
Optimal Trading Under Non-negativity Constraints Using

Approximate Dynamic Programming

Shahin Abbaszadeh1, Tri-Dung Nguyen1,2∗, Yue Wu1

1Management School, University of Southampton
2School of Mathematical Sciences, University of Southampton

Abstract

In this paper we develop an extended dynamic programming (DP) approach to solve the

problem of minimising execution cost in block trading of securities. To make the problem more

practical, we add non-negativity constraints to the model and propose a novel approach to solve

the resulting DP problem to near-optimal results. We also include time lags in the problem state

to account for the autoregressive behaviour of most financial securities as a way of increasing

problem sensitivity to variability of prices and information. The computation times achieved

for the proposed algorithm are fast and allow for the possibility of live implementation. We

demonstrate the benefits offered by the new approach through numerical analysis and simulation

runs in comparison to the classic model without the non-negativity constraints.

Keywords: Dynamic programming, Finance, Optimisation, Stochastic processes.

1 Introduction

1.1 Background and Literature Review

The growth in equity trading in recent decades, which has been largely due to the ever-increasing

amounts of funds available to institutional investors such as pension and mutual funds, has

triggered an interest in more effective management of trading costs. These costs are often called

transaction costs or execution costs, which include commissions, bid/ask spreads, opportunity

costs of waiting, and price impact from trading. Loeb (1983) was among the first to recognise

the importance of execution costs and discusses different aspects of trading cost with relation to

capitalisation and spread of the stock and the funds available to the trader. Perold (1988), among

others, documents that hypothetical portfolios or passive benchmarks constantly outperform the

market and the portfolio manager by almost 20% per year. Chan and Lakonishok (1993) argue

that, since trading in equity markets is increasingly dominated by institutional investors, the

implementation shortfall that Loeb (1983) and Perold (1988) discuss may be due to the costliness

of executing individual trade transactions that result in a more costly overall execution of the

order. This overall transaction cost prompts the traders to break their order down into smaller

transaction units, which is then executed over a certain time period. A trading strategy that

minimises the expected execution cost of the trade is defined as best execution strategy.

Chan and Lakonishok (1993) study the institutional effects of trade on equity prices. They

argue that since trading in equity markets is increasingly dominated by institutional investors,

∗Correspondence: Southampton Business School, University of Southampton, SO17 1BJ Southampton, United
Kingdom; t.d.nguyen@soton.ac.uk

1

the importance of transaction costs is increasing. They offer three explanations for price changes

triggered by large trade volumes: (i) short-run liquidity costs that arise when there is not an

immediate buyer or seller, and the attempt to attract the buyer or seller translates to a price

concession, (ii) imperfect substitution where there is no particular stock as a substitute and the

buyer offers a premium for a large transaction, and (iii) information effects where the amount of

trade reveals information about the trade that is incorporated into the subsequent prices. This

and many other studies document portfolio managers’ inability to outperform various passive

benchmarks, despite considerable effort to analyse and select stocks.

Bertsimas and Lo (1998) were the first to consider the use of dynamic programming in ac-

quiring the best execution strategy. They argue that the act of trading affects price dynamics

that will result in changes to the future trading costs (since the demand for financial securities is

not perfectly elastic, the price impact of current trades, however small, can affect the course of

future prices). They also observe that trading takes time as large trades need to be executed over

numerous periods. They propose and solve the dynamic trading problem with the use of dynamic

programming framework. Bertsimas and Lo (1998) offer an analytic solution to the transaction

cost problem in the case of a single stock. They solve the problem using dynamic programming

methods and offer numerical analysis based on simulation runs on a scenario representing a real

problem. Bertsimas et al. (1999) apply a similar method to the single stock model presented by

Bertsimas and Lo (1998) to address the portfolio case. They also develop a new price impact

model and an approximate model to solve the problem with non-negativity constraints for a

specific case.

Chakravarty (2001) suggests that the medium-sized trading done by institutions (which he

argues is the optimal way if the trader intends to sell large blocks of shares and prevent big

shocks to the market, i.e. adverse price impact) has a disproportionate effect on the cumulative

price change compared to trading in big chunks. Alexander and Peterson (2007) study the effects

of trade clustering on various parts of the market. They argue that the sizes of the clusters

tend toward 100, 500 and 5000, which are mostly used by highly informed or stealth traders.

They study the effects of clustering and block trading on the price of the underlying stock

and conclude that the price impact from medium-sized clusters is much higher than the small-

or large-sized clusters. Domowitz and Yegerman (2005) review some of the early algorithmic

trading services and give a brief result as to their efficiency compared to manual and other types

of trading considering parameters such as trade size and type of security, among others. Butenko

et al. (2005) provide models and algorithms for the problem of liquidating a certain amount of

securities with or without the consideration of risk as a factor in decision making. Engle and

Ferstenberg (2006) propose an extension to the execution cost problem by incorporating the “risk

return” trade-off into the problem. They achieve this by combining the transaction cost model

with the portfolio planning problem.

Almgren and Chriss (2001) examine the relation between the risk (different levels of liquidity

and the trader’s idea of this) and optimal execution strategy. They obtain closed-form solutions

for the optimal trading strategy for any level of risk-aversion from the trader. Almgren (2003)

offers an update on the Almgren and Chriss (2001) modelling of the portfolio/stock trading

costs by introducing a more robust price impact model. He incorporates trading-enhanced risk,

an additional volatility measure that corresponds to the change in price following the demand

in a more rapid execution of large blocks (liquidity premium demanded by the market is not

deterministic). Kissell et al. (2004) build on the work of Bertsimas and Lo (1998) and Almgren

and Chriss (2001); they offer a more detailed breakdown of price change sources and analyse the

causal relationship between these. They offer best execution strategy for three different scenarios:

cost minimisation; balancing the risk vs cost; and price improvement. Subramanian and Sherali

(2010) quantify the liquidity risk which corresponds to the difference between market price and

realisation price from a trader’s position. They find an optimality condition for block trading.

2

He and Mamaysky (2005) offer an optimal execution strategy which is similar to that of

Bertsimas and Lo (1998), but present a different price impact model based on Merton (1971).

Huberman and Stanzl (2005) consider a linear price impact and argue that in a market without

arbitrage opportunity, their proposed linear price impact model is optimal. They extend the

work of Bertsimas and Lo (1998) by considering a risk-averse trader. Hasbrouck and Seppi (2001)

study various price dynamics along with other issues related to liquidity such as focusing on the

market as a whole and the effect of inter-company trades on the liquidity of a security. Kissell

and Malamut (2006) introduce a framework that can accommodate different aspects of trading

behaviour. A system that can act aggressively/patiently at times of favourable/unfavourable price

changes would benefit investors greatly. The criteria also include the changes in the dynamics of

price fluctuations as well as the different initial prices the algorithms can take.

1.2 Contributions and Paper Structure

Although Bertsimas and Lo (1998) obtain the closed-form solution and the resulting trade strat-

egy is the optimal execution strategy, it does not take into account the non-negativity constraints

which would lead to a short-selling situation when in practice it is not possible to do so. If the

price change is severe in an otherwise normal trade scenario, during a buy operation it might be

optimal to sell and vice versa, while in practice the trader will not be allowed to operate based on

that insight. This shortcoming might not affect a large portion of daily trades, but since it is a

significant probability when trading large volumes of securities in a volatile market, the expected

cost of ignoring the non-negativity constraints is still considerable. We develop an approximate

dynamic programming approach to circumvent this costly possible scenario.

Our first contribution to the literature is the inclusion of non-negativity constraints in the

formulation. To the best of our knowledge, the inclusion of non-negativity constraints has not

been treated in the relevant literature. This constraint, however, increases the complexity of this

problem substantially, as dynamic programming does not lend itself readily to constraints. We

present here an approximate dynamic programming approach that enables us to solve a large

combination of problems to near-optimality through a generalised platform.

Secondly, we contribute to the literature through development of a bespoke Approximate

Dynamic Programming method that combines both above contributions into a more complex

problem. Our method offers a generalised platform through which a large combination of problems

can be solved fast and near-optimally.

The rest of this paper is structured as follows: we first present the modelling approach and

results outlined by Bertsimas and Lo followed by our proposed extensions to their model in

section 2. We then propose an approximate dynamic programming method in section 3 that

handles the added sign constraints to the problem. We present the results and insights gained

through numerical analysis in section 4 followed by concluding remarks and a look at possible

future directions for this research.

2 Models for Optimal Trade Execution

2.1 Basic Model

Consider a situation where a trader wants to buy a number S of shares in T consecutive periods

of equal length. It is assumed that the price dynamics are known and the price p at period t

follows an autoregressive process where it is related to the prices in the previous periods. It is

also assumed that the effect of trade volume on the price is known to the trader. An additional

information source is assumed, reflecting any complementary data the decision maker might use

to infer the price behaviour. This additional source of information, denoted henceforth by xt,

might be an index of the market where the share is traded or expert knowledge available to the

3

trader.

Consider st to denote the current number of stocks available at each stage and ut to be the

decision variable which is the trade volume in the current period. Based on this information the

decision maker wants to optimise the number of shares traded in each period in order to minimise

the overall cost of execution of the S shares within the T sequential periods.

The general form of the basic problem (Bertsimas and Lo, 1998) is

min E

[
T∑

t=1

pt+1ut

]
,

s.t.
T∑

t=1

ut = S, (1)

s1 = S, sT+1 = 0, (2)

st+1 = st − ut, t = 1, 2, ..., T − 1 (3)

xt+1 = ρxt + ηt, t = 1, 2, ..., T (4)

pt+1 = pt + βxt + aut + ϵt, t = 1, 2, ..., T (5)

where ηt and ϵt are independent white noise processes with mean 0 and variance σ2
ϵ and σ2

η

respectively. a is assumed to be positive and ρ to be bounded between 1 and -1, and β is the

effect of information on price dynamics and is a given at the start of the optimisation period.

Constraints (1) and (2) explain the dynamics of the stock at hand and ensure that all the shares

are executed during the T periods. Constraint (3) is to ensure that the number of stocks (to

execute) in the coming period (st+1) is the current number of stocks available (st) minus the trade

volume in the current period; and constraints (4) and (5) express the dynamics of information

and price evolution accordingly. Finally, the objective function is the expected cost over the

trading period.

Throughout this study the execution is assumed to be a buy operation. However, the results

would be applicable to a sell operation without any loss in generality. The objective of such a

problem would be to maximise revenue. Another point to be noted is that while the occurrence

of negative prices in the model is possible, we implicitly assume that the parameters of the model

are of such values as to make this unlikely. Thus we treat the model without such limitation.

2.2 Extending the Basic Model

An important aspect of the basic model is the absence of non-negativity constraints. Based on

the variance of the information variable and also the price, the optimal solution might suggest a

negative trade (i.e. sale in a buy operation). In a real situation where the short-selling option is

not available, a naive strategy is to change the negative trades to zero. However, such a solution

would significantly reduce the intended benefits of the model - e.g. minimisation of transaction

costs.

In the coming section we address these limitations by offering a flexible framework that

provides near-optimal results while handling the added complexity of non-negativity constraints,

and offer a generalised platform from which a large combination of problems can be solved fast

and near-optimally.

We first extend the model in vector form and present the closed-form solution in line with

the results of Bertsimas and Lo (1998). We augment the state space as pt+1

st+1

xt+1

︸ ︷︷ ︸
yt+1

=

 1 0 β

0 1 0

0 0 ρ

︸ ︷︷ ︸

A

.

 pt

st

xt

︸ ︷︷ ︸
yt

+

 a

−1

0

︸ ︷︷ ︸

b

ut +

 ϵt

0

ηt

︸ ︷︷ ︸
ωt

.

4

The above formulation can be written as

yt+1 = Ayt + but + ωt.

The cost at period t is

g(yt, ut, ωt) = pt+1ut

= yᵀ
t+1e1ut

= (Ayt + but + ωt)
ᵀe1ut

= yᵀ
t (A

ᵀe1)ut + bᵀe1u
2
t + ωᵀ

t e1ut,

where e1 represents the first column of the identity matrix.

At the final stage (t = T), the value function is equal to the expected value of cost function

with respect to ωT . We substitute the decision variable ut with sT , which is the only available

decision at t = T , and obtain

uT = sT = eᵀ2 ∗ yT .

Thus,

VT (yT) = E[g(yT , uT , ωT)]

= E[yᵀ
T (A

ᵀe1)uT + bᵀe1u
2
T + ωᵀ

T e1uT]

= yᵀ
T (A

ᵀe1)e
ᵀ
2yT + bᵀe1y

ᵀ
T (e2e

ᵀ
2)yT

= yᵀ
T ((Aᵀe1)e

ᵀ
2 + bᵀe1(e2e

ᵀ
2)) yT

= yᵀ
TKT yT ,

where KT = (Aᵀe1)e
ᵀ
2 + bᵀe1(e2e

ᵀ
2).

For the second last period, i.e. stage (T − 1), we have

VT−1(yT−1) = min
uT−1

E[g(yT−1, uT−1, ωT−1)VT (yT)]

= min
uT−1

E[yᵀ
T−1(A

ᵀe1)uT−1 + bᵀe1u
2
T−1 + ωᵀ

T−1e1uT + yᵀ
TKT yT]

= min
uT−1

E[yᵀ
T−1(A

ᵀe1)uT−1 + bᵀe1u
2
T−1 + ωᵀ

T−1e1uT

+(AyT−1 + buT−1 + ωT−1)
ᵀKT (AyT−1 + buT−1 + ωT−1)]

= min
uT−1

{
(bᵀe1 + bᵀKT b)u

2
T−1 + yᵀ

T−1 (A
ᵀe1 +Aᵀ(KT +Kᵀ

T)b)uT−1

+yᵀ
T−1A

ᵀKTAyT−1 + E[ωᵀ
T−1KTωT−1]

}
.

Since VT−1(yT−1) is a quadratic equation on uT−1 and we assume a > 0, we will have

(bᵀe1 + bᵀKT b) > 0.

Lemma 1. αt = (bᵀe1 + bᵀKt+1b) > 0 is true for all t = 1, ..., T − 1.

Proof. We demonstrate this result in appendix A.1.

We acquire the optimal decision for period (T − 1) as

u∗
T−1 = −

yᵀ
T−1LT−1

2αT−1
,

where LT−1 = Aᵀe1 +Aᵀ(KT +Kᵀ
T)b, and αT−1 = bᵀe1 + bᵀKT b.

5

We can then rewrite VT−1(yT−1) as

VT−1(yT−1) = yᵀ
T−1KT−1yT−1 + CT−1,

where

KT−1 =

(
AᵀKTA−

LT−1L
ᵀ
T−1

4αT−1

)
,

CT−1 = E[ωᵀ
T−1KTωT−1], CT = 0.

To find the closed-form solution for the case of extended state, we assume that

Vt+1(yt+1) = yᵀ
t+1Kt+1yt+1 + Ct+1.

Then, we have

Vt(yt) = min
ut

E[g(yt, ut, ωt) + Vt+1(yt+1)]

= min
ut

E[yᵀ
t (A

ᵀe1)ut + bᵀe1u
2
t + yᵀ

t+1Kt+1yt+1 + Ct+1]

= min
ut

E[yᵀ
t (A

ᵀe1)ut + bᵀe1u
2
t + (Ayt + but + ωt)

ᵀKt+1(Ayt + but + ωt) + Ct+1]

= min
ut

{
(bᵀe1 + bᵀKt+1b)u

2
t + yᵀ

t (A
ᵀe1 +Aᵀ(KT +Kᵀ

T)b)ut

+yᵀ
tA

ᵀKt+1Ayt + E[ωᵀ
tKt+1ωt] + Ct+1

}
.

The above quadratic equation holds for all t, resulting in the optimal solution

u∗
t = −yᵀ

tLt

2αt
,

where

Lt = Aᵀe1 +Aᵀ(Kt+1 +Kᵀ
t+1)b,

αt = bᵀe1 + bᵀKt+1b,

Kt = AᵀKt+1A− LtL
ᵀ
t

4αt
,

KT = (Aᵀe1)e
ᵀ
2 + bᵀe1(e2e

ᵀ
2),

Ct = E[ωᵀ
tKt+1ωt] + Ct+1,

CT = 0.

Given the values of β, a and ρ, we can calculateKt, Lt and Ct offline for all stages t = 1, 2, ..., T

by starting from last period and working backwards, after which the optimal solution is obtained

in the forward stage. Algorithm 1 depicts the general steps of this procedure.

The closed-form solution arrived at here is compatible with the results of Bertsimas and Lo

(1998).

2.3 Including Non-negativity Constraints

The basic model in Bertsimas and Lo (1998) does not include non-negativity constraints to

avoid negative trade volumes when the variations in the prices or the market warrant negative

trading. An optimal policy that contains a negative trade in a block-trade buying operation

would be void in real trading situations since it is counter-intuitive and is not allowed in many

systems (Bertsimas and Lo, 1998). The inclusion of non-negativity constraints would improve the

performance of the trade regime substantially. However, adding non-negativity constraints to a

dynamic programming problem increases the complexity of the problem considerably. Bertsimas

and Lo (1998) provide a closed-form solution for the problem with non-negativity constraints

6

Algorithm 1: Closed-form solution in vector form

input : β, a and ρ
output: u∗

KT = (Aᵀe1)e
ᵀ
2 + bᵀe1(e2e

ᵀ
2)

for t = (T − 1) → 1 do
Lt = Aᵀe1 +Aᵀ(Kt+1 +Kᵀ

t+1)b
αt = bᵀe1 + bᵀKt+1b

Kt = AᵀKt+1A− LtL
ᵀ
t

4αt

y1 = y0
for t = 1 → T do

u∗
t = −yᵀt Lt/2αt

when price dynamics follow a special pattern:

pt = θpt−1 + axtut + ϵt,

logxt = logxt−1 + ηt.

However, as Huberman and Stanzl (2005) conclude, a linear price impact model is the most

representative formulation for price impact in most real-world situations. The above special form

of price evolution formula concerns only a limited case and is not an appropriate substitute for

price impact in practical situations. In this paper we assume a linear price evolution model such

as (5).

If we assume that non-negativity must hold, the optimal trade size is decided by

u∗
t = max(0,min(st,−

yᵀ
tLt

2αt
))

= max(0ᵀyt,min(eᵀ2yt,−
yᵀ
tLt

2αt
)),

resulting in three different possible outcomes for each period. In the context of dynamic program-

ming, after each stage in the backward progress through algorithm, the state space of the problem

grows threefold (up to 3T in the final stage), which results in considerably larger problems. We

discuss the solution approach for handling this in the next section.

3 Approximate Dynamic Programming

Approximate dynamic programming is a range of approximation tools that are devised to ad-

dress the inherent problems of the dynamic programming framework in dealing with constraints.

Classic approaches to dynamic programming are unable to deal with exponential growth of the

computational requirements as the number of states increases. Unless the problems are defined

to very restrictive assumptions, a simulation of the system is more easily constructed than a

model. In this paper we employ a value function approximation method where we replace the

piecewise value function which is resulted from the addition of non-negativity constraints with a

single value function that best captures the characteristics of the three functions.

3.1 An Approximated Value Function

In order to overcome the added complexity of the non-negativity constraints, we approximate

the cost-to-go at period (t+ 1) with a quadratic function,

Vt+1(yt+1) = yᵀ
t+1Qt+1yt+1 +Bᵀ

t+1yt+1 + Ct+1,

7

where Qt and Bt are quadratic and linear coefficients of the value function during period t

respectively and Ct is the constant term.

Following the Bellman procedure, we have

Vt(yt) = min
0≤ut≤St

E [g(yt, ut) + Vt+1(yt+1)]

= min
0≤ut≤St

E[yᵀ
t (A

ᵀe1)ut + bᵀe1u
2
t + wᵀ

t e1ut

+(Ayt + but + wt)
ᵀQt+1(Ayt + but + wt) +Bᵀ

t+1(Ayt + but + wt) + Ct+1]

= min
0≤ut≤St

[bᵀe1 + bᵀQt+1b]u
2
t + [yᵀ

t (A
ᵀe1 +Aᵀ(Qt+1 +Qᵀ

t+1)b) +Bᵀ
t+1b]ut

+[(Ayt)
ᵀQt+1(Ayt) +Bᵀ

t+1Ayt + E(ωᵀ
tQt+1ωt) + Ct+1].

If there were no constraints on ut, then the optimal ut would be

u∗
t = −yᵀ

tLt + βt

2αt
,

where Lt = (Aᵀe1) +Aᵀ(Qt+1 +Qᵀ
t+1)b, βt = Bᵀ

t+1b, and αt = bᵀe1 + bᵀQt+1b.

Considering the three possible outcomes based on where u∗
t is situated in the state space, we

will have three possible optimal ut, each of which will yield different value functions

ut =

0 if − y
ᵀ
t Lt+βt

2αt
< 0,

St if − y
ᵀ
t Lt+βt

2αt
> St,

− y
ᵀ
t Lt+βt

2αt
if 0 ≤ − y

ᵀ
t Lt+βt

2αt
≤ St.

Let us define

U1 = {y| − yᵀ
tLt + βt

2αt
< 0},

U2 = {y| − yᵀ
tLt + βt

2αt
> st},

U3 = {y|0 ≤ −yᵀ
tLt + βt

2αt
≤ st},

to be mutually exclusive domains for y. If we replace the ut,j (j = 1, 2, 3) in Vt(yt) with the

above results, we will have the following optimal cost-to-go at each stage t (t = 1, 2, ..., T).

Case j=1 : y ∈ U1

Vt(yt) = yᵀ
t (A

ᵀQt+1A)yt +Bᵀ
t+1Ayt + E(ωᵀ

tQt+1ωt) + Ct+1.

Case j=2 : y ∈ U2

Vt(yt) = yᵀ
t (A

ᵀQt+1A+ Lte
ᵀ
2 + e2αte

ᵀ
2)yt + [Bᵀ

t+1A+ βte
ᵀ
2]yt + E(ωᵀ

tQt+1ωt) + Ct+1.

Case j=3 : y ∈ U3

Vt(yt) = yᵀ
t [A

ᵀQt+1A− 3LtL
ᵀ
t

4αt
]yt + [Bᵀ

t+1A− 3Lᵀ
tβt

2αt
]yt + [E(ωᵀ

tQt+1ωt) + Ct+1 −
3β2

t

4αt
].

In all three cases, this results in the quadratic form

Vt(yt) = yᵀ
tΦt,jyt +Πt,jyt +Ωt,j ,

with Φt,j , Πt,j and Ωt,j being defined appropriately according to the three aforementioned cases.

We now approximate the value function based on the three distinct functions resulting from

each possible ut by finding a quadratic function over the whole state space where the square

distance from each of the above functions to it is minimum. For simplicity and clarity, we assume

8

a linear price impact with AR(1). These results can be extended to AR(m) without the loss in

generality. If we assume linear price formulation and no time lag in the price evolution, A and b

are of the form

A =

 1 0 β

0 1 0

0 0 ρ

 , b =

 a

−1

0

 .

Lemma 2. Φt,j and consequently Qt have the form

Φt,j =

 0 1 0

0 d1 d2

0 d3 d4

 , Qt =

 0 1 0

0 x1 x2

0 x3 x4

 .

Proof. see appendix A.2.

Under linear price impact, the approximate value function is of the form

V̂t(yt) = yᵀ
tQtyt +Bᵀ

t yt + Ct,

where

Qt =

 0 1 0

0 qt,1 qt,2

0 qt,3 qt,4

 , and Bt =

 0

rt,1

rt,2

 .

We need to find (Qt, Bt, Ct) that minimises the least squares equations, thus

(Qt, Bt, Ct) = argmin
({qt},{rt},Ct)

∫
yt

(Vt(yt)− V̂t(yt))
2dyt,

where ∫
yt

(Vt(yt)− V̂t(yt))
2dyt =∫

U1

[yᵀ
t (Qt − Φt,1)yt + (Bᵀ

t −Πt,1)yt + Ct − Ωt,1]
2dyt

+

∫
U2

[yᵀ
t (Qt − Φt,2)yt + (Bᵀ

t −Πt,2)yt + Ct − Ωt,2]
2dyt

+

∫
U3

[yᵀ
t (Qt − Φt,3)yt + (Bᵀ

t −Πt,3)yt + Ct − Ωt,3]
2dyt.

Figure 1 depicts a simplified graph that shows the approximated value function based on the

three value functions that are optimal in each region.

The quadratic coefficient (Qt − Φt,j) is

Qt − Φt,j =

 0 0 0

0 qt,1 − kt,j,1 qt,2 − kt,j,2

0 qt,3 − kt,j,3 qt,4 − kt,j,4

 ,

and the linear coefficient is

Bᵀ
t −Πt,j =

 0

rt,1 − ft,j,1

rt,2 − ft,j,2

 ,

where kt,j,i is the ith element of Φt,j corresponding to that of Q and ft,j,i is the ith element of

Πt,j corresponding to elements of Bt. The above results also render p, the first element of state

space, irrelevant for the rest of the calculations. Finally we have Ct − nt,j as the constant term.

9

−4 −3 −2 −1 0 1 2 3 4 5

50

100

150

200

250

300

350

400

y
t

V
t(y

t)

{Φ
t,1

,Π
t,1

,Σ
t,1

}

{Φ
t,2

,Π
t,2

,Σ
t,2

}

{Φ
t,3

,Π
t,3

,Σ
t,3

}

{Q
t
,B

t
,C

t
}

Figure 1: The three regions (representing U in cases j = 1, 2, 3) and approximation of the three value
functions that are optimal in each region.

At each stage t, we need to solve the minimisation problem

({q}, {r}, C) = argminq,r,n

∫
y

(V (y)− V̂ (y))2dy,

where ∫
y

(V (y)− V̂ (y))2dy (6)

=

∫
U1

([s x]

[
q1 − k1,1 q2 − k1,2

q3 − k1,3 q4 − k1,4

][
s

x

]
+

[
r1 − f1,1 r2 − f1,2

] [s

x

]
+C − n1)

2dxds

+

∫
U2

([s x]

[
q1 − k2,1 q2 − k2,2

q3 − k2,3 q4 − k2,4

][
s

x

]
+

[
r1 − f2,1 r2 − f2,2

] [s

x

]
+C − n2)

2dxds

+

∫
U3

([s x]

[
q1 − k3,1 q2 − k3,2

q3 − k3,3 q4 − k3,4

][
s

x

]
+

[
r1 − f3,1 r2 − f3,2

] [s

x

]
+C − n3)

2dxds.

The three regions are obtained as follows:

• Case j = 1 (U1):

−yᵀ
tLt − βt

2αt
< 0 ⇔ yᵀ

tLt > −βt ⇔
[

s x
] [l2

l3

]
> −βt ⇔

l2s+ l3x > −βt ⇔ x >
−βt − l2s

l3

10

• Case j = 2 (U2):

−(
yᵀ
tLt + βt

2αt
) > st ⇔ yᵀ

tLt < −βt − 2αtst ⇔
[

s x
] [l2

l3

]
< −βt − 2αtst ⇔

l2s+ l3x < −βt − 2αtst ⇔ x <
−βt − 2αtst − l2s

l3

• Case j = 3 (U3):

0 ≤ −(
yᵀ
tLt + βt

2αt
) ≤ St ⇔ −2αtSt − βt ≤ yᵀ

tLt ≤ −βt ⇔

−2αtSt − βt ≤
[

s x
] [l2

l3

]
≤ −βt − βt − 2αtst < l2s+ l3x < −βt ⇔

−βt − 2αtst − l2s

l3
< x <

−βt − l2s

l3
,

where l2 and l3 are elements of Lt:
[

0 l2 l3

]ᵀ
.

Considering that both x and s have an additional range that they must comply with x ∈
[−P0, P0] and s ∈ [0, st], we have the following ranges to apply in the formulation. Let elements

of x and s be parameters a1, a2, b1 and b2 such that x ∈ [a1, a2] and s ∈ [b1, b2].

U1 = {(x, s)|x ∈ [a1 =
−βt − l2s

l3
, a2 = P0], s ∈ [b1 = 0, b2 = st]},

U2 = {(x, s)|x ∈ [a1 = −P0, a2 =
−βt − 2αtst − l2s

l3
], s ∈ [b1 = 0, b2 = st]},

U3 = {(x, s)|x ∈ [a1 =
−βt − 2αtst − l2s

l3
, a2 =

−βt − l2s

l3
], s ∈ [b1 = 0, b2 = st]}

Applying these ranges on (6) and expanding, we will have the following which can be used to

obtain the optimal values for Q, R and C.∫
y

(V (y)− V̂ (y))2dy =

∫ st

0

∫ P0

−βt−l2s
l3

F dxds

+

∫ st

0

∫ −βt−2αtst−l2s
l3

−P0

F dxds+

∫ st

0

∫ −βt−l2s
l3

−βt−2αtst−l2s
l3

F dxds

where

F =((q1 − kj,1)s
2 + (q4 − kj,4)x

2 + ((q2 − kj,2) + (q3 − kj,3))sx

+ (r1 − fj,1)s+ (r2 − fj,2)x+ C − nj)
2.

The above equations are quadratic functions on ({q}, {r}, n) and can be rewritten as RᵀMR+

OᵀR + N , where R is the vector [q1, q2, q3, q4, r1, r2, C]. M is a symmetric matrix derived from

the coefficients of the above formulation, and O is the linear coefficient.

The resulting equation is of quadratic form and yields an optimal solution. An algorithmic

representation of our approximate dynamic programming method can be viewed in Algorithm 2.

4 Numerical Analysis

Our numerical analysis consists of two studies. In section 4.1 we simulate the example used in

Bertsimas and Lo (1998) to illustrate the comparative advantages gained through our approximate

dynamic programming method with non-negativity constraints. We compare our method (ADP)

11

Algorithm 2: Approximate Dynamic Programming

input: αt, βt, Lt, {Q0
t , B

0
t , C

0
t } for all t

output: {Q∗
t , B

∗
t , C

∗
t }

for i = 1 → M do
for t = (T − 1) → 1 do

for j = 1 → 3 do

{Φi
t,j ,Π

i
t,j ,Ω

i
t,j} = F1(Qi−1

t+1, B
i−1
t+1 , C

i−1
t+1 , j)

for t = (T − 1) → 1 do
{Qi

t, B
i
t, C

i
t} = F2(Φi

t,j ,Π
i
t,j ,Ω

i
t,j)

if V F{Qi
t, B

i
t, C

i
t} < V F{Qi−1

t , Bi−1
t , Ci−1

t } then
for t = 1 → T do

{Q∗
t , B

∗
t , C

∗
t } = {Qi

t, B
i
t, C

i
t}

{Φ,Π,Ω} = Function F1 (Q,B,C, j)
if j = 1 then

Φ = AᵀQA
Π = BᵀA
Ω = E(ωᵀ

t Qωt) + C

if j = 2 then
Φ = AᵀQA+ Lte

ᵀ
2 + e2αte

ᵀ
2

Π = BᵀA+ βte
ᵀ
2

Ω = E(ωᵀ
t Qωt) + C

if j = 3 then

Φ = AᵀQA− 3LtL
ᵀ
t

4αt

Π = BᵀA− 3Lᵀ
t βt

2αt

Ω = E(ωᵀ
t Qωt) + C − 3β2

t

4αt

{Q,B,C} = Function F2 (Φt,Πt,Ωt)

argmin
({Q},{B},C)

∫
U1

[yᵀt (Qt − Φt,1)yt + (Bᵀ
t −Πt,1)yt + Ct − Ωt,1]

2dyt

+

∫
U2

[yᵀt (Qt − Φt,2)yt + (Bᵀ
t −Πt,2)yt + Ct − Ωt,2]

2dyt

+

∫
U3

[yᵀt (Qt − Φt,3)yt + (Bᵀ
t −Πt,3)yt + Ct − Ωt,3]

2dyt

12

Table 1: Execution time (milliseconds) of B&L and ADP algorithms for variable number of periods
(T) and market volatility rates (σ2

ϵ values)

σ2
ϵ=0.01 σ2

ϵ=0.1 σ2
ϵ=1

Period B&L ADP B&L ADP B&L ADP
2 0.26 12.78 0.31 13.05 0.38 13.31
4 0.45 14.57 0.51 15.77 0.58 16.89
6 0.67 19.43 0.78 21.93 0.87 24.43
8 1.00 28.85 1.11 33.32 1.22 38.19
10 1.37 45.95 1.53 52.84 1.68 59.84
12 1.92 70.15 2.13 80.01 2.35 89.70
14 2.60 103.12 2.82 116.53 3.04 129.81
16 3.32 147.59 3.56 164.93 3.80 182.29
18 4.19 204.63 4.49 226.87 4.75 249.02
20 5.05 276.41 5.35 303.77 5.63 330.96

with their closed-form solution (B&L) and a naive strategy where the trade is divided into equal

sizes to be executed over the trading horizon. In this case we test the efficiency of each optimal

strategy with regard to different realisations of information variable x. Since the variable x is

the main driving factor in the volatility of prices in the scenario presented by Bertsimas and Lo

(1998), we test the performance of the algorithms against different rates of variance in x.

In section 4.2 we simulate trading of a security from the London Stock Exchange on a specific

date based on intra-day trade information of that day. This is to illustrate the effectiveness of

our method in a practical setting and its advantage over the classic and naive methods that do

not include the non-negativity constraints.

We code the algorithms in MATLAB and run all the experiments on a 64-bit Windows 7

workstation having 4GB of RAM and quad-core Intel CPU at 2.6GHz. All the experiments were

very fast and as such we forego a detailed examination of the time performance. As a brief

guideline, table 1 shows the time taken for a single run of each of the algorithms for various

trading periods and market volatility rates.

4.1 A Simulated Example

The example involves execution (buy) of 100000 shares over T = 20 periods. The current price

is $50. The parameters are set as follows: a = 5 × 10−5, β = 5, ρ = 0.5 and σ2
ϵ = (0.125)2.

For a full description of the values and the reasoning behind the choice of the values, interested

readers are referred to Bertsimas and Lo (1998). In summary, a is chosen to yield a price impact

of $500000 if the trader executes the 100000 shares in one transaction. The standard deviation

of ϵt is calibrated to be one tick (12.5 cents) per period.

We assign different values to σ2
η (variance of the information evolution, a white noise process,

representing the overall market volatility) in order to test the efficiency of the algorithms with

regard to the market behaviour where it might drive the prices significantly up or down and render

the non-negativity constraints relevant. For example, if the optimal strategy is to sell during a

buy operation, where we do not apply the non-negativity constraints, the original method is

likely to offer negative trades as part of its optimal solution. However, if the assumption is that

short-selling is not possible, then the original algorithm would not be able to accommodate the

above cases. The naive strategy on the other hand is unable to utilise the swings in the price to

minimise the incurred overall cost. The approximate dynamic programming method, as expected,

provides superior results compared to the original method of Bertsimas and Lo (1998) (as well

as the naive strategy) under a volatile market condition, when the assumption is that a buy

operation cannot include sales.

Table 2 depicts the values of the expected execution cost for a single random run. Table 2

13

Table 2: Expected execution cost in example execution of 100000 shares

σ2
η ADP B&L % Diff.

0.001 5211140 5218652 0.14
0.002 5183163 5196262 0.25
0.005 5127863 5151103 0.45
0.01 5072956 5105838 0.65
0.02 5003845 5048489 0.89
0.05 4885584 4947445 1.27
0.1 4785283 4863176 1.63
0.2 4727752 4820594 1.96
0.5 4951978 5047339 1.93
1 5030476 5141406 2.21
2 4848128 5004119 3.22
5 4494581 4739153 5.44
10 4090485 4435450 8.43
20 3511292 3999008 13.89
50 2362097 3133048 32.64
100 1066983 2157133 102.17

shows that the expected value function improves substantially for the ADP method compared

to B&L when the variance of the market volatility increases. The naive strategy is equivalent in

almost all instances of σ2
η to that of B&L and hence not shown here. As we are dealing with the

volatility of the market, the more important aspect of the improvement of the ADP method over

the other methods is apparent in the actual execution cost over the whole trade period as can

be seen in Figure 2, which depicts the realised execution cost for various σ2
η rates. To achieve

this, we run each algorithm with random realisations of x and calculate the execution cost at

each stage. This graph shows the average of total execution cost for 50 simulation runs for each

method.

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

1

2

3

4

5

6

7
x 10

6

ση
2

A
ct

ua
l e

xe
cu

tio
n

co
st

BAL
Naive
ADP

Figure 2: Actual execution cost for the three methods with variable σ2
η rates

14

The performances of these three methods are very similar when the σ2
η rates are very small

and when the probability of negative trade being optimal is relatively low. Since the B&L method

provides optimality with regard to the uncertainty in the market and includes short-selling in

its policies, when the short-selling is prohibited, it loses that advantage. This is reflected in the

average execution cost values in σ2
η rates of 1 and above. The ADP, on the other hand, takes

into account the non-negativity constraints and provides optimal policies in which the majority

of the trade is performed when the price has swung down and very little trade is engaged in

when the prices are high. In other words, ADP is better equipped to take advantage of price

variations without the need for short-selling. Note the sharp drop in ADP execution costs when

the volatility increases beyond 1, where it is able to execute with higher probability a larger

amount of the security in lower prices leading to lower overall execution cost.

4.2 An Empirical Example

The example shown in section 4.1 proves the suitability of the ADP approach in situations where

short-selling is not allowed. However, to gauge the improvement that this method will yield in a

real-world situation, we test the algorithm on real securities traded in the market and compare

it to that of B&L as a benchmark on what would be the optimal policy when we ignore the

non-negativity constraints.

We consider three securities from the London Stock Exchange that represent various levels

of liquidity and record the tick price data for each of the selected stock for the duration of two

weeks. The FTSE100 index is considered as the information vector x during the same period.

We also record the publicly available trade and price information of each share for a particular

day during the two weeks. Out of the FTSE100 companies, we choose Lloyds Banking Group

shares as shares with high liquidity levels, Rolls-Royce as a medium-liquidity share and Next Plc

as representative of low liquidity securities. The choice of the three securities is not based on

strict criteria but a loose interpretation of liquidity in order to evaluate the effects when applying

the methods in this paper on stocks of varying liquidity. We also acquire intra-day price data

for these securities where the information is available for the opening and closing prices and the

volume of trade during each minute. We consider the price between the opening and closing

prices to be the price of the share in that time period.

The first step is to estimate the parameters of xt+1 = ρxt + ηt in order to be able to forecast

the value of x from the previous period. We perform a linear regression fit in R statistical

software based on the historical time-series data above. The parameters of information evolution

(xt+1 = ρxt + ηt) which represent the FTSE100 index are calculated as

xt+1 = 70.91 + 0.98xt + ηt,

where µη = 0 and ση = 14.15.

Table 3 details the coefficients of the price evolution model pt+1 = pt + βxt + aut + ϵt in

relation to each chosen security.

Based on the parameters found in Table 3 pertaining to the behaviour of price based on

the independent variables, as well as the parameters of the information evolution, we run our

algorithm against that of Bertsimas and Lo (1998) to gauge the performance of these algorithms

in a real-world application. We compare the results based on different numbers of trade periods

as well as different rates of market volatility.

Figure 3 depicts the expected value function for the two methods based on 10 trade periods

and varying degrees of market volatility. As can be seen, the B&L method only outperforms our

method in the case of very small market volatility. As the volatility increases, the expected cost

of trading the predefined number of shares increases for the B&L method. The ADP method

increases in performance as the volatility increases while the performance of B&L is declining.

This is indicative of the ability of the ADP method in taking advantage of price swings when

15

Table 3: Regression analysis on the three chosen stocks

Lloyds Rolls-Royce Next Plc

Price (1 lag) 9.805e−01∗∗∗ 8.776e−01∗∗∗ 9.159e−01∗∗∗

Std. Error (1.615e− 02) (1.886e− 02) (2.370e− 02)
Trade Volume −1.322e− 10 1.227e−06 + 6.378e− 05∗

Std. Error (2.861e− 09) (1.359e− 06) (3.140e− 05)
UK100 Index 7.790e−05 + 2.802e−02∗∗∗ 4.523e−02∗∗∗

Std. Error (1.573e− 04) (4.223e− 03) (1.335e− 02)

Residual Std. Err. 0.227 3.735 11.06
R2 0.9474 0.9713 0.9612
Adj. R2 0.9467 0.971 0.9607

***p < 0.001, **p < 0.01, *p < 0.05, +p < 0.1

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

1.941

1.942

1.943

1.944

1.945

1.946

1.947

1.948

1.949
x 10

9

ση
2

E
xp

e
ct

e
d

 e
xe

cu
tio

n
 c

o
st

ADP

B&L

Figure 3: Expected execution cost of Lloyds shares with variable rates of σ2
η

16

Table 4: Actual execution cost realisation from each algorithm in execution of 100000 Lloyds shares
and the percentage difference between the two algorithms based on the number of trading periods.

of periods ADP B&L % Diff.

10 8868042 8867250 -0.008
20 10595009 10586747 -0.077
30 11381698 11398890 0.151
40 11552346 11563438 0.096
50 11522654 11543933 0.184
60 11484477 11509757 0.220
70 11449253 11475887 0.232
80 11408889 11427038 0.159
90 11362621 11364245 0.014
100 11290233 11304324 0.124

the B&L falls short because of neglecting the sign constraints. If short-selling is prohibited, our

method adapts the policies online by incorporating the non-negativity into its framework from

the start.

Table 4 outlines the actual execution costs of the two algorithms for the Lloyds shares. The

ADP algorithm outperforms the original B&L method in most cases. When the trading periods

are relatively few, there will naturally be less probability of favourable prices occurring and thus

the ADP algorithm is slightly under-performing.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

1.155

1.1555

1.156

1.1565

1.157

1.1575

1.158

1.1585
x 10

7

σ2
η

A
ct

ua
l e

xe
cu

tio
n

co
st

ADP

B&L

Figure 4: Actual execution cost of Lloyds shares with variable market volatility rates

Figure 4 on the other hand depicts the results of the actual execution cost in the case of

Lloyds shares with both methods over varying market volatility. The benefits of the approximate

dynamic programming method over the B&L method is apparent from this figure when the

volatility increases.

Both other stocks show similar behaviour with varying trade periods and market volatility.

Due to space limitation, the interested reader can find graphs, similar to those above, for the

17

Next plc and Rolls-Royce shares in appendix A.3.

5 Conclusion

Our reasons for extending the work of Bertsimas and Lo (1998) is to bring the problem closer to

the real-world applications. This includes adding non-negativity constraints to the definition of

the problem; however, our extensions add significantly to the complexity of the problem. It is a

well-known shortcoming of the dynamic programming method that it cannot accommodate con-

straints very easily. We provide an approximate dynamic programming method that circumvents

this. Our simulated and empirical results support the inclusion of non-negativity constraints,

when the volatility of the market, and consequently of prices, are such that the probability of

negative trades is significant. It improves the expected (and actual) execution cost in real cir-

cumstances and in comparison to the model by Bertsimas and Lo (1998). The difference between

the performance of the models is not substantial when applied to scenarios incorporating low

volatility; however, as we raise the market and price fluctuations in the model, the significance of

our method over the other two methods becomes apparent. The benefits of the new method are

also apparent in the empirical study, where we test the methods on a set of data that warrants

large swings in price. In both cases we observe improvement in the results which encourages the

use of the new method over the previous methods under the conditions discussed.

References

Alexander, G., Peterson, M., 2007. An analysis of trade-size clustering and its relation to stealth

trading. Journal of Financial Economics 84 (2), 435–471.

Almgren, R., 2003. Optimal execution with nonlinear impact functions and trading-enhanced

risk. Applied Mathematical Finance 10 (1), 1–18.

Almgren, R., Chriss, N., 2001. Optimal execution of portfolio transactions. Journal of Risk 3,

5–40.

Bertsimas, D., Lo, A. W., 1998. Optimal control of execution costs. Journal of Financial Markets

1 (1), 1–50.

Bertsimas, D., Lo, A. W., Hummel, P., 1999. Optimal control of execution costs for portfolios.

Computing in Science & Engineering 1 (6), 40–53.

Butenko, S., Golodnikov, A., Uryasev, S., 2005. Optimal security liquidation algorithms. Com-

putational Optimization and Applications 32 (1), 9–27.

Chakravarty, S., 2001. Stealth-trading: Which traders trades move stock prices? Journal of

Financial Economics 61 (2), 289–307.

Chan, L. K. C., Lakonishok, J., 1993. Institutional trades and intraday stock price behavior.

Journal of Financial Economics 33 (2), 173–199.

Domowitz, I., Yegerman, H., 2005. The cost of algorithmic trading. Trading 2005 (1), 30–40.

Engle, R., Ferstenberg, R., 2006. Execution risk. Report, National Bureau of Economic Research.

Hasbrouck, J., Seppi, D., 2001. Common factors in prices, order flows, and liquidity. Journal of

Financial Economics 59 (3), 383–411.

He, H., Mamaysky, H., 2005. Dynamic trading policies with price impact. Journal of Economic

Dynamics and Control 29 (5), 891–930.

18

Huberman, G., Stanzl, W., 2005. Optimal liquidity trading. Review of Finance 9 (2), 165–200.

Kissell, R., Glantz, M., Malamut, R., 2004. A practical framework for estimating transaction

costs and developing optimal trading strategies to achieve best execution. Finance Research

Letters 1 (1), 35–46.

Kissell, R., Malamut, R., 2006. Algorithmic decision-making framework. The Journal of Trading

1 (1), 12–21.

Loeb, T. F., 1983. Trading cost: The critical link between investment information and results.

Financial Analysts Journal 39 (3), 39–44.

Merton, R., 1971. Optimum consumption and portfolio rules in a continuous-time model. Journal

of Economic Theory 3 (4), 373–413.

Perold, A. F., 1988. The implementation shortfall: Paper versus reality. The Journal of Portfolio

Management 14 (3), 4–9.

Subramanian, S., Sherali, H. D., 2010. A fractional programming approach for retail category

price optimization. Journal of Global Optimization 48 (2), 263–277.

A Appendix

A.1 Proof of Lemma 1

Lemma αt = (bᵀe1 + bᵀKt+1b) > 0 is true for all t = 1, ..., T − 1.

Proof. Since KT = (Aᵀe1)e
ᵀ
2 + bᵀe1(e2e

ᵀ
2), we have

KT =

 1

0

β

[
0 1 0

]
+ a

 0

1

0

[
0 1 0

]

=

 0 1 0

0 a 0

0 β 0

and

(bᵀe1 + bᵀKT b) =a+
[

a −1 0
] 0 1 0

0 a 0

0 β 0

 a

−1

0

=a+
[

a −1 0
] −1

−a

−β

 = a.

Since a is assumed to be positive, (bᵀe1 + bᵀKT b) > 0 is true.

For KT−1 we have

KT−1 =AᵀKTA−
LT−1L

ᵀ
T−1

4αT−1

=

 0 1 0

0 a− a2

4α1
−β ρ a

4α1

0 β + β ρ− β ρ a
4α1

−β2 ρ2

4α1

19

resulting in αT−2 = (bᵀe1 + bᵀKT−1b) = a− αT−1

4
.

Continuing in this fashion we get

αt = αt+1 −
(
2αt+1

t
)2

4αt+1
.

Since αT−1 = a which is assumed to be positive and since at each backward stage a value

smaller than itself is deduced from it, it is concluded that αt is a non-negative value for all

t = 1, ..., T − 1.

A.2 Proof of Lemma 2

Lemma Φt,j and consequently Qt have the following format:

Φt,j =

 0 1 0

0 d1 d2

0 d3 d4

 , Qt =

 0 1 0

0 x1 x2

0 x3 x4

 .

Proof. We prove this by way of induction.

First of all, KT has the format

 0 1 0

0 a 0

0 β 0

 from the formula KT = (Aᵀe1)e
ᵀ
2 + bᵀe1(e2e

ᵀ
2)

which corresponds to the general format.

We assume Kt+1 to be of the format

 0 1 0

0 d1 d2

0 d3 d4

 .

Since we have Kt = AᵀKt+1A− LtL
ᵀ
t

4αt
, in which Lt and αt are

Lt =Aᵀe1 +AᵀKt+1b+ bᵀKt+1A

=

 1 0 0

0 1 0

β 0 ρ

 1

0

0

+

 1 0 0

0 1 0

β 0 ρ

 0 1 0

0 d1 d2

0 d3 d4

 a

−1

0

+
[

a −1 0
] 0 1 0

0 d1 d2

0 d3 d4

 1 0 β

0 1 0

0 0 ρ

=

 1

0

β

+

 1 0 0

0 1 0

β 0 ρ

 −1

−d1

−d3

+
[

a −1 0
] 0 1 0

0 d1 d2ρ

0 d3 d4ρ

=

 1

0

β

+

 −1

−d1

−β − ρd3

+

 0

a− d1

−d2ρ

=

 0

a− 2d1

−ρ(d2 + d3)

 ,

20

αt =bᵀe1 + bᵀKt+1b

=a+
[

a −1 0
] 0 1 0

0 d1 d2

0 d3 d4

 a

−1

0

=a+
[

a −1 0
] −1

−d1

−d3

 = d1.

Thus we have

Kt =AᵀKt+1A− LtL
ᵀ
t

4αt

=

 1 0 0

0 1 0

β 0 ρ

 0 1 0

0 d1 d2

0 d3 d4

 1 0 β

0 1 0

0 0 ρ

−(

 0

a− 2d1

−ρ(d2 + d3)

[
0 a− 2d1 −ρ(d2 + d3)

]
)/4d1

=

 0 1 0

0 d1 ρd2

0 β + ρd3 ρ2d4

−

 0 0 0

0 ϖ φ

0 φ ς

=

 0 1 0

0 d1 −ϖ ρd2 − φ

0 β + ρd3 − φ ρ2d4 − ς

 ,

where ϖ = (a−2d1)
2

4d1
, φ = (a−2d1)(−ρ(d2+d3))

4d1
and ς = ρ2(d2+d3)

2

4d1
.

The end result clearly has the same form as indicated.

A.3 Additional performance indicators for section 4.2

The following tables and figures demonstrate the results shown in relation to the ADP and B&L

algorithms for Rolls-Royce and Next plc. share prices.

Table 5: Actual execution cost realisations from running each algorithm on 100000 Rolls-Royce shares

of periods ADP B&L % Diff.

10 113196572 113105567 -0.080
20 113150598 113072115 -0.069
30 113128975 113178923 0.044
40 113092688 113065843 -0.023
50 113045862 113028378 -0.015
60 113002658 113158182 0.137
70 112949417 113053358 0.092
80 112852015 113009933 0.139
90 112723957 113060720 0.298
100 112684469 112971536 0.254

21

Table 6: Actual execution cost realisations from running each algorithm on 100000 Next plc. shares

of periods ADP B&L % Diff.

10 721966680 721800780 -0.022
20 721755698 721629741 -0.017
30 721653652 721952501 0.041
40 721365874 721687618 0.044
50 721052563 721556396 0.069
60 720865896 721908650 0.144
70 720765149 721684057 0.127
80 719697785 721385540 0.234
90 719122901 721530130 0.334
100 718250352 721282194 0.422

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

1.1323

1.1324

1.1325

1.1326

1.1327

1.1328

1.1329
x 10

8

σ2
η

A
ct

u
a

l e
xe

cu
tio

n
 c

o
st

ADP

B&L

Figure 5: Actual execution cost for Rolls-Royce share price with variable market volatility

22

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

7.214

7.2145

7.215

7.2155

7.216

7.2165

7.217

7.2175

7.218

7.2185
x 10

8

σ2
η

A
ct

u
a

l e
xe

cu
tio

n
 c

o
st

ADP

B&L

Figure 6: Actual execution cost for Next plc share price with variable market volatility

23

