark” method. The

purpose of including this method is to examine the significance of the estimation of the principal

components from missing data. Although improved estimation of principal components from miss-

ing data is outside the scope of this article, by studying this method we can offer insights into the

limitations of the proposed method.

The two methods are compared under the 5% MNAR scenario. The results in terms of RMSE,

90% coverage, and the 90% interval width show that PCGPwM performs near identically to PCGP-

benchmark, thus the figures are left out. In other words, the proposed imputation recovers the

unknown principal components well. In certain cases, when compared with colGP (which uses the

data without dimension reduction), both PCGPwM and PCGP-benchmark cannot further reduce

error even with larger data size. This points to a potential limitation in the use of principal

component methods.
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Figure 9: Comparison of 90% coverage of surrogate methods, under 25% MNAR.

J Scaling of Fayans EDF parameter space

Table 7 contains the unscaled centroid, the length scales, and the lower and upper bounds for each

dimension of the parameter. This information is reproduced from Table 5 of Bollapragada et al.

(2021).

K Code and data for the Fayans EDF case study

The code and data for the case study are made available in the online supplementary materials.
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Figure 10: Comparison of 90% width of surrogate methods, under 25% MNAR.

Figure 11: Comparison of prediction accuracy of surrogate methods, under 1% MCAR.
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Figure 12: Comparison of 90% coverage of surrogate methods, under 1% MCAR.

Figure 13: Comparison of 90% width of surrogate methods, under 1% MCAR.
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Figure 14: Comparison of prediction accuracy of surrogate methods, under 5% MCAR.

Figure 15: Comparison of 90% coverage of surrogate methods, under 5% MCAR.
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Figure 16: Comparison of 90% width of surrogate methods, under 5% MCAR.

Figure 17: Comparison of prediction accuracy of surrogate methods, under 25% MCAR.
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Figure 18: Comparison of 90% coverage of surrogate methods, under 25% MCAR.

Figure 19: Comparison of 90% width of surrogate methods, under 25% MCAR.
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Figure 20: Comparison of prediction accuracy of surrogate methods, under 1% MAR.

Figure 21: Comparison of 90% coverage of surrogate methods, under 1% MAR.
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Figure 22: Comparison of 90% width of surrogate methods, under 1% MAR.

Figure 23: Comparison of prediction accuracy of surrogate methods, under 5% MAR.
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Figure 24: Comparison of 90% coverage of surrogate methods, under 5% MAR.

Figure 25: Comparison of 90% width of surrogate methods, under 5% MAR.
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Figure 26: Comparison of prediction accuracy of surrogate methods, under 25% MAR.

Figure 27: Comparison of 90% coverage of surrogate methods, under 25% MAR.
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Figure 28: Comparison of 90% width of surrogate methods, under 25% MAR.

Parameter unscaled center scale lb ub

ρeq 0.1642 0.004 0.146 0.167
E/A −15.86 0.1 −16.21 −15.50
K 206.6 25 137.2 234.4
J 28.3 3.2 19.5 37.0
L 35.9 32 2.2 69.6
hv2− 11.34 19.01 0 100
as+ 0.562 0.06 0.418 0.706
hs∇ 0.460 0.24 0 0.516
κ 0.188 0.02 0.076 0.216
κ′ 0.045 0.17 −0.892 0.982

f ξex −4.46 1.16 −4.62 −4.38

hξ∇ 4.18 1.68 3.94 4.27

hξ+ 3.44 1.4 −0.96 3.66

Table 7: Fayans EDF model parameters and their scaling information, reproduced from Table 5 of
Bollapragada et al. (2021).
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