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Abstract

The rapid advancement of models based on artificial intelligence demands innovative moni-
toring techniques which can operate in real time with low computational costs. In machine learn-
ing, especially if we consider artificial neural networks (ANNs), the models are often trained in
a supervised manner. Consequently, the learned relationship between the input and the output
must remain valid during the model’s deployment. If this stationarity assumption holds, we can
conclude that the ANN provides accurate predictions. Otherwise, the retraining or rebuilding of
the model is required. We propose considering the latent feature representation of the data (called
“embedding”) generated by the ANN to determine the time when the data stream starts being non-
stationary. In particular, we monitor embeddings by applying multivariate control charts based on
the data depth calculation and normalized ranks. The performance of the introduced method is
compared with benchmark approaches for various ANN architectures and different underlying
data formats.

Keywords: Change Point Detection, Data Depth, Latent Feature Representation, Multivariate Statis-
tical Process Monitoring, Artificial Neural Networks, Online Process Monitoring.
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1 Introduction

The rapid advancement of Artificial Intelligence (AI) has encouraged practitioners in various sci-

entific fields to examine the benefits and challenges of Machine Learning (ML) algorithms in their

research. For instance, in astronomy, the separation of astrophysical objects such as stars and galaxies

can be performed by applying decision trees (Ball et al., 2006); reliable forecasts of energy consump-

tion using support vector machines are extensively studied in civil engineering (Gao et al., 2019); in

biology, artificial neural networks (ANNs) are applied for predicting molecular traits (Angermueller

et al., 2016). Due to the emergence of big data and the increased capability of computers, the devel-

opment of ANNs has received particularly broad attention (cf. Chiroma et al., 2018). Current ANNs,

consisting of many hidden layers and being called “deep learning” models, have achieved impressive

results in many areas, such as finance, linguistics, or photogrammetry (cf. Aldridge and Avellaneda,

2019; Otter et al., 2020; Heipke and Rottensteiner, 2020).

Considering supervised learning for tasks such as regression or classification, data with a known

relationship between the input and the output is required. During training, the algorithm minimizes the

error between the model’s output and the target. After the parameter estimation and the testing phase,

the model is deployed on new data, promising a stable performance. However, if the distribution

of input data changes, it would violate the stationarity assumption and adversely impact predictive

performance (see also Huang et al., 2011).

In computer science, “concept drift” refers to the problem of changes in the data distribution that

render the current prediction model inaccurate or obsolete (Demšar and Bosnić, 2018). In statistics,

“nonstationarity” describes time series with changing statistical properties. Additionally, “novelty”

can occur, e.g., when the data stream introduces instances of a new class, being not present during

training (cf. Masud et al., 2009; Garcia et al., 2019). Model revision is necessary to address these

issues, ranging from retraining with new data to algorithm replacement. Strategies handling nonsta-

tionarity without explicit detection exist (cf. Gama et al., 2014), but current research highlights the

benefits of employing drift detection methods during model deployment (cf. Piano et al., 2022; Zhang

et al., 2023). This minimizes redundant adjustments while maintaining prediction accuracy.

From a statistical point of view, for real-time detection of changes, we can apply online monitor-

ing techniques, e.g., univariate or multivariate control charts (cf. Celano et al., 2013; Psarakis, 2015;

Perdikis and Psarakis, 2019). These monitoring methods are primary techniques in Statistical Process

2



Monitoring (SPM), testing for unusual variability over time (Montgomery, 2020). The combination

of control charts and ML algorithms has become a prominent concept for improving SPM procedures

(cf. Psarakis, 2011; Weese et al., 2016; Lee et al., 2019; Apsemidis et al., 2020; Zan et al., 2020;

Sergin and Yan, 2021; Yeganeh et al., 2022). However, the authors are not aware of competitively

using control charts in reverse to supervise the quality of ANN applications in a realistic setting, e.g.,

considering the limited availability of labels during model deployment and various ANN architec-

tures. Consequently, statistical monitoring of ANN applications is a field offering new perspectives

for SPM.

In an ANN, data flows through hidden layers, each containing neurons that perform nonlin-

ear transformations, ultimately producing predictions in the output layer (Hermans and Schrauwen,

2013). The hidden layers combine learned data representations from previous layers, abstracting ir-

relevant details and extracting useful features for generating the output. Neurons within the ANN,

as demonstrated by Wang et al. (2019), possess two crucial properties: stability and distinctiveness.

For smooth classification surfaces or prediction functions, nearby samples should activate similar

neurons, leading to similar output values. However, in the presence of nonstationary data, such as

from an unknown class, neuron values may deviate beyond the typical activation range. In this case,

its interim representation generated by ANN before the output layer would be different compared to

the interim representation of the data that correctly belongs to a predicted class. Commonly repre-

sented by a low-dimensional vector, the learned latent feature representation also called “embedding”

comprises a dense summary of the incoming sample. Alternatively, sliced-inverse regression can re-

duce dimensionality without specifying a regression model (Li, 1991). It projects predictors onto a

subspace while preserving information about the conditional distribution of the response variable(s)

given the predictors. Various methods have been proposed that utilize the inverse relationship between

the variables (Cook and Ni, 2005; Wang and Xia, 2008; Wu, 2008), or sparse techniques facilitating

the interpretation (Li and Nachtsheim, 2006; Li, 2007; Lin et al., 2019). Both ways of reducing the

dimensionality and compressing the knowledge about a data sample are suitable for SPM.

The majority of multivariate SPM methods are based on the assumption that the observed pro-

cess follows a specific distribution. In the general case of ANNs, however, the distribution of embed-

dings is unknown. Although the network could be trained in a way such that the embeddings follow

a certain distribution, this concept is too restrictive in practice. In this work, we focus on developing

a nonparametric SPM approach using a data depth-based control chart, making no assumptions about

the ANN type and the distribution of embeddings.
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In Section 2, we review the relevant literature and describe the notation related to ANNs, fol-

lowed by the definition of the studied change point detection problem. Afterward, we discuss the

notion of data depth and respective control charts in Section 3. The experimental results of our ap-

proach and comparison to the benchmark methods on both synthetic and real data are provided in

Section 4, followed by the discussion about open research directions in Section 5.

2 Background and Notation

Detecting nonstationarity can be explored from different perspectives. In statistics, we would usually

look at change point detection methods (cf. Ali et al., 2016), while in computer science, these tech-

niques are rather known as concept drift, anomaly, or out-of-distribution detection (cf. Žliobaitė et al.,

2016; Yang et al., 2022b; Fang et al., 2022). In the following sections, we briefly review the relevant

literature from different fields (Section 2.1) and introduce important notation of ANNs (Section 2.2)

together with the change point detection framework (Section 2.3).

2.1 Literature Review

In general, approaches to detect nonstationarity in ML applications can be subdivided into two groups:

performance-based methods and distribution-based methods (Hu et al., 2020). The first group re-

lies on labeled instances, monitoring the classification error rate or other performance metrics (cf.

Klinkenberg and Renz, 1998; Klinkenberg and Joachims, 2000; Nishida and Yamauchi, 2007), for

example, by conducting sequential hypothesis tests based on the ideas of control charts (cf. Gama

et al., 2004; Baena-Garcıa et al., 2006; Kuncheva, 2009; Mejri et al., 2017). Mejri et al. (2021) devel-

oped a two-stage time-adjusting control chart for monitoring misclassification rates, which updates

the control limits in the first stage, and validates the detected changes in the second stage. However,

in practice, labeled data is usually not available when ANNs are applied. Thus, the idea of adapt-

ing performance-based approaches to a confidence-related output produced by a model was proposed

(Haque et al., 2016; Kim and Park, 2017). If a classifier processes the anomalous data, it is expected

that the model’s confidence about the affinity of a data point to a certain class would change so that

the unusual behavior could be detected (cf. Hendrycks and Gimpel, 2016).

Anomaly detection in distribution-based methods involves the analysis of metrics related to the

distribution. A considerable number of techniques apply a sliding window approach on either a one-

4



dimensional data stream or on several features individually, comparing the data distribution of the

current window to the reference sample obtained from the training dataset (cf. Bifet and Gavalda,

2007; Bifet et al., 2018; Gemaque et al., 2020). However, the underlying reason related to the notable

performance of ANNs is their generalization ability in complex high-dimensional AI tasks such as

object or speech recognition (Goodfellow et al., 2016), meaning that the detection of nonstationarity

from the original data would not be appropriate due to the excessive number of features. Consider-

ing novelty detection, it can be based on parametric density estimates (e.g., using Gaussian mixture

models (Roberts and Tarassenko, 1994) or hidden Markov models (Yeung and Ding, 2003)), and non-

parametric estimates (e.g., based on k-nearest neighbors (Guttormsson et al., 1999), kernel density

estimates (Yeung and Chow, 2002) or string matching (Forrest et al., 1994)). These methods usually

require heuristically chosen thresholds to decide about the novelty. The interested reader may refer to

Markou and Singh (2003a,b) for a more detailed review.

By considering a latent representation of the original data stream such as embeddings generated

by ANNs, outlier and anomaly detection methods based on distance metrics and nearest neighbor

approaches were shown to be suitable and efficient in detecting nonstationary samples (cf. Lee et al.,

2018; Sun et al., 2022). Particularly beneficial is their capability of providing an overall outlying score

that would consider all data features together, leading to a more explicit decision about the observed

abnormalities.

Alternatively, other ML algorithms for drift detection such as Support Vector Machine (SVM)

(Krawczyk and Woźniak, 2015) or autoencoders as specific types of ANNs (Pidhorskyi et al., 2018)

can be applied for change detection. Another suggestion is to use ensemble models consisting of,

for instance, several decision trees with a majority voting mechanism (Li et al., 2015). In particular

cases, the detection methods can be enhanced through large-scale pre-training techniques, leading to

remarkably informative embeddings (Fort et al., 2021). However, in our work, we relax any assump-

tions on the availability of additional data or specific model architectures. Thus, we describe ANNs

from a general perspective in the next section.

2.2 Artificial Neural Networks

The main goal of training ANN is to estimate the parameters ϑ of a highly nonlinear function f (·,ϑ) :

Rd → Rv, mapping a d-dimensional input (i.e., observed data) to a v-dimensional output (i.e., class

labels). The proposed monitoring technique can also be applied to ANNs, which solve regression
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tasks by grouping the predicted values into a set of classes. In both cases, the dependent variables are

class labels yt ∈ {1, . . . ,v}, where the v-dimensional output of the algorithm contains the discriminant

scores for each of the given classes. In supervised learning, we assume that true class labels are

known for the training period t = 1, . . . ,T , which is used for estimating the parameters ϑ . Thus,

ŷt = argmax f (xt , ϑ̂) for a set of input variables xt is the prediction of ANNs, i.e., the most probable

class, where ϑ̂ defines the learned parameters during the training, such that ŷt coincides with yt in

most cases for all t = 1, . . . ,T .

There are several aspects to consider about the network’s architecture when designing it, for

instance, the number of hidden layers and neurons, the connections between the layers, and, fun-

damentally, which type of ANNs to use. To introduce these essential elements, a toy example of a

feedforward ANN (FNN) which defines the basic family of ANN models is presented in Figure 1a.

The network consists of four layers with two hidden layers, where each circle represents a neuron

or node that stores a scalar value. Consequently, a layer is a ki-dimensional vector with ki being the

number of nodes contained in the i-th layer. Here, the input layer is a k1-dimensional vector xt ∈ R7

(first layer), and its first neuron is defined as xt,1. Assuming we have a classification problem with two

classes, we would construct an ANN with a one-dimensional output layer (last layer) that provides a

score for the input to belong to class 2. When the output exceeds a threshold (often 0.5), the input

is predicted as class 2, otherwise class 1. For a detailed description of the toy example set-up, see

Section 4.3.

The changes in the number of nodes, layers, and types of connections lead to new ANN archi-

tectures. However, specialized types of ANN models were developed to handle high-dimensional data

efficiently. For instance, convolutional ANNs enable image data processing, while recurrent ANNs

are suitable for working with temporal sequences (cf. Shrestha and Mahmood, 2019). It is worth

noting that designing ANNs usually follows the trial-and-error principle (Emambocus et al., 2023).

Nevertheless, some strategies are recommended by the experts, e.g., how to start choosing hyperpa-

rameter values (cf. Smith, 2018). To obtain a broader overview of how to design and train ANNs, the

reader can refer to Goodfellow et al. (2016).

Figure 1a illustrates how hidden layers in an ANN can reduce the dimensionality of the input

sample. That produces valuable interim representations known as “embeddings” which we obtain

before the activation function is applied, compressing the knowledge about the samples as shown in

Figure 1b. They serve as a base for the change point detection procedure explained below.
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(a) The FNN with two hidden layers in toy example (b) Produced embeddings in toy example

Fig. 1: The FNN architecture displayed in (a) and embeddings from hidden layers (B) visualized in (b).

Gray-framed nodes represent the last hidden layer. Blue and green points denote training data

references, while magenta points represent out-of-control data embeddings.

2.3 Change Point Detection

For monitoring ANN applications, we propose to use embeddings that usually have a vector form

which we denote by mt ∈ Rk with k being the dimension of the hidden layer that produces the em-

beddings. This representation is observed every time ANNs are applied, i.e., for historical (training)

and new data. Thus, embeddings implicitly depend on xt , but also on the fitted parameters ϑ̂ , so that

changes associated with ANN’s data quality and performance can be detected.

In succeeding parts, we refer to the set {mt : t = 1, . . . ,T} as historical data with correctly

known labels {yt : t = 1, . . . ,T} and to the set {mi : i = T +1,T +2, . . .} as incoming data instance

with the predicted class label ŷi obtained from f (mi, ϑ̂). Moreover, we consider that the true label

of yi is not available and historical data are stationary. Additionally, we assume that mt follows a

certain distribution Fmt |yt=c depending on the true class yt . These conditional distributions Fmt |yt=c

are denoted by Ξc for all classes c ∈ {1, . . . ,v}. Based on historical data, it is possible to estimate the

distribution Ξc empirically that can be used to determine whether a possible change in the data stream

occurred, i.e., whether the current observation mi is generated from a different distribution than Ξyi .

Hence, we define a change point τ to arise if
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mi ∼

 Ξyi if i < τ

Ξν if i ≥ τ.

In other words, a change point τ is the timestamp when the analysis of an embedding generated

from the incoming data indicates that the data sample belongs to a different unknown distribution

Ξν . Consequently, we can regard this situation as a change in the class definition and formulate a

sequential hypothesis test of each sample i for detecting changes in the ANN application as follows

H0,i : Ξyi = Ξŷi against

H1,i : there is a location shift and/or a scale increase in Ξyi .

The alternative hypothesis could be true due to (1) misclassification by the model, i.e., ŷi ̸= yi = a,

where a ∈ {1, . . . ,v}, leading to Ξŷi ̸= Ξa, or (2) nonstationarity of the data stream, i.e., ŷi ̸= yi = b

with b /∈ {1, . . . ,v} and Ξŷi ̸=Ξb because i≥ τ . The accurate distinction between those cases is crucial

for reliable change point detection. Labeled data in Phase II helps achieve this, but a practical solution

without labeled data is discussed in Section 4.4.3.

To test repeatedly whether the process is in control over time, i.e., whether the data assigned to

a particular class does not deviate from the rest in this class, we can apply a multivariate control chart.

Since the class distributions {Ξc : c= 1, . . . ,v} are unknown and can be estimated only empirically, we

need a nonparametric monitoring technique that relaxes any distributional assumptions. Alternatively,

the nonparametric kernel density estimates can be used, so-called Parzen window estimators (Parzen,

1962; Breiman et al., 1977). Moreover, kernel density estimates also have been proven beneficial for

classification tasks (e.g., Ghosh et al., 2006).

Several multivariate nonparametric (distribution-free) charts are based on rank-based approaches.

These approaches can be divided into two categories: control charts using longitudinal ranking and

those employing cross-component ranking (Qiu, 2014). The first group includes componentwise lon-

gitudinal ranking (Boone and Chakraborti, 2012), spatial longitudinal ranking (Zou et al., 2012), and

longitudinal ranking by data depth (Liu and Singh, 1993). While the first two subgroups are moment-

dependent, control charts based on data depth offer flexibility by not imposing moment requirements.

For instance, geometric and combinatorial depth functions, such as Simplicial depth and Halfspace

depth, are considered and discussed in Section 3.1.

The depth-based control charts allow simultaneous monitoring for location shifts and scale in-

creases in the process. The depth functions discussed in this work are affine invariant and satisfy im-
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portant axioms such as monotonicity, convexity (except for Simplicial depth), and continuity (Mosler

and Mozharovskyi, 2022). These characteristics make them suitable for our problem, leading us to

employ nonparametric control charts based on data depth for online monitoring.

3 Monitoring Framework for ANN

As discussed in Section 2, ANNs input space is usually too complex to identify distributional changes

directly from the input data (layer A, Figure 1a), whereas output does not always contain enough

information for this purpose as we demonstrate in Section 4 (layer C, Figure 1a). A sufficient but

not excessive amount of information can be obtained by intercepting the input propagation on an in-

termediate layer of the neural network (layer B, Figure 1a), e.g., to estimate prediction uncertainty

which requires rarely accessible supervised training data (see Corbière et al., 2019). While several

layers can be considered to account for more complex dependencies, one would normally take those

which are closer to the output, achieving the highest dimensionality reduction (see, e.g., Parekh et al.,

2021). Outputs of the intermediate layers constitute a Euclidean space, where—in the unsupervised

setting—anomaly-detection techniques can be applied. These can constitute a neural network them-

selves (e.g., autoencoder), belong to (statistical) ML like a Local Outlier Factor (Breunig et al., 2000),

one-class SVM (Schölkopf et al., 2001), isolation forest (Liu et al., 2008), or be based on data depth

as proposed in this work.

The application of data depth in quality control was originally introduced by Liu and Singh

(1993), resulting in the design of Shewhart-type multivariate nonparametric control charts based on

the Simplicial depth (Liu, 1990, 1995). According to recent publications on data depth-based control

charts (cf. Cascos and López-Dı́az, 2018; Barale and Shirke, 2019; Pandolfo et al., 2021), the careful

choice of data depth is crucial for satisfactory monitoring performance. Thus, we compare several

notions of data depth and discuss their effectiveness in Section 4, looking at computational costs in

Supplementary (Suppl.) Material, Part F.

3.1 Notion of Data Depth

A data depth is a concept for measuring the centrality of a multivariate observation mi (cf. Zuo and

Serfling, 2000; Liu et al., 2006; Mosler and Mozharovskyi, 2022) with respect to a given reference

sample Rc = {mt := 1, . . . , |R|,yt = c}, where |R| defines its size which is the same for all considered
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classes. In other words, it creates a center-outward ordering of points in the Euclidean space of any

dimension. There are various notions of data depth, each of them providing a distinctive center-

outward ordering of sample points in a multidimensional space. In this work, we consider four data

depth notions: Halfspace, Mahalanobis, Projection, and Simplicial depths.

First, the Halfspace depth (originally known as “Tukey depth”) introduced by Tukey (1975) and

further developed by Donoho and Gasko (1992) is defined as the smallest number of data points in

any closed halfspace with boundary hyperplane through mi (Struyf and Rousseeuw, 1999). That is,

Dc
H(mi, Rc) =

1
|R|

min
∥p∥=1

|{b : ⟨ p,mb⟩ ≥ ⟨ p,mi⟩}|,

where | · | denotes the cardinality of the set B with mb ∈ Rc, p are all possible directions with ∥p∥=√
⟨p, p⟩ being the Euclidean norm and ⟨·, ·⟩ the inner product. In our work, we consider its robust

version HDr that is proposed by Ivanovs and Mozharovskyi (2021) and calculated approximately,

offering some advantages in being strictly positive and continuous beyond the convex hull of the

observed samples.

Second, we consider the Mahalanobis depth which is based on the Mahalanobis distance (cf.

Mahalanobis, 1936). It is derived as

Dc
M(mi, Rc) =

1
1+(mi −µm)′Σ−1(mi −µm)

,

where µm is the mean vector of the embeddings in the reference sample and Σ−1 is the covariance

matrix, estimated by the sample mean and the sample covariance matrix, respectively.

Third, the Projection depth proposed by Zuo and Serfling (2000) is specified as

Dc
P(mi, Rc) =

(
1+ sup

∥p∥=1

|⟨p,mi⟩−med(⟨p,Rc⟩)|
MAD(⟨p,Rc⟩)

)−1

with ⟨p,mi⟩ denoting the inner product and the projection of mi to p if ∥p∥= 1. The notation med(E)

defines the median of a univariate random variable E and MAD(E) = med(|E −med(E)|) is the me-

dian absolute deviation from the median. As the exact computation of the Projection depth is possible

only at very high computational costs (cf. Mosler and Mozharovskyi, 2022), we use the algorithms

that enable its calculation approximately. Dyckerhoff et al. (2021) provide the implementation and

comparison of various algorithms. In our work, we study the performance of control charts based on

three different algorithms to compute the Projection depth of both symmetric and asymmetric types.

In particular, we consider coordinate descent (PD1), Nelder-Mead (PD2), and refined random search

(PD3) for the symmetric type, and PDa
1, PDa

2, and PDa
3 for the asymmetric type.
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Fourth, we calculate the Simplicial depth (Liu, 1990) as

Dc
S(mi,Rc) =

(
|R|

k+1

)−1

∑
⋄

IS(mt | t∈Rc, yt=c)(mi),

where S(mt |t ∈ Rc,yt = c) defines the open simplex consisting of vertices {mt,1, . . . ,mt,k+1} from

all observations t in the reference sample Rc. The ⋄ notation means that we validate all possible

combinations to construct an open simplex with (k+ 1) vertices. We specify IA(x) as the indicator

function on a set A returning 1 if x ∈ A and 0 otherwise. Both Simplicial (SD) and Mahalanobis (MD)

depths are computed with algorithms provided by Pokotylo et al. (2019).

Related to the classification problem of multivariate data, there exist depth-based classifiers

(cf. Vencálek, 2017) such as depth-vs-depth plot (DD-plot) designed by Li et al. (2012) or DD-

alpha procedure proposed by Lange et al. (2014). Also, the field of outlier or anomaly detection

is a widespread area for data depth usage (cf. Dang and Serfling, 2010; Baranowski et al., 2021).

Combining these two perspectives, we apply a data depth-based Shewhart-type r control chart for

single observations (see Sections 3.2 and 4) and a batch-wise Q control chart (see Suppl. Material,

Part D) developed by Liu (1995) for detecting nonstationarity in a data stream.

3.2 The r Control Chart

A control chart is a graphical tool for monitoring processes by recording the performance of quality

characteristics over time or sample number (Kan, 2003). The process is considered in control when

the test statistic falls within the Upper and Lower Control Limits (UCL and LCL). Points outside

this range indicate unusual variability, triggering a signal to investigate the out-of-control state of the

process.

Usually, the application of control charts is divided into Phase I and Phase II. In Phase I, we

collect the reference data, examine its quality and verify the process stability, then estimate model

parameters if applicable and derive the values for the control limits (Jones-Farmer et al., 2014). The

data in Phase I does not have to coincide with the full training data of the ANN but could rather be

its subset. That is, the sets Rc ⊆ {mt : t = 1, . . . ,T, yt = c} of size |R| create the Phase I data where

it is essential to consider only correctly classified data samples. Successively, in Phase II, the control

chart statistic is plotted for each embedding mi with i > T . Figure 2 displays the introduced periods

and sets.

Considering the r control chart proposed by Liu (1995), the scheme is based on ranks of multi-
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Fig. 2: Summary of the introduced notation and data subdivision.

variate observations, which are obtained by computing data depth. To determine whether mi belongs

to Ξc, we use the following control chart statistic

rc
· (mi) =

|{Dc
· (mt)≤ Dc

· (mi) : t ∈ Rc, yt = c}|
|{t ∈ Rc : yt = c}|

that defines the rank of the observed depth related to the observations in the reference sample with a

class c. Thus, the r control chart monitors the values of rc
· over time. Considering the interpretation

of ranks, we can state that rc
· (mi) reflects how outlying mi is with respect to the reference sample.

If rc
· (mi) is high, then there is a considerable proportion of data in the reference sample that is more

outlying compared to mi (Liu, 1995).

Regarding the control limits, there is no need to introduce the UCL as rc
· belongs to the con-

tinuous interval [0,1]. Considering the LCL, it coincides with the significance level of the hypothesis

test, here defined as α . Thus, the process is considered to be out of control if rc
· (mi)≤ α . The choice

of α depends on the specification of Average Run Length (ARL) – the expected number of monitored

data points required for the control chart to produce a signal (Stoumbos et al., 2001). In the case of

the Shewhart-type control charts, the reciprocal of ARL corresponds to the false alarm rate (FAR) in

the in-control state of a process. Technically speaking, since the r control chart is a Shewhart control
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chart, FAR = α , where α is interpreted as the probability of a false alarm in Phase I (Stoumbos et al.,

2001).

According to Liu (1995), the r control chart can be applied with affine-invariant notions of data

depth, explicitly mentioning Simplicial depth, Mahalanobis depth, and Halfspace depth. Since Pro-

jection depth is also affine-invariant (cf. Mosler, 2013), both r and Q control charts can be combined

with each of the data depth functions introduced in Section 3.1.

4 Comparative Study

In the following section, we analyze the effectiveness of the proposed monitoring framework by de-

signing a toy example and using real data. The discussion begins with a description of the considered

benchmark methods, followed by the introduction of the selected performance measures in Section

4.2. Further, we compare the performances for toy example in Section 4.3 and for real data in Section

4.4. In addition, the construction of reference samples and the misclassification effect are examined

in Section 4.4.3.

4.1 Benchmark Methods

Due to the independent development of comparable approaches (cf. Mozharovskyi, 2022; Yang et al.,

2022b) and their focus on different scenarios/perspectives, there is no unified benchmark. Hence, to

select a benchmark for ANN monitoring, we need to consider the available options. Three possibil-

ities arise: inspecting the initial input, the model’s embeddings, or the final output (softmax score in

our case) represented by layers A, B, and C in Figure 1a. Monitoring the initial data quickly becomes

limited due to the complexity of typical datasets analyzed by ANNs. On the contrary, using interme-

diate layers reduces data dimensionality and storage requirements since only the embeddings from the

training phase need to be saved. Therefore, we only consider options B and C as monitoring options.

Furthermore, as a benchmark, we focus on methods that can operate within the introduced framework.

Specifically, we seek methods capable of detecting nonstationarity in (1) individual samples (batch

size of one), (2) without the need for labels in Phase II, and (3) working with or without available

time stamps. To ensure comparability, we utilize the same SPM framework of r control charts.

Based on the recent reviews (cf. Goldstein and Uchida, 2016; Villa-Pérez et al., 2021; Yang

et al., 2022b), we choose a Kernel Density Estimation Outlier Score (KDEOS) defined by Schubert
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et al. (2014), a distance-based Local Outlier Factor (LOF) developed by Breunig et al. (2000) and

an ensemble-based outlier detection method such as isolation Forest (iForest) proposed by Liu et al.

(2008) as a common benchmark coming from distribution- and distance-based methods. Both LOF

and KDEOS compare the densities within local neighborhoods. However, while LOF is based on

the reachability distance of the point to its neighborhood for density estimation, KDEOS uses classic

kernel density estimates, e.g., based on Gaussian or Epanechnikov kernels. The iForest represents

an ensemble of binary decision trees, where the points placed deeper in the trees are less likely to be

outliers as they require more splits of space to isolate them. On the contrary, the samples which are

allocated in shorter branches would rather be anomalous.

When considering option C, we compare our approach with monitoring the softmax scores.

They are normalized between 0 and 1, and their length is equal to the number of neurons in the final

layer. The neuron that has the maximum score corresponds to the predicted class. It is important

to note that the softmax output is widely considered as a measure of the model’s confidence (cf.

Gawlikowski et al., 2021; Moon et al., 2020); however, there is substantial research into the area of

alleviating overconfident prediction issue (Gawlikowski et al., 2021), e.g., by redesigning a loss func-

tion that leads to more trustful confidence estimates (Moon et al., 2020). Nevertheless, directly using

the softmax output for nonstationarity detection is considered to perform reasonably well (Pearce

et al., 2021). Thus, as benchmark techniques, we select Mahalanobis distance (MDis) which is well-

known for detecting concept drift in similar settings (cf. Lee et al., 2018; Yang et al., 2022b), and a

Natural Outlier Factor (NOF) based on Natural Neighbour principle, where calculation of the factor

is parameterless (Huang et al., 2016).

4.2 Performance Measures

A well-operating control chart has a low false alarm rate (when it signals a change incorrectly) and

a high rate of correctly detected out-of-control points. The performance of control charts is typically

assessed by ARL. It measures the time until a false alarm when the process is in control and the speed

at which the chart detects an actual change when the process is out of control. Alternatively, the False

Alarm Rate (FAR) evaluates performance in Phase I, while the Signal Rate (SR) and Correct Detection

Rate (CDR) assess performance in Phase II. All three metrics range between 0 and 1, providing the

relative number of false or correct signals.

Regarding the SR value, we calculate a proportion of false alarms given the total length of the
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Evaluation Size |R| Phase Observed process Metric MD SD HDr PDa
1 PDa

2 PDa
3 PD1 PD2 PD3

100 I In-control FAR 0.05 0.03 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Toy example 100 II In-control SR 0.08 0.00 0.10 0.08 0.04 0.06 0.06 0.08 0.10
mi ∈ R3 100 II Out-of-control CDR 1.00 0.00 1.00 1.00 1.00 1.00 0.10 0.06 0.14

2000 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05 0.05 0.05 0.05
2000 II In-control SR 0.51 / 0.54 0.49 0.49 0.50 0.48 0.47 0.48

SR|M 0.97 / 0.98 0.96 0.97 0.97 0.96 0.96 0.96

SR|C 0.46 / 0.49 0.44 0.44 0.45 0.43 0.42 0.42

2000 II Out-of-control CDR 0.92 / 0.93 0.92 0.92 0.92 0.91 0.91 0.89
Experiment 1 3000 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05 0.05 0.05 0.05
mi ∈ R16 3000 II In-control SR 0.43 / 0.46 0.40 0.41 0.41 0.41 0.39 0.39

SR|M 0.95 / 0.95 0.92 0.92 0.93 0.93 0.92 0.92

SR|C 0.38 / 0.40 0.35 0.35 0.35 0.35 0.33 0.33

3000 II Out-of-control CDR 0.88 / 0.90 0.86 0.87 0.86 0.87 0.86 0.84
4000 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05 0.05 0.05 0.05
4000 II In-control SR 0.34 / 0.37 0.32 0.31 0.31 0.33 0.31 0.30

SR|M 0.88 / 0.91 0.83 0.84 0.83 0.86 0.83 0.83

SR|C 0.29 / 0.32 0.26 0.26 0.26 0.27 0.25 0.25

4000 II Out-of-control CDR 0.79 / 0.83 0.78 0.79 0.78 0.78 0.78 0.73

Table 1: Performance of r control charts (α = 0.05) in toy example and in Experiment 1 with reference

samples R being predicted classes. The underlined numbers indicate the suggested method for

an entire monitoring period, based on the trade-off between SR and CDR. We compute SD for

R3 only, as computational complexity is O(nk+1).

considered in-control part. In the case of the CDR value, it is computed as a proportion of correctly

detected out-of-control data points given the total length of the designed out-of-control part. To

account for a possible discrepancy between the class proportions of the predicted data in Phase II,

we calculate the weighted mean of the occurred signals, accounting for the number of data points in

each predicted class within the observed period. In the case of FAR, we simply use the sample mean

because the class or reference sample sizes are identical.

If a tested control chart operates as desired, then FAR of Phase I equals the chosen probability

of a false alarm α . In Phase II, ideally, we would expect SR to be similar to FAR for the in-control

samples (neglecting the potential misclassification effect), while the CDR should be as large as pos-

sible for the out-of-control samples. If the CDR is low, i.e., close to 0, we conclude that the control

chart does not accomplish its primary purpose – to detect nonstationarity in a data stream.

4.3 Toy Example

To present our idea in a controllable environment, we create a toy example using the ANN architecture

presented in Figure 1a. We simulate two 7-dimensional Gaussian random variables x
(1)
t and x

(2)
t

with µ1 = 0 and µ2 = 10 ·17, where t = 1, . . . ,100 and 1n is the n-dimensional vector of ones. Both
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mi ∈ R mi ∈ R16

Evaluation Size |R| Phase Observed process Metric

MDis NOF KDEOS LOF iForest PD(a)
2

100 I In-control FAR 0.05 0.05 0.05 0.05 0.05 0.05
Toy example 100 II In-control SR 0.08 0.04 0.00 0.04 0.12 0.04

100 II Out-of-control CDR 1.00 1.00 1.00 1.00 1.00 1.00
2000 I In-control FAR 0.05 0.05 0.05 0.05 0.05 0.05
2000 II In-control SR 0.57 0.60 0.07 0.56 0.53 0.47
2000 II Out-of-control CDR 0.92 0.92 0.05 0.93 0.93 0.91
3000 I In-control FAR 0.05 0.05 0.05 0.05 0.05 0.05

Experiment 1 3000 II In-control SR 0.44 0.47 0.07 0.48 0.46 0.39
3000 II Out-of-control CDR 0.87 0.86 0.07 0.87 0.89 0.86
4000 I In-control FAR 0.05 0.05 0.05 0.05 0.05 0.05
4000 II In-control SR 0.33 0.36 0.07 0.39 0.38 0.31
4000 II Out-of-control CDR 0.79 0.78 0.10 0.77 0.83 0.79

Table 2: Comparison study: Performance of r control charts (α = 0.05) in toy example and in

Experiment 1. In the case of MDis and NOF, the data points represent the model’s softmax

output (mi ∈ R). The underlined numbers indicate the suggested method based on the

trade-off between SR and CDR.

variance-covariance matrices Σ1 and Σ2 have σii = 1 but with σi−1, j = σi, j−1 = 0.3 in the case of Σ1,

and σi−1, j = σi, j−1 =−0.3 in case of Σ2 for all i, j = 1, . . . ,7 (in respective cases i, j > 1), where the

remaining entries are zero. Considering the out-of-control data, we sample from a new multivariate

Gaussian distribution with µτ = 5 ·17 and Σ1.

We use a reference sample of size |R| = 100 for each of the classes, i.e., the entire training

data because there were no misclassified data points. In Phase II, the in-control data corresponds to

50 new observations with the same distribution as used for training, while the out-of-control 50 data

points correspond to the out-of-control distribution. The embedding layer consists of three neurons,

i.e. mi ∈ R3. The visualization of the embeddings that correspond to both reference samples and

out-of-control data is displayed in Figure 1b.

Table 1 summarizes the results from depth-based control charts. As we can see, all versions

apart from symmetric Projection and Simplicial depths can be successfully applied in this setting.

The reason why symmetric Projection depths fail is the asymmetric distribution of the processed data

(see Figure 1b). Regarding the Simplicial depth, there are 24% of data points in the reference sample

of class 2 with SD(mt) = 0. That can be explained by Simplicial depth assigning zero to every

point in the space outside the sample’s convex hull (Francisci et al., 2019). Moreover, because all

out-of-control samples received the predictions of class 2, the SD could not detect the out-of-control

samples. Comparing the best result from Table 1 which is PDa
2 to the benchmark in Table 2, we notice
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Experiment 1 2 3

Complexity High Medium Low

Data type Image Sentence Signal in [0,1]

Type of NN CNN LSTM FNN

Number of classes 10 4 2

Phase I, in-control (Training data) 50000 2800 170

Phase II, in-control (Test data) 10000 600 38

Phase II, out-of-control (Nonstationary data) 400 60 30

Results Section 4 Suppl. Material, Part B Suppl. Material, Part C

Table 3: Summary of experiments: Data size indicates the total number of samples across all classes.

Balanced datasets are used for training the ANN, ensuring an equal representation of samples

from each class.

that the LOF and NOF achieved similar results, while the KDEOS and iForest did not hold their size

of α = 0.05 in Phase II.

4.4 Experiments with Real Data

We conduct in total three experiments. In decreasing complexity, the first experiment is about a

ten-class classification of images, applying Convolutional ANN (CNN), followed by a four-class

classification of questions, using ANN with a Long Short-Term Memory layer (LSTM) and finished

with a binary classification of sonar data performed with an FNN. Table 3 provides a summary of

the conducted experiments. The models’ training aims to maximize overall classification accuracy,

respectively tuning the hyperparameters and the ANN architectures. For the sake of brevity, we only

report the results of Experiment 1 below and include the results of the other two experiments in Suppl.

Material.

4.4.1 Multiclass Classification of Images

In this experiment, we work with the CIFAR-10 dataset1 containing color images of the size 32×32

pixels (Krizhevsky et al., 2009), which is often applied for testing new out-of-distribution detection

methods (cf. Yang et al., 2022a). In total, there are 60000 images which correspond to 6000 pictures

1https://www.cs.toronto.edu/~kriz/cifar.html
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Airplane Automobile Bird Cat Deer

Dog Frog Horse Ship Truck

Airplane Automobile Bird Cat Deer

Dog Frog Horse Ship Truck

Fig. 3: Image examples and class labels of the CIFAR-10 dataset.

per class. Figure 3 shows examples of each category. For the out-of-control samples, we consider the

CIFAR-100 dataset1 that has 100 image groups, selecting four distinctive classes, namely “Kanga-

roo”, “Butterfly”, “Train” and “Rocket”. From each category we randomly chose 100 images, having

in total 400 samples for the out-of-control part in Phase II.

To construct a classifier for predicting to which of the ten groups an input image belongs, we

train a CNN with a deep layer aggregation structure as proposed by Yu et al. (2018). A specification of

such architecture is a tree-structured hierarchy of operations to aggregate the extracted features from

different model stages. For a detailed introduction to CNNs, we direct to O’Shea and Nash (2015).

The embedding layer has 16 neurons, so we obtain a monitoring task of mi ∈ R16. Regarding the

training results after 88 epochs, the achieved accuracy on the test images was 90.43%.

4.4.2 Choice of Reference Samples and Monitoring Results

Below, we investigate the effect of different reference samples, particularly concentrating on their

size. To guarantee a well-chosen reference sample for each class, we construct it by choosing |R| data

points that obtained the highest softmax scores. The analysis of applying randomly created reference

samples is provided in Suppl. Material, Part A. To illustrate the application of the r control chart in

Figure 4, we depict PD2 with |R| = 4000. While we have 3 signals in Phase I (green points), where

FAR = 5%, a considerably larger number of signals is observed in Phase II without novelty (i.e.,

in-control, purple points). A substantial part of these signals occurred on the misclassified samples,

marked by the asterisks. In the out-of-control part in Phase II (red points), we notice the highest

number of signals, signifying correctly detected nonstationarity.
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Fig. 4: An example of the r control chart based on PD2 using the data from Experiment 1. Colors

correspond to the phases illustrated in Figure 2. The dashed line represents the control limit

α = 0.05, the signals are shown in dark red, and the misclassified samples in Phase II

(in-control) are indicated with an asterisk.

Looking at the results shown in Table 2, we can recognize the following patterns: First, with

increasing reference sample size, the number of false alarms in Phase II decreases. For instance, MD

and HDr lead to SR being over 50% when |R| = 2000, but we observe improvements by over 15%

when the size of the reference sample increases. Second, the larger the reference sample, the less

precise becomes the out-of-control detection. Here, the CDR values remain moderately high while

doubling the size of the reference samples. Hence, it is beneficial to agree on such a reference sample

size that slightly decreases CDR and, at the same time, improves the performance of the control chart

during the in-control state. With this strategy, both PDa
2 and PD2 suit the entire monitoring period

well.

Similar behavior can be noticed for the benchmark methods presented in Table 2. Comparing

the best depth-based monitoring result of PD(a)
2 with the benchmark, we note that it outperforms all

other algorithms. Nevertheless, the SR values remain generally high, which could be due to misclas-

sified observations being flagged as anomalous samples or because the dispersion of the test data is

large compared to the reference samples. To better understand these issues, we analyze the data in

Phase II more closely in the subsequent part.
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4.4.3 Misclassification and Data Diagnostic

To investigate the effect of misclassification, we refer to the wrongly classified images from the test

data (Phase II, in-control), which constitute 958 data points. By calculating the signal rates conditional

on misclassified SR|M and correctly classified samples SR|C for each depth notion and reference

sample size in Table 2, we find out that the average SR|M is 91.58%. At the same time, SR|C values

are considerably lower and approach 25% for bigger reference samples, compared to the original SR

results.

To investigate another reason for high SR values, we visualize the in-control data in Figure 5.

We use Radial Coordinate visualization (Radviz), where the variables are referred to as anchors, being

evenly distributed around a unit circle (cf. Hoffman et al., 1999; Caro et al., 2010; Abraham et al.,

2017). Their order is optimized to place highly correlated variables next to each other. Correspond-

ingly, data points are projected to positions close to the variables that have a higher influence on them.

As we can see in Figure 5, there is a comparably large section opposite the anchor V15 where the test

data does not overlap with any of the reference samples. At the same time, a fraction of the out-of-

control samples is located within reference samples, leading to more challenging detection. Hence,

this analysis and the evaluation of the misclassification effect could facilitate the understanding of

SR > FAR and provide insight into CDR.

A possible solution for mitigating the misclassification effect and challenges in choosing a

representative reference sample for each class could be a creation of a merged reference sample. In

other words, we could neglect the condition of having class-specified reference samples and perform

the computation of depths with respect to a grouped reference sample only. However, according to the

results presented in Suppl. Material, Part E, such construction of reference samples could eliminate

misclassification and sample selection issues but work only for less complex cases. Moreover, the

computation time would increase rapidly for high-dimensional problems (see Suppl. Material, Part

F), meaning that the proposed framework of using individual reference samples for each class would

also be more suitable from this perspective.

4.5 Practical Recommendations

Overall, we notice that the asymmetric Projection depth works most reliably among the examined

depths. The reason for that is twofold: First, it considers the geometry of the points, i.e., their asym-
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Fig. 5: Visualization of the data from Experiment 1 with |R|= 2000. V1, . . . ,V16 define anchors which

correspond to neurons that produced embeddings mi ∈ R16. Density contour plots outline

respective classes.

metric positioning. Second, as we usually aim to diagnose the outlyingness of the points that are

outside of the convex hull, we need to be able to order them. By obtaining positive depth values

outside the convex hull, we can better recognize which points are anomalous. On the contrary, the

Simplicial or symmetric Projection depths underperform, if many points are placed outside the convex

hull (an issue for SD) or the data is asymmetrically spread (an issue for PD).

As soon as a change has been detected, various actions could be implemented. Lu et al. (2018)

introduce the idea of “Concept Drift Understanding” before its adaptation. They stress that it is vital

to answer how severe and in which data region the concept drift occurred before implementing further

actions. Afterward, the model can be either adjusted or rebuilt, resulting in a new cycle of training

and validation.

5 Conclusion

The models based on ANNs have contributed to recent advances in various disciplines. However, the

impressive results that were achieved with their deployment mask the necessity of the model’s control

and monitoring, meaning that critical flaws could occur without any notice by the expert.

This work proposes a monitoring procedure designed for ANN applications that applies a non-

parametric multivariate control chart based on ranks and data depths. The core idea is to monitor the
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low-dimensional representation of input data called embeddings that are generated by ANNs. The

proposed monitoring methodology has great potential and often outperforms benchmark methods in

realistic experiments. Comparing different data depth notions under the trade-off between compu-

tation time and monitoring effectiveness, we recommend the asymmetric Projection depth using the

Nelder-Mead algorithm. In case the embeddings are scattered symmetrically, symmetric Projection

depth can be used instead.

Furthermore, we investigated the influence of the reference sample size and the method of how

it was constructed. It could be shown that a bigger reference sample is not automatically related to a

better detection capability. In particular, there are open questions about attaining a reliable reference

sample. It is advisable to research in more detail how the SPM techniques, such as the multivariate

mean-rank chart (Bell et al., 2014), could support the analysis of Phase I data. Also, it is subject to

future research when the reference sample should be updated or continually augmented with recent

observations while preventing contamination with the out-of-control data.

In our experiments, the data points of the training and the test datasets are chosen following a

convention by randomly dividing the dataset. In the future, we recommend examining whether an

optimal splitting of data into training and testing, which preserves distributional similarity, improves

the performance of models based on AI as well as leads to more reliable monitoring (cf. Vakayil

and Joseph, 2022). Additionally, the field of data splitting and data compression, i.e., how to find a

trade-off between reliable but fast training and a well-chosen training set that uses only a fraction of

the initial dataset, is relevant for future research.

We have also shown that our approach would achieve a better performance if additional mis-

classification information were available. In general, understanding when a data point has obtained

a wrong prediction is indispensable and requires an additional method to be developed that could be

later combined with our monitoring procedure. Moreover, one could investigate whether subdividing

the data stream in moving windows could enhance the monitoring performance.

In the empirical study, we consider well-balanced classification problems. However, class im-

balance is a frequent challenge in training ANNs and needs to be considered in future research (cf.

Ghazikhani et al., 2013). Whether the proposed methodology could be applied to monitoring semi-

supervised or unsupervised learning models remains also open. Despite of challenges in designing a

universal monitoring scheme for AI-based approaches, extending the presented framework to other

AI algorithms seems to be a promising field. Additionally, there are different types of concept drift or
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nonstationarity (cf. Hu et al., 2020), meaning that further development of methods and their compar-

ison is of practical importance.

In summary, choosing a particular control chart depends on the specific problem, requiring a

compromise between the number of signals in Phase II (In-control) and correctly detected out-of-

control samples. As soon as one concludes what is important, namely computation time, robustness,

or low variance, the proposed monitoring approach can be customized to satisfactorily support appli-

cations involving ANN.
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Parekh, J., Mozharovskyi, P., and d'Alché-Buc, F. (2021). A framework to learn with interpretation.

In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan, J. W., editors, Advances in

Neural Information Processing Systems, volume 34, pages 24273–24285. Curran Associates, Inc.

Parzen, E. (1962). On estimation of a probability density function and mode. The annals of

mathematical statistics, 33(3):1065–1076.

Pearce, T., Brintrup, A., and Zhu, J. (2021). Understanding softmax confidence and uncertainty. arXiv

preprint arXiv:2106.04972.

Perdikis, T. and Psarakis, S. (2019). A survey on multivariate adaptive control charts: Recent devel-

opments and extensions. Quality and Reliability Engineering International, 35(5):1342–1362.

Piano, L., Garcea, F., Gatteschi, V., Lamberti, F., and Morra, L. (2022). Detecting Drift in Deep

Learning: A Methodology Primer. IT Professional, 24(5):53–60.

Pidhorskyi, S., Almohsen, R., and Doretto, G. (2018). Generative probabilistic novelty detection with

adversarial autoencoders. Advances in Neural Information Processing Systems, 31.

Pokotylo, O., Mozharovskyi, P., and Dyckerhoff, R. (2019). Depth and Depth-Based classification

with R Package ddalpha. Journal of Statistical Software, 91(5):1–46.

Psarakis, S. (2011). The use of neural networks in statistical process control charts. Quality and

Reliability Engineering International, 27(5):641–650.

Psarakis, S. (2015). Adaptive control charts: Recent developments and extensions. Quality and

Reliability Engineering International, 31(7):1265–1280.

Qiu, P. (2014). Introduction to statistical process control. CRC press.

Roberts, S. and Tarassenko, L. (1994). A probabilistic resource allocating network for novelty detec-

tion. Neural Computation, 6(2):270–284.

Schölkopf, B., Platt, J., Shawe-Taylor, J., Smola, A., and Williamson, R. (2001). Estimating the

support of a high-dimensional distribution. Neural Computation, 13(7):1443–1471.

31

http://arxiv.org/abs/2106.04972


Schubert, E., Zimek, A., and Kriegel, H.-P. (2014). Generalized outlier detection with flexible kernel

density estimates. In Proceedings of the 2014 SIAM International Conference on Data Mining,

pages 542–550. SIAM.

Sergin, N. D. and Yan, H. (2021). Toward a better monitoring statistic for profile monitoring via

variational autoencoders. Journal of Quality Technology, 53(5):1–46.

Shi, C., Zhang, X., Sun, J., and Wang, L. (2022). Remote sensing scene image classification based

on self-compensating convolution neural network. Remote Sensing, 14(3):545.

Shrestha, A. and Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE

Access, 7:53040–53065.

Smith, L. N. (2018). A disciplined approach to neural network hyper-parameters: Part 1–learning

rate, batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820.

Stoumbos, Z. G., Jones, L. A., Woodall, W. H., and Reynolds, M. R. (2001). On nonparametric

multivariate control charts based on data depth. In Frontiers in Statistical Quality Control 6, pages

207–227. Springer.

Struyf, A. J. and Rousseeuw, P. J. (1999). Halfspace depth and regression depth characterize the

empirical distribution. Journal of Multivariate Analysis, 69(1):135–153.

Sun, Y., Ming, Y., Zhu, X., and Li, Y. (2022). Out-of-distribution detection with deep nearest neigh-

bors. In International Conference on Machine Learning, pages 20827–20840. PMLR.

Tukey, J. W. (1975). Mathematics and the picturing of data. In Proceedings of the International

Congress of Mathematicians, Vancouver, 1975, volume 2, pages 523–531.

Vakayil, A. and Joseph, V. R. (2022). Data twinning. Statistical Analysis and Data Mining: The ASA

Data Science Journal.
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Appendix

A Addition to Experiment 1: Monte Carlo Study (Choice of Ref-

erence Samples)

To examine the influence of how the reference samples are formed, we conducted a Monte Carlo

study with the data from Experiment 1. Here, we create reference samples for each class by randomly

picking data points from correctly classified training data without considering confidence-related out-

comes of the ANN.

The obtained results based on 10 runs are summarized in Table 4. Due to the extensive com-

putational resources involved, we conduct the study for one type of Projection depth, namely for

the symmetric case. For each choice of the data depth notion, the standard deviation does not exceed

0.01, meaning that the small number of iterations is sufficient for our investigation. The control charts

based on HD achieve the highest CDR among all proposed control charts. Furthermore, the control

charts based on PD2 and PD3 are more reliable during Phase II (In-control), resulting in a SR of 0.18.

In contrast to the results where the reference samples are selected according to the softmax

scores, we observe low fluctuation in performance with the changing size |R| and lower CDR values.
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Evaluation Size |R| Phase Observed process Metric MD SD HDr PD1 PD2 PD3

2000 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05
2000 II In-control SR 0.21 / 0.23 0.19 0.18 0.18
2000 II Out-of-control CDR 0.62 / 0.64 0.58 0.59 0.59
3000 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05

Experiment 1 3000 II In-control SR 0.21 / 0.23 0.20 0.18 0.18
mi ∈ R16 3000 II Out-of-control CDR 0.62 / 0.64 0.59 0.59 0.59

4000 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05
4000 II In-control SR 0.21 / 0.23 0.20 0.18 0.18
4000 II Out-of-control CDR 0.62 / 0.65 0.60 0.60 0.59

Table 4: Monte Carlo study: Performance of r control charts (α = 0.05) in Experiment 1 with reference

samples R being predicted classes that were randomly constructed. The underlined numbers

indicate the suggested method based on the trade-off between SR and CDR. We do not

compute SD due to the computational complexity being O(nk+1).

Thus, we recommend choosing the reference sample based on the intended purpose of the monitor-

ing. When accepting higher signal rates in the in-control phase (potentially due to misclassification),

reference samples should be chosen based on the softmax scores. In turn, this leads to more sensitive

detection of out-of-control samples.

B Experiment 2: Multiclass Classification of Questions

For the second experiment, we use the Text REtrieval Conference (TREC) dataset which consists of

fact-based questions divided into six broad semantic categories2 (cf. Voorhees and Harman, 2000).

The model was trained with the four classes: “Numeric values”, “Description and abstract concepts”,

“Entities” and “Human beings”. Examples of such questions can be found in Table 5. The classifica-

tion task is to assign an incoming question to one of four categories.

The trained neural network contains three hidden layers: a word embedding layer, a Long Short-

Term Memory (LSTM) layer, and a fully connected layer which we use as the embedding generator

of the size 1×8. After that, the output layer returns softmax vector 1×4, where the maximum value

corresponds to the label of the predicted category. It is worth noting that here the word embedding

layer is not a part of our monitoring approach but a Natural Language Processing (NLP) technique

that enables the model to associate a numerical vector to every word so that the distance between any

two vectors is related to the semantic meaning of the encrypted words (cf. Yin and Shen, 2018). For

the interested reader, we recommend referring to publications that offer a comprehensive introduction

2https://cogcomp.seas.upenn.edu/Data/QA/QC/
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Class Example

Numeric values What is the size of Argentina?
Description and abstract concepts What is artificial intelligence?
Entities What is the tallest piece on a chessboard?
Human beings Who invented basketball?

Table 5: Question examples and respective four categories of the TREC dataset used for training the

ANN in Experiment 2.

to neural networks for NLP tasks, for example, Goldberg (2016) and Nammous and Saeed (2019).

In total, 700 data points of each category were used as the training data. The achieved accuracy

on the test dataset that contains 150 unseen samples for each class is 81.17% after 25 training epochs.

The 60 out-of-control samples were taken from two other semantic categories that were not used for

training, namely “Abbreviations” and “Locations”.

B.1 Monitoring Results

Considering the results of Experiment 2 in Table 6, we notice a decreasing SR when the size of the

reference sample is increasing. Nevertheless, the SR values remain substantially high for considered

control charts. Although the further increase of reference samples might improve monitoring during

the in-control state, it negatively affects the detection of anomalous data. As we can observe in the

case of HDr, the CDR is reduced by 25%, changing from |R|= 400 to |R|= 600.

Overall, we notice that either a paired control chart or another procedure to decide confidently

when the data points are in- our out-of-control is required to improve the performance in Experiment

2. However, to understand what could be the underlying reasons for unsatisfactory results, we inspect

the misclassification effect as well as visually compare the in- and out-of-control data.

B.2 Misclassification and Data Diagnostic

There are 113 samples from the test data that were misclassified, and the softmax output serves as a

model’s confidence about its prediction in our case. Looking at the density plots in Figure 6, we notice

an evident difference in distributions between correctly classified and misclassified samples in Phase

II (in-control). Remarkably, the score of out-of-control samples are rather high and resemble the
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Evaluation Size |R| Phase Observed process Metric MD SD HDr PDa
1 PDa

2 PDa
3 PD1 PD2 PD3

400 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05 0.05 0.05 0.05
400 II In-control SR 0.68 / 0.69 0.64 0.62 0.64 0.65 0.65 0.66
400 II Out-of-control CDR 0.58 / 0.67 0.48 0.50 0.50 0.52 0.53 0.55
500 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Experiment 2 500 II In-control SR 0.45 / 0.60 0.45 0.43 0.44 0.44 0.45 0.46
mi ∈ R8 500 II Out-of-control CDR 0.45 / 0.58 0.43 0.37 0.37 0.40 0.38 0.45

600 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05 0.05 0.05 0.05
600 II In-control SR 0.35 / 0.37 0.34 0.34 0.33 0.32 0.32 0.33
600 II Out-of-control CDR 0.30 / 0.42 0.32 0.30 0.30 0.30 0.30 0.30
50 I In-control FAR 0.04 0.00 0.04 0.04 0.04 0.04 0.04 0.04 0.04
50 II In-control SR 0.26 0.00 0.61 0.16 0.16 0.05 0.00 0.05 0.05
50 II Out-of-control CDR 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
60 I In-control FAR 0.05 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Experiment 3 60 II In-control SR 0.16 0.00 0.50 0.26 0.24 0.16 0.00 0.00 0.00
mi ∈ R3 60 II Out-of-control CDR 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

70 I In-control FAR 0.04 0.00 0.04 0.04 0.04 0.04 0.04 0.04 0.04
70 II In-control SR 0.05 0.00 0.37 0.00 0.05 0.03 0.11 0.11 0.11
70 II Out-of-control CDR 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 6: Performance of r control charts (α = 0.05) in the presented experiments with R being the

predicted class. Green rows highlight Phase I false alarm rates (FAR), and violet define Phase

II signal and correct detection rates (SR and CDR), respectively. The underlined numbers

indicate the suggested method based on the trade-off between SR and CDR. We compute SD

for R3 only, as computational complexity is O(nk+1).

scores of the in-control samples from Phase II. This behavior can be explained by the similarity of the

out-of-control data and the reference samples. More precisely, the network is trained to distinguish

the phrases based on features that are identical for both the in-control and out-of-control samples.

However, it is worth noting that this could be different on lower aggregation levels (i.e., hidden layers

closer to the input).

The Radial Coordinate visualization (Radviz) shown in Figure 7 reveals that this issue is present

in our case: The out-of-control data often overlap with the reference samples. Moreover, most of

the in-control (test data) regions are not covered by the reference samples. However, to answer the

question of whether the high signal rate is partially due to the misclassification samples, we compute

conditional sample rates on misclassification (SR|M) and correct prediction (SR|C).

As shown in Table 7, the additional information about misclassified samples could considerably

improve the SR results (cf. the outcome for |R|= 600 of SR|C). Moreover, we notice that the majority

of the misclassified samples would be flagged as anomalous, with the signal rates declining when the

reference sample size grows. Hence, the combination of our monitoring approach with an additional

misclassification detection technique could lead to a more reliable nonstationarity detection.

37



0.5 0.6 0.7 0.8 0.9 1.0

0
2

4
6

8
10

Correctly classified data in Phase II: In−control

N = 487   Bandwidth = 0.01491

D
en

si
ty

0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Misclassified data, Phase II: In−control

N = 113   Bandwidth = 0.04673

D
en

si
ty

0.5 0.6 0.7 0.8 0.9 1.0

0
2

4
6

8
10

12

Out−of−control data, Phase II: Out−of−control

N = 60   Bandwidth = 0.0165

D
en

si
ty

Fig. 6: Kernel density estimates of the score distributions in Phase II for in-control (test data) and

out-of-control samples.

Evaluation Size |R| Metric MD SD HDr PDa
1 PDa

2 PDa
3 PD1 PD2 PD3

400 SR|M 0.86 / 0.87 0.81 0.82 0.84 0.83 0.86 0.86
Experiment 2 400 SR|C 0.63 / 0.65 0.60 0.57 0.60 0.61 0.60 0.61

500 SR|M 0.80 / 0.84 0.79 0.76 0.76 0.76 0.78 0.79
mi ∈ R8 500 SR|C 0.37 / 0.55 0.37 0.35 0.36 0.37 0.37 0.38

600 SR|M 0.69 / 0.72 0.64 0.65 0.61 0.65 0.64 0.64
600 SR|C 0.28 / 0.29 0.26 0.26 0.26 0.25 0.25 0.26

Table 7: Summary of signal rates under the condition that the samples were misclassified (SR|M) or

correctly classified (SR|C) in Phase II. We do not compute SD due to the computational

complexity being O(nk+1).
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Fig. 7: Visualization of the Reference Samples (RS) {R1, . . . ,R4} with |R|= 400 and the data from

Phase II, in-control part (test data) from Experiment 2. V1, . . . ,V8 define anchors which

correspond to neurons that produced embeddings mi ∈ R8. Density contour plots outline

respective classes.
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C Experiment 3: Binary Classification of Sonar Signals

In the third experiment, we consider a binary classification problem of sonar data (Dua and Graff,

2019). This dataset summarizes sonar signals collected from metal cylinders and cylindrically shaped

rocks (Gorman and Sejnowski, 1988). There are 208 samples in total, comprising 111 metal cylinders

and 97 rock returns. Each sample consists of a series of 60 numbers ranging from 0.0 to 1.0, repre-

senting a normalized spectral envelope. The task of the classifier is to distinguish which samples are

from scanning a rock and which are from a metal cylinder.

Our model is an FNN with the architecture 60 → 30 → 15 → 3 → 1 that comprises four fully

connected layers reducing the complexity 1× 60 of the input data by first processing it through the

hidden layers that have 30 and 15 neurons. Afterward, the compressed data representation enters

the layer with 3 neurons whose output is also used as embeddings of size 1× 3 for the monitoring

procedure. Then, to obtain the class label, we transform the interim output from size 1× 3 to 1× 1.

As we have a binary classification problem, we use only one neuron in the output layer together with

the sigmoid activation function that is centered around 0.5, returning the probability of the processed

sample belonging to class 2. Thus, if the result of the output layer is 0.5 or higher, we conclude that

the processed sample is a part of class 2 (rock) and of class 1 (metal cylinder) otherwise. Due to

the small size of the dataset, only 38 samples (24 of class 1 and 14 of class 2) are allocated to the

testing stage which is later used in Phase II as the in-control data. Consequently, the remaining 85

metal cylinders and 85 rock examples are taken for training the FNN. The performance metrics such

as validation loss and accuracy are used to determine the number of epochs, i.e., training cycles in

which the model learns from the data and updates the parameters. Following that, the FNN model

was trained for 39 epochs and achieved 81.58% accuracy on the test data.

To create out-of-control samples, by flattening the input we estimate the parameters of a beta

distribution for each class (i.e., α̃1, β1 of class 1, and α̃2, β2 of class 2) and randomly sample from a

beta distribution with parameters α̃ν = α̃1/α̃2 and βν = β1/β2 to generate 30 out of control observa-

tions.

Studying the outcomes of Phase I in Experiment 3, Table 6 we notice that although we choose

α = 0.05, FAR sometimes equals 0.04. This happens due to rounding, thus, FAR = 0.04 for |R|= 50

and |R|= 70 coincides with the expected value. Consequently, the expected value of FAR is reached

for each notion of data depth except Simplicial depth. The reason for that is the large number of data
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Fig. 8: Reference samples (|R|= 70) and out-of-control embeddings from Experiment 3. Blue-colored

points belong to class 1, green-colored to class 2, and magenta-colored are out-of-control

samples. The size of the points is proportional to the value of Simplicial depth and the

gray-colored points highlight the data samples that received SD(mt) = 0.

points in the reference sample with SD(mt) = 0. That can be explained by Simplicial depth assigning

zero to every point in the space that lies outside the convex hull of the sample (Afshani et al., 2016;

Francisci et al., 2019). In Figure 8, we observe the dispersion of the data and how many samples

obtained SD(mt) = 0. All out-of-control samples received the predictions of class 1, meaning that

their depth is determined with respect to the blue point cloud. Overall, the control charts operate well

with |R| = 50 and the symmetric projection depth, especially with PD2 and PD3. Alternatively, one

can choose MD with |R|= 70 because of correctly reached SR and similarly high CDR.

D The Q Control Chart (Batch Size > 1)

Similarly to the r control chart, the Q control chart proposed by Liu (1995) is based on ranks of

multivariate observations which are obtained by computing data depth. The test statistic of the Q

control chart is the average of consecutive subsets of rc
· (mi), being

Qc
· (mi) =

1
n

n

∑
j=1

rc
· (mi j)
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with the batch size n (Liu, 1995). The interpretation of the ranks in the Q control chart is similar to

the interpretation in the case of the r control chart.

To compute the control limit, we use the equation

LCL =
(n!α)1/n

n
,

given that α ≤ 1
n! (Stoumbos et al., 2001). However, if α > 1

n! , the LCL has to be computed numeri-

cally by solving the polynomial equation provided by Liu (1995). In general, the process is considered

to be out of control if Qc
· (mi)≤ LCL.

To evaluate the performance of Q control charts, we chose those |R| which achieved the most

satisfactory (trade-off) performance with r control charts. Due to the small size of the dataset in

Experiment 3, we compute the Q control charts with the batch size n = 5 only for Experiments 1 and

2.

Considering the results in Table 8, we notice that (apart from SD) the SR values are excessively

high. The increase can be explained by a substantial change in control limits. Referring to the

previous description, for n = 3, we obtain LCL = 0.22, and for n = 5, LCL = 0.29. At the same time,

in all possible consolidations, the Q control chart achieves notable results during the out-of-control

period, considerably improving the CDR values in Experiment 2 for Projection depth. Thus, if a

supplementary procedure can be developed for detecting and filtering signals successfully when the

process remains in control, the Q control chart would outperform the r control chart.

E Reference Sample in Form of Merged Classes

In this analytical part, we monitor the data in each of the three experiments by creating the reference

samples without conditioning on the (predicted) class c. That is, the Phase II samples are compared

to a joint embedding distribution from Phase I, being independent of the class labels. The benefit of

this approach is that no predictions are needed, meaning that if the ANN model provides an incorrect

class label, the possible negative effect of misclassification is excluded. Additionally, the application

of merged reference samples implies that if a data point is flagged as out of control, it would remain

out of control compared to the entire reference data.

Reporting one case for each experiment in Table 9, we can observe satisfactory performance in

Experiment 3. In Experiments 1 and 2, the results are less convincing during the out-of-control part.

42



Evaluation Batch size Phase Observed process Metric MD SD HDr PDa
1 PDa

2 PDa
3 PD1 PD2 PD3

3 I In-control FAR 0.08 / 0.09 0.07 0.08 0.08 0.08 0.08 0.08
Experiment 1 3 II In-control SR 0.58 / 0.59 0.55 0.56 0.56 0.55 0.54 0.55
mi ∈ R16 3 II Out-of-control CDR 0.98 / 0.98 0.98 0.97 0.97 0.98 0.96 0.97
|R|= 3000 5 I In-control FAR 0.10 / 0.13 0.10 0.10 0.11 0.10 0.10 0.11

5 II In-control SR 0.75 / 0.76 0.72 0.73 0.73 0.71 0.71 0.71
5 II Out-of-control CDR 1.00 / 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 I In-control FAR 0.15 / 0.16 0.13 0.11 0.11 0.15 0.14 0.14

Experiment 2 3 II In-control SR 0.73 / 0.75 0.72 0.71 0.72 0.73 0.72 0.72
mi ∈ R8 3 II Out-of-control CDR 0.67 / 0.72 0.62 0.57 0.62 0.67 0.57 0.72
|R|= 400 5 I In-control FAR 0.19 / 0.19 0.17 0.15 0.16 0.20 0.18 0.18

5 II In-control SR 0.74 / 0.77 0.74 0.74 0.74 0.74 0.75 0.74
5 II Out-of-control CDR 0.80 / 0.90 0.80 0.70 0.80 0.80 0.80 0.80

Experiment 3 3 I In-control FAR 0.07 0.00 0.11 0.02 0.02 0.02 0.04 0.04 0.04
mi ∈ R3 3 II In-control SR 0.36 0.00 0.34 0.18 0.18 0.18 0.36 0.36 0.27
|R|= 70 3 II Out-of-control CDR 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 8: Performance of Q control charts (LCL = 0.22 for n = 3 and LCL = 0.29 for n = 5) in the

presented experiments with R being the predicted class. The underlined numbers indicate the

suggested method based on the trade-off between SR and CDR. We compute SD for R3 only,

as computational complexity is O(nk+1).

The reason is that the data depth values of reference sample points in a merged case are consider-

ably lower than in a case of individual classes, leading to a less sensitive detection of nonstationary

samples. On the contrary, the SR values are reduced compared to the case when the reference sample

relates to the predicted class only.

Although the calculation of the data depth with respect to a merged version of a reference sam-

ple eliminates the misclassification problem, in our empirical study the detection results of spurious

data by using predicted classes on their own are substantially better for high-dimensional problems.

For low-dimensional cases such as Experiment 3, we recommend first examining the performance of

the monitoring based on the merged reference sample of different sizes, and then, if it is not operating

acceptably, applying the method with the reference samples of predicted classes.

F Computation Time

For performing online surveillance, the computation time of the monitoring statistic is of particular

importance. As the most time-consuming part of our approach is the derivation of data depth values,

we compare the execution time of different algorithms to obtain the depth of one data point. To

provide a concise summary, we compare running times for the middle sizes of reference samples,

namely |R|= {3000,500,60}, and for the cases displayed in Table 9. In the case of Projection depth,
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Evaluation Size |R| Phase Observed process Metric MD SD HDr PDa
1 PDa

2 PDa
3 PD1 PD2 PD3

30000 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Experiment 1 30000 II In-control SR 0.15 / 0.20 0.10 0.09 0.08 0.09 0.09 0.09
mi ∈ R16 30000 II Out-of-control CDR 0.19 / 0.24 0.02 0.02 0.01 0.02 0.02 0.02

1600 I In-control FAR 0.05 / 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Experiment 2 1600 II In-control SR 0.66 / 0.08 0.02 0.00 0.00 0.02 0.08 0.00
mi ∈ R8 1600 II Out-of-control CDR 0.63 / 0.05 0.00 0.00 0.00 0.02 0.02 0.02

140 I In-control FAR 0.05 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Experiment 3 140 II In-control SR 0.08 0.00 0.00 0.03 0.05 0.05 0.08 0.08 0.08
mi ∈ R3 140 II Out-of-control CDR 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 9: Performance of r control charts (α = 0.05) in the presented experiments with R being merged

classes. The underlined numbers indicate the suggested method based on the trade-off

between SR and CDR. We compute SD for R3 only, as computational complexity is O(nk+1).

we present the results of the symmetric type with three applied algorithms.

In Figure 11, we can see that Simplicial depth requires considerably longer to be computed than

other notions of data depth. Regarding the algorithms to approximate Projection depth, the running

times remain similar in Experiments 1 and 2, Figures 9 and 10, respectively. Despite the increased

complexity of experiments, Mahalanobis depth is characterized by a stable and low running time. On

the contrary, the running time of HDr increases noticeably with the growing size of reference samples

as well as additional dimensions.

To summarize, if we exclude the performance of MD, the computation of data depth in R16 for

one point with |R| = 3000 would usually take more than 10 seconds. In statistics, such results seem

to be acceptable. However, taking into account the current applications of ANNs, for example, the

image classification applying a CNN, the time required to process one image is under 0.1 second (cf.

Shi et al., 2022). Thus, we should critically consider the running times for the computation of data

depth, striving for their improvements and guarantee the applicability of the proposed framework to

monitor state-of-the-art models based on AI by improving the software for data depth computation.
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(a) Single class reference samples of size |R|= 3000
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(b) Merged reference samples of size |R|= 30000

Fig. 9: Distribution of computation time for different data depths in Experiment 1. The order is

symmetric Projection Depth with Coordinate Descent, Nelder-Mead and Refined Random

algorithms, Robust Halfspace and Mahalanobis Depths.
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(b) Merged reference samples of size |R|= 1600

Fig. 10: Distribution of computation time for different data depths in Experiment 2 on a logarithmic

scale. The order is symmetric Projection Depth with Coordinate Descent, Nelder-Mead and

Refined Random algorithms, Robust Halfspace and Mahalanobis Depths.
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(a) Single class reference samples of size |R|= 60
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(b) Merged reference samples of size |R|= 140

Fig. 11: Distribution of computation time for different data depths in Experiment 3 on a logarithmic

scale. The order is symmetric Projection Depth with Coordinate Descent, Nelder-Mead and

Refined Random algorithms, Robust Halfspace, Simplicial and Mahalanobis Depths.
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