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Abstract

An important task of operators in Norwegian vessel traffic services (VTS) centers is

to cleverly position tugboats before potential vessel distress calls. Here, we formulate a

nonlinear binary-integer program, integrated in a receding horizon control algorithm, that

minimizes the expected cost of grounding accidents by positioning tugboats optimally un-

der uncertainty about vessel incidents and environmental conditions. Linearizations of the

model lead to easy-to-compute bounds on the optimal value. Numerical experiments with

real-world data demonstrate significant reduction in the expected cost, suggesting that the

model can be used as a decision-support tool at VTS centers.
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1 Introduction

During the last decades marine transportation of crude oil and petroleum products has in-
creased considerably as well as its associated risk to the environment. Although accidental oil
spills from tankers are relatively rare (Goerlandt and Montewka, 2014), oil transport remains
one of the main concerns for various stakeholders in the protection of the marine environment
(Dalton and Jin, 2010). Indeed, oil spills can result in severe consequences to the marine ecosys-
tem (Lecklin et al., 2011). In addition, there are high socioeconomic costs, clean-up costs, and
even possibility of loss of life. Most of the large oil spills are related to grounding and collision
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accidents of oil tankers (Vanem et al., 2008). About one third of commercial ship accidents are
caused by ship grounding accidents (ITOPF, 2013).

In Norway, several hundred oil tankers travel each year along the northern coastline. To
monitor this traffic, the Norwegian Coastal Administration (NCA) operates a center for vessel
traffic services (VTS) in the town of Vardø in northeastern Norway. The VTS center is respon-
sible for the coastline from the Russian border in the Barents Sea to Rørvik near Trondheim,
a distance of more than 600 nautical miles. The region is environmentally sensitive due to im-
portant fisheries and increasing tourism. About 200 vessels are monitored daily by the VTS
center of which five to six oil tankers receive special attention due to their size or risk of pol-
lution. These tankers are required by law to sail along a predefined corridor about 27 nautical
miles from the coast. The VTS center operates a fleet of two tugboats with the purpose to in-
tercept any vessel that lose steering, propulsion, or power, and drift towards land. Dynamic
information (e.g., position, heading, speed over ground, rate of turn) and static information
(e.g., identity, dimensions, cargo, flag) of the ships entering the region are obtained every two
seconds on average through the Automatic Identification System (AIS). In addition to AIS in-
formation, weather forecast, real-time measurements of ocean currents, wave height, and wind
are available to predict drift trajectories. At any time, an oil tanker moving in the region may
lose its maneuverability, e.g., through steering or propulsion failure. Thus, the tugboats have to
be sufficiently close to hook-up with any drifting oil tanker before it runs ashore.

The increasing oil tanker traffic in the High North makes it difficult for the VTS operators
to dynamically position the tugboats to locations where they can be the most effective. In an
effort to improve the positioning of tugboats, the authors were invited by the NCA to visit the
VTS center in Vardø and suggest improvements in the process. This paper reports models for
the optimal tugboat positioning (OTP) problem as well as computational results obtained after
the visit and subsequent meetings and exchanges of information with the VTS center and the
NCA representatives. NCA is currently evaluating the possibility to implement the models in
a decision support system operating at the VTS. This paper is the first to formulate the OTP
problem and demonstrate the benefits from its solution using historical events.

The remainder of the paper is organized as follows. In Section 2, we introduce the related
literature on emergency response and safety organization. In Section 3, formulate a nonlinear
binary integer program (BIP) for the OTP problem with two linearizations. Section 4 gives
methods for obtaining input data to the models, and Section 5 presents computational experi-
ments. The paper ends with conclusions and a discussion of further research in Section 6.

2 Related Literature

We present a review on general resource location/allocation and patrol routing problems,
where safety organization and emergency response systems are the primary concern, followed
by specific literature on the OTP problem.

Models and algorithms for optimal dynamic allocation of patrol tugs to oil tankers along the
northern Norwegian coast
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General models on resource allocation and patrol routing problems in the literature include
p-median problems (p-MP) (Campbell, 1996; Church and ReVelle, 1976; Church et al., 2004;
Ishfaq and Sox, 2010), p-center problems (p-CP) (Davidović et al., 2011; Drezner, 1984; Es-
pejo et al., 2015; Suzuki and Drezner, 1996), covering problems that are categorized into max-
imal covering location problems (MCLP) (Balcik and Beamon, 2008; Church and ReVelle,
1974; Davari et al., 2011), set covering problems (SCP) (Badri et al., 1998; Beasley and Jørn-
sten, 1992; Caprara et al., 2000), maximum coverage patrol routing problems (MCPRP) (Capar
et al., 2015; Dewil et al., 2015; Keskin et al., 2012; Li and Keskin, 2013) and police districting
problems (PDP) (Camacho-Collados and Liberatore, 2015; D’Amico et al., 2002).

The OTP problem closely relates to maritime search and rescue (SAR) operations. SAR
operations consist of search for missing or distressed vessels followed by their rescue. Bas-
demir (2004) proposes an MCLP that allocates SAR helicopters to candidate bases to satisfy
predefined incidents regions. A combination of p-MP and p-CP models are used in Dawson
et al. (2007) to determine the locations of security teams over a geographic area to maintain
security for the United States air force intercontinental ballistic missile systems. The com-
bined model minimizes both the distance traveled and the maximum distance from any missile
site to required security forces. An optimization and simulation method is used in Afshartous
et al. (2009) to determine the locations of the United States coast guard air stations to respond
to emergency distress calls. They model the problem as a p-Uncapacitated Facility Location
Problem (p-UFLP). The authors assume the demand for each client to be equal and served with
a single resource. A similar problem is presented in Razi and Karatas (2016), but the demand
for each incident varies and each demand can be covered from multiple resources. Radovilsky
and Koermer (2007) develop an integer linear programming model to optimally allocate small
boats to the United States coast guard (USCG) stations. Their objective function minimizes the
shortage or excess capacity at the stations. An improved formulation called boat allocation tool
(BAT) is developed by Wagner and Radovilsky (2012), but do not consider actual locations of
incidents and the corresponding response time. Chircop et al. (2013) address the fleet sizing
problem faced by the Royal Australian Navy (RAN) with a column generation algorithm in-
corporated into a branch-and-price framework. A fleet patrol boats should be able to provide
complete coverage of a set of specified patrol regions. Moreover, Millar and Russell (2012)
develop a binary integer programming model (BIP) for the fisheries surveillance patrol routing
problem in the Canadian Atlantic offshore groundfish fishery. The primary goal of the fisheries
patrol routing problem is to maximize the deterrent effect of a patrol vessel through routing over
a network of fishing grounds. They are the first to formulate this problem, which relates to the
selective traveling salesman problem, where the fishing grounds represent the cities, and all or
a subset of grounds is visited on a given trip. Their model, however, focuses more on schedul-
ing than boat positioning. Pelot et al. (2015) categorize SAR boats based on their capabilities
and use historical incident data to solve the allocation problem for the Canadian coast guard.
In their study, incidents are classified based on their severity and a response time requirement
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is established for each type. Similarly, Eide et al. (2007) develop a dynamic risk model that
prioritize oil tankers based on their potential oil spill volume in case of grounding accidents and
subdivide the northern Norwegian coastline in segments, where each segment has an associated
risk level. The model estimates the environmental risk of a drift grounding accident occurring
with a specific tanker, at a given location, and under current weather conditions. Drift trajec-
tories with high risk can then be prioritized in the planning of tugboat positions. Abi-Zeid and
Frost (2005) develop a geographic decision support tool (SRAPlan) based on search theory to
assist the Canadian forces in the planning of search missions for missing aircrafts. A similar
system is also developed for the Polish SAR teams (Wysokiński et al., 2014).

All these tools and models, despites their importance, do not suggest how and where the
fleet of tugboats should move in order to minimize risk. Razi and Karatas (2016) on the other
hand develop a tactical model for determining the optimal placement of SAR boats, however
their model do not account for uncertainty related to vessel incidents and the dynamic nature
of the SAR resources positioning, which are the primary concern of the OTP problem. To
determine the optimal positions of tugboats in real time, researchers have developed methods
both including genetic algorithms (Bye, 2012; Bye and Schaathun, 2014, 2015a,b) and an MIP
model (Assimizele et al., 2013). Their algorithms and models assume oil tankers move along
piecewise-linear corridors and approximately parallel to the coastline. Additionally, their pro-
posed set of objective functions focuses mainly on the minimization of distances between future
tugboat positions and locations where hook-up with a drifting vessel might be possible. How-
ever, in situations with multiple tugboats, sum of distances are not effective surrogates for the
probability of successful hook-up between a tugboat and a vessel and the cost associated with
failure to do so. In addition, a distance minimization will not capture the different consequences
associated with each vessel type and grounding location. Moreover, a one-dimensional mod-
eling approach also has less flexibility in geographical positioning. All these weaknesses are
addressed in this paper with a two-dimensional nonlinear binary integer programming model.

In contrast to the optimization of SAR and related operations (see for example Alpern and
Gal (2002); Pietz and Royset (2014); Royset and Sato (2010); Shechter et al. (2015); Stone
et al. (2016) and references therein), where search for a vessel is a central aspect, operators
in the present context know the location of vessels. In an OTP problem, a tanker in distress
has a known current location due to the continuously transmitted AIS information. That is,
the OTP problem is primarily a rescue mission. However, uncertainty about which vessel will
need assistance and the subsequent drift trajectories and weather conditions add complexity
to the process of planning current and future tugboat positions. Thus, our aim is to assist the
VTS operators by developing a nonlinear BIP model integrated in a receding horizon control
algorithm that minimizes the expected environmental cost associated with grounding vessels
and utilizes a two-dimensional discretization of the coastal zone. Royset and Sato (2010) adopt a
similar two-dimensional modeling approach by subdividing the region of interest into a finite set
of cells in a discrete-time route-optimization problem, where searchers seek to detect randomly
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moving targets.

3 Model Formulation

We subdivide the High North region controlled by the VTS center in Vardø into a finite
number of cells C = {1, ...,C} and discretize the planning horizon into a finite set of time
periods T = {0,1, ...,T}. Each vessel (oil tanker) in the set V = {1, ...,V} occupies one cell at
each time period and can move to any reachable cell in a time period depending on its speed,
which is influenced by the weather conditions.

Every vessel v ∈ V is associated with a family of possible paths and times when it might
become in distress. A path p = (c1,c2, ...,cT ), ct ∈ C , is a sequence of cells representing the
trajectory of the vessel over time. The pair ωv = (t, p) gives a vessel scenario for vessel v, where
p is the associated path and t ∈ T ∪{T +1} is the time the VTS center is alerted to the distress
of vessel v. Typically, the vessel reports steering failure, loss of propulsion, and other issues
through AIS. However, sometimes incidents go unreported and the VTS center might simply
observe a change in heading and speed. We let Ωv be the set of scenarios for vessel v. Typically,
each vessel has a scenario (t, p) where the path p is the planned trajectory of the vessel in the
absence of failure. In this case, there will be no distress call and the time t is set to T + 1. In
addition, we define ω̄ = (ω1, ...,ωV ) ∈ Ω̄ , where Ω̄ = Ω1× ....×ΩV is the collection of all
scenarios.

Let G = {1, ...,G} be the set of tugboats operated by the VTS center in Vardø. At the
beginning of the planning horizon, each tugboat g∈G is positioned at cell c0g ∈C . The tugboats
can transit between reachable cells each time period. Specifically, let Ftg(c) ⊂ C be the set of
cells that are adjacent to c ∈ C in period t for tugboat g. That is, the set of cells reachable from
cell c in one time period by tugboat g. The set Ftg(c) depends on the weather conditions in
time period t and the maximum speed for tugboat g. Additionally, the fleet of tugboats are not
allowed to move far away from the coastline because of a secondary escort mission; some of
the ships in transit to ports located in the north of Norway need to be escorted by tugboats. This
secondary task does not influence the model we develop as the available number of tugboats at
each time period in the planning horizon is known well in advance.

A vessel might start drifting at any time period with a certain probability, which depends on
internal factors of the vessel as well as the weather conditions (e.g., ocean current, wave height).
Moreover, the path followed while drifting is also determined by environmental factors. In
Section 4, we give details about how the specifics of a scenario can be computed. We let Rωv be
the probability of scenario ωv for vessel v. We assume that the probabilities of failure through
steering or propulsion are independent between vessels. Although this assumption might not
always be reasonable, here we justify it by the fact that vessels in distress are usually spatially
separated with few common environmental factors. Hence, the probability for a scenario ω̄ is
given by Rω̄ = ∏v∈V Rωv . A critical component is a tugboat’s ability to hook-up with a vessel
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that is drifting next to it. We let the probability of successful hook-up by tugboat g with vessel
v, given vessel v follows scenario ωv = (t, p) and tugboat g is in cell c at time of distress call t,
be denoted by Qgcωv .

The aim is to move tugboats between cells in such a way that the expected cost of ship
grounding accidents is minimized. Let Kωv be the grounding cost associated with vessel sce-
nario ωv = (t, p), i.e., the cost for a vessel following path p and no tugboat manages to hook-up
with the drifting vessel. We note that Kωv is a deterministic quantity, but it is trivial to account
for uncertainty in the cost by defining additional vessel scenarios. The cost mostly depends on
the grounding location as well as the type and volume of the oil spill. This cost is equal to zero
for vessel scenarios having t = T + 1, i.e., no failure occurs and the vessel follows a normal
route in the corridor. We define xgct as a binary variable that takes the value 1 if tugboat g is in
cell c at time t, and 0 otherwise. For a tugboat g in cell c at time of distress t, the probability of
not being able to hook-up with vessel v following scenario ωv = (t, p) is 1−Qgcωv . Thus, the
probability that no tugboat rescues vessel v if vessel scenario ωv occurs equals

∏
g∈G ,c∈C

(1−Qgcωv)
xgct .

Note that subscript t in the variable xgct is the time of distress in scenario ωv = (t, p) and the
probability of hook-up Qgcωv is relative to that time. Then, the expected grounding cost for
scenario ω̄ equal

∑
v∈V

Kωv ∏
g∈G ,c∈C

(1−Qgcωv)
xgct . (1)

The expected total cost across all scenarios follows as

∑
ω̄=(ω1,....,ωV )∈Ω̄

Rω̄ ∑
v∈V

Kωv ∏
g∈G ,c∈C

(1−Qgcωv)
xgct , (2)

which we denote by f (x), where x is the vector with components xgct . Let αgcωv = − ln(1−
Qgcωv) be the hook-up rate. The function f can be equivalently written as:

f (x) = ∑
ω̄=(ω1,....,ωV )∈Ω̄

Rω̄ ∑
v∈V

Kωv exp

(
− ∑

g∈G
∑
c∈C

αgcωvxgct

)
. (3)

Since costs are nonnegative, f is a convex function. In fact, the exponential function is convex
and f is a sum of exponential functions. In the following subsections, we formulate the OTP
problem as a nonlinear BIP and give linear approximations.

3.1 OTP Model

A nonlinear BIP model is developed next to minimize the objective function f in (3) subject
to operational constraints.
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OTP model:
Indices
t time period
c c′ ct cells
v vessel
g tugboat
p path p = (c1, ...,cT )

ωv scenario for vessel v; ωv = (t, p)

ω̄ scenario for all vessels ω̄ = (ω1, ...,ωV )

Sets
C set of cells C = {1, ...,C}
Ftg(c)⊆ C set of cells reachable from cell c in period t for tugboat g

V set of vessels V = {1, ...,V}
G set of tugboats G = {1, ...,G}
T set of time periods T = {0,1, ...,T}
Ωv set of scenarios for vessel v

Ω̄ set of all possible scenarios Ω̄ = Ω1× ....×ΩV

Parameters
Kωv grounding cost for vessel v in scenario ωv = (t, p)

Rωv probability for vessel scenario ωv = (t, p)

Rω̄ probability for scenario ω̄ = (ω1, ...,ωV ), Rω̄ = ∏v∈V Rωv

Qgcωv probability of successful hook-up by tugboat g with vessel v, given
tugboat g is in cell c at time of distress call t and vessel v follows
scenario ωv = (t, p)

αgcωv hook-up rate with vessel v for tugboat g in cell c under scenario ωv,
αgcωv =− ln(1−Qgcωv)

Variables
xgct binary variable taking the value 1 if tugboat g is in cell c at time t,

0 otherwise
Formulation

min f (x)
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s.t.

∑
c∈Ftg(c′)

xgct−1 ≥ xgc′t ∀g ∈ G ,∀c′ ∈ C ,∀t ∈ T \{0} (4)

∑
c∈C

xgct = 1 ∀g ∈ G ,∀t ∈ T (5)

xg,c0g,0 = 1 ∀g ∈ G (6)

xgct ∈ {0,1} ∀g ∈ G ,∀c ∈ C ,∀t ∈ T (7)

Constraints (4) ensure tugboats move only between reachable cells. In addition, constraints
(5) make sure tugboats are not located in more than one cell in any time period. Constraints (6)
give initial positions of tugboats. That is, cell c0g is the position of tugboat g at the beginning
of the planning horizon.

3.2 Linearization of the Objective Function

Since a direct solution of the OTP model might be computationally costly, we develop two
approaches to linearize the objective function f and obtain two resulting mixed-integer linear
programming models MIP-L and MIP-U. A viable alternative could be the continuous relax-
ation (Branch-and-bound) to the convex problem using standard mixed-integer nonlinear pro-
gram (MINLP) solvers. However, Royset and Sato, (2010) use a similar nonlinear convex
exponential function to address the discrete-time route-optimization problem. They present two
solutions approaches, one based on the cutting-plane (linearization) method and the other on
continuous relaxation of the objective function. The cutting-plane approach, compared with the
existing branch-and-bound algorithm (fail to find solutions), is able to solve many realistically
sized problems instances in few minutes. Their specialized cut improves the solution time by
about 50% and further reduce the solution time with about two orders of magnitude. In their
study, standard MINLP solvers , Bonmin and DICOPT, have higher solution time compared to
CPLEX with the linearized model. Moreover, the effective cut-building technology in mixed-
integer linear program (MIP) are not available in the MINLP solvers.

3.2.1 Lower Linearization: MIP-L

New nonnegative variables zωv are included to remove the nonlinearity in the objective func-
tion through the standard lower-bounding approximation (Ramos, 2007; Royset and Sato, 2010)

exp(−y)≥max
k∈K
{exp(−yk)− exp(−yk)(y− yk)} ∀y,yk ∈ R,k ∈K .

Accordingly, let Yωvk ∈ R, k ∈ K , where K represents the set of breakpoints. The resulting
mixed-integer linear model (MIP-L) takes the following form.
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Model MIP-L:

Additional Set
K set of breakpoints K = {1, ...,K}
Additional Parameters
Yωvk breakpoint number k, k ∈K for vessel scenario ωv

Additional Variables
zωv nonnegative variable used for linearization

for vessel scenario ωv

Formulation

min ∑
ω̄=(ω1,....,ωV )∈Ω̄

Rω̄ ∑
v∈V

Kωvzωv

s.t.
(4)-(7) and

exp(−Yωv,k)− exp(−Yωv,k)

(
∑

g∈G
∑
c∈C

αgcωvxgct−Yωv,k

)
≤ zωv ∀ωv = (t, p) ∈Ωv,∀v ∈ V , ∀k ∈K

zωv ≥ 0 ∀ωv = (t, p) ∈Ωv, ∀v ∈ V

Let θOPT and θMIP-L be the optimal value for the OTP and MIP-L models, respectively. Obvi-
ously, θMIP-L ≤ θOPT.

3.2.2 Upper Linearization: MIP-U

It is well known (Bazaraa et al., 1995; Lin et al., 2013) that exp(−y) can be bounded from
above on [0,ymax] by a piecewise linear function that coincides with exp(−yk) at points yk ∈
[0,ymax], k ∈K . We apply this approach to the term exp(−∑g∈G ∑c∈C αgcωvxgct) and set ymax =

∑g∈G maxc,ωv αgcωv . The piecewise linear function is most easily represented by nonnegative
auxiliary variables that sums to one. Specifically, ∑k∈K λkexp(−yk) ≥ exp(−∑k∈K λkyk) for
0 ≤ ∑k∈K λkyk ≤ ymax. Using these relations, we obtain the upper-bounding model MIP-U as
follows:

Model MIP-U:
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Additional Parameters
Yωvk, Fωvk = exp(−Yωvk) function values at k ∈K
Additional Variables
λωvk nonnegative variable used for linearization
Formulation

min ∑
ω̄=(ω1,....,ωV )∈Ω̄

Rω̄ ∑
v∈V

Kωv

(
∑

k∈K
λωvkFωvk

)

s.t.
(4)-(7) and

∑
g∈G

∑
c∈C

αgcωvxgct = ∑
k∈K

λωvkYωvk ∀ωv = (t, p) ∈Ωv, ∀v ∈ V

K

∑
k=1

λωvk = 1 ∀ωv = (t, p) ∈Ωv, ∀v ∈ V

λωvk ≥ 0 ∀ωv ∈Ωv, ∀v ∈ V , ∀k ∈K

The optimal value of MIP-U provides an upper bound for θOPT. However, it is obviously
better to use the true objective function value. Accordingly,

θMIP-L ≤ θOPT ≤min{ f (x̄), f (x)},

where x̄ and x are the vectors of optimal xgct for MIP-U and MIP-L, respectively. We observe
that MIP-L suffices to generate both upper and lower bounds on θOPT, but we also include
MIP-U as it solves much faster than MIP-L and sometimes yields better solutions.

4 Input Parameters

In this section, we present preliminary methods to obtain accurate input parameter to the OTP
model

4.1 Hook-up Probabilities

Each drifting vessel is detected by the VTS center, which in turn informs the nearest tugboat.
The time needed for a tugboat to reach the drifting vessel depends on the reaction and mobi-
lization time, sailing time from the initial tugboat position to the vessel and the time required to
hook-up the vessel to the tugboat. It takes on average 2 hours to hook-up the drifting vessel with

Models and algorithms for optimal dynamic allocation of patrol tugs to oil tankers along the
northern Norwegian coast

50



the tugboat when they are next to each other, but this can increase in bad weather conditions
(Eide et al., 2007). Once the vessel is reached by the tugboat, the time, tl , left before it runs
ashore will determine the probability of successful hook-up. Recall that Qgcωv is the probability
of successful hook-up by tugboat g to vessel v, given tugboat g is in cell c at time t and vessel
v follows ωv = (t, p). For every vessel scenario and tugboat position, we determine tl using the
maximum speed of the tugboat and the location of c relative to p, and set

Qgcωv =
βωv exp(δωv(tl− tmin))

1+ exp(δωv(tl− tmin))
.

The parameter tmin represents the minimal remaining drift time required to attempt hook-up.
If tl is less than tmin, Qgcωv is set to 0. In addition, βωv ∈ [0,1] and δωv ≥ 0 represent the
influence of weather. This model is a preliminary attempt to estimate the hook-up probabilities.
Further work is needed to fit the model using empirical data from field tests and actual accidents,
which is nontrivial work and beyond the scope of the paper. Nevertheless, we have included
the weather and current factors in the experiments with real-world data. In fact, the maximal
operational speeds of the tugboats at each cells depend on the current and wind forces as well
as wave height. Moreover, the formula simply transform the time left tl , into a value between
zero and one. In addition, for every time left tl1 and tl2 , we have the following condition: If
tl1 ≤ tl2 then Qgcωv(tl1) ≤ Qgcωv(tl2), which is a necessary and sufficient condition to optimally
move tugboats in cells with higher response time.

4.2 Drift Trajectories

The motion of a drifting vessel is entirely determined by the sum of surface and body forces
acting on it (Jankowski, 1992). The forces acting on the surface are caused by the buoyancy
force, the sea surface current, surface wind and the waves. The gravitational force is the only
body force acting on its center of mass.

The drift caused by the wind alone is termed the object’s leeway (Hodgins and Mak, 1995).
Because of the asymmetric shape of the vessel, the drag and lift component of the wind will
cause the object to drift at an angle relative to the wind called "leeway angle". The Norwe-
gian Meteorological Institute (NMI) developed a LEEWAY model as part of its oceanic trajec-
tory models suite for Search and Rescue, Vessel Traffic Service and Environmental Protection
Agency (Breivik and Allen, 2008).

Uncertainty parameters such as leeway divergence angle is obtained through Monte Carlo
simulation (Breivik and Allen, 2008) and field investigation (Allen and Plourde, 1999). Ni et al.
(2010) present a theoretical drift prediction based on the law of physics and non-probabilistic
analysis of uncertainty. Consider a vessel in steady drift with velocity UB subjected to a forcing
field with constant wind velocity UW and a constant current velocity UC. The law of motion
dictates that the relative wind force UW −UB and the leeway force UB−UC must be opposite to
each other. In addition, the sum of the two forces are equal to zero for a steady drift. Thus, the
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drift velocity can be expressed as follow:

UB =
1

1+ τ
UC +

τ
1+ τ

UW =UC +µ(UW −UC),

where µ is the leeway rate and τ2 = (CDAρ)1/(CDAρ)2. The subscripts 1 and 2 refer to the in-air
and in-water quantities respectively, where CD is the drag coefficient, A is the cross-sectional
area exposed, and ρ is the fluid density. More details can be found in Ni et al. (2010). This
formula does not consider the wave drift force which can be expressed by F = 1

2ρ2 fgLC2W a2.
The wave amplitude is one-half of the wave height and is represented by a, C2W denotes the
wave drift coefficient and L is the vessel length and fg is the gravitational force. Hence, the drift
velocity with wave force included can be expressed as follow:

UB = ŨB−
ŨB−UC

1− τ
+

√(
ŨB−UC

1− τ

)2

+
χ

1− τ2 , (8)

where ŨB is the solution of the equation of motion in the absence of waves and the parameter

χ =
fgLC2W a2

(CDA)2
.

As the region is discretized into cells, it is possible to estimate, for every time period, the
next position of a drifting vessel given information on the local wind, surface current of the
initial position, and the shape and buoyancy of the vessel. For every vessel and time step, we
can estimate a potential drift trajectory using (8), which is represented by a sequence of cells
(see Figure 1). Specifically, we compute a path for a vessel as follows.

Step 0:
Set i := 0 and p := (ct), where ct represents the position of the vessel
at the time of distress call t ≤ T .

Step 1:
Obtain the wind, current velocities and wave force as well as actual
vessel velocity from the AIS for the current cell ct+i and set i := i+1.

Step 2:
Determine the new actual vessel velocity, UB, using the formula in (8)
as illustrated in Figure 1.

Step 3:
Determine in which cell falls the new obtained vessel force UB and
denote it by ct+i; and set p := (ct , ...,ct+i).

Step 4:
Go back to Step 1 or stop if the current cell ct+i is ashore or outside
the region of interest.
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Figure 1: Drift velocity

The algorithm above does not generate the whole path followed by the vessel, but only from
the time of distress call at cell ct to shore. However, it is trivial to include the other parts of the
path.

4.3 Environmental Costs and Drift Probabilities

Vessel grounding accidents can result in severe pollution from oil spills and damage to the
environment. In addition, the oil spill highly depend on vessel type (Talley et al., 2012), capacity
and grounding location. These consequences can be evaluated in terms of costs for a better
classification of vessels and potential grounding locations.

About 34% of oil spills in European seas are caused by vessel grounding accidents (see
Figure 2). One of the best known grounding-related oil spill accident is that of the Sea Em-
press in 1996, which ran aground in the entrance to Milford Haven, in the southwestern United
Kingdom. The vessel released a total of 72,360 tonnes of oil into the sea (ITOPF, 2013).

The main factors influencing the cost of oil spills include the type of oil, amount of oil spilled
and spillage rate, the physical, biological and economic characteristics of the spill location, and
the weather and sea conditions at the time of the spill (Grey, 1999; Kontovas et al., 2010; Vanem
et al., 2008; White and Molloy, 2003). The levels and types of cleanup capabilities to optimally
respond to oil spills are outside of the scope of this paper (see Psaraftis et al. (1986) for related
research in this area). Although a grounding vessel might not lose its entire cargo, the vessel
size indicates the potential volume of oil spill. In addition, the amount of oil spill depends on
the grounding location. A vessel running aground on hard rock will likely cause more oil spills
than grounding on sand.

Vanem et al. (2008) develop a model that incorporates all costs of oil tanker spill acci-
dents. They consider the spill amount as the major factor with a global average cleanup cost
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Figure 2: Volume of oil spilled per cause of accidents in European Seas for accidents above 7 tonnes per
spill (Data Source: ITOPF 2013)

of USD 16,000/tonne. In addition to the cleanup cost, average environmental damage and so-
cioeconomic costs are estimated to be around USD 24000/tonne. Research conducted about
Norwegian waters assesses the environmental damage to be almost twice the cost associated
with cleanup and rescue operations (Viggo, 2003). Kontovas et al. (2010) use a regression
analysis of oil spill cost with data from the IOPCF (International Oil Pollution Compensation
Federation) and obtain a total cost K = 51.432V 0.728 in terms of V , the volume in tonne of oil
spilled. The total cost, in USD, includes three cost categories: cleanup, socioeconomics losses
and environmental costs. In this paper, the cost related to each vessel scenario in the OTP model
are obtained from this total cost formula with V determined by the size of the vessel and the
part of the coast it might hit as categorized by Eide et al. (2007).

In the model formulation, Rωv , with ωv = (t, p), is the probability for vessel v to start drifting
along the path p at time t ∈ T . The probability mainly depends on human factors (experience
of nautical officers, excessive fatigue, stress and usage of alcohol), type of vessel (size, wind
exposure area of the ship, flag state, age of the vessel), weather conditions, and the characteris-
tics of the route (length, depth and width of the waterway). Sophisticated methods, such as fault
tree analysis (Kum and Sahin, 2015; Mokhtari et al., 2011; Senol et al., 2015), for determining
Rωv are beyond the scope of this paper. We simply generate these probabilities randomly in the
simulation experiments, based on historical information both about how often drifts actually oc-
cur on average, and also about how much the probabilities vary between vessels due to different
characteristics, such as flag state, age, and previous incidents.
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5 Case Studies

In this section, we discuss the effectiveness, efficiency and performance of the models through
three different case studies. First, we present the general settings common to all cases. Second,
an illustrative example of the model and output is presented in Case 1. Third, we compare the
MIP-L and MIP-U solutions and discuss the computational costs, the number of breakpoints,
the effect of time horizon on the solution quality and the sensitivity analysis with larger scale
problems in Case 2. Fourth, three real-world examples with historical data from the NCA are
presented in Case 3.

5.1 Computational Settings

We limit the set Ω̄ to those scenarios with exactly one distress call and also only consider
one possible drift trajectory for each vessel in distress. The first assumption is reasonable as
distress calls are quite rare. The second assumption is a simplification that places focus on the
main source of uncertainty: time of distress call (Ni et al., 2010). A richer set of scenarios
are easily included but its generation is beyond the scope of the paper. In Cases 1 and 2, the
drift trajectories are randomly generated using a Markov chain. Specifically, we subdivide the
region into 20 zones, where the sum of the wind and current force direction (Uw +UC) for each
zone is either north-east, north-west or north-south. Each zone is randomly associated with
one of these three directions. Additionally, every cell in the region is directly connected from
below with three cells, which are named Left, Straight and Right. The next cell in the path
p = (ct , ...,cT ) of a drifting vessel scenario is randomly determined based on the zone where
the current cell falls (see Table 1). For instance, if the current cell is located in the zone where
the vector Uw+UC has a north-east direction, then the Left cell will be chosen as next cell in the
path with a probability equal to 0.25. In addition, the wave magnitude at each cell is randomly
given a value of 0 or 1 with equal probabilities, where the value of 0 represents low wave height
and 1 that of large wave magnitude. The drifting vessel will spend two time periods at cells
with large wave magnitude and only one time period at cells with small wave height. In Case 3,
historical wave height, current and wind forces are used to determine each drift trajectory; see
further details in Subsection 5.4.

Previous study in the Norwegian sea propose an average failure rate of 0.26 per ship-year
(Hansson and Kiær, 1997). The research is not based on actual statistics but on a fault tree
analysis, combining failure rates for components and expert judgment. It is not clear how
these results can be implemented for different ships in a simulation experiment. Additionally,
these data are old and may not be representative for today’s accident scenarios. In the paper,
these probabilities of failure are randomly generated with very low values at every time periods
to reflect the actual scenarios. In the case studies with historical events, we have computed
these probabilities based on the frequency of drift accidents but still include some randomness.
Specifically, let ps be the drifting rate for a specific period of time in the region of interest.
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Then we generate the probabilities of failure, Rωv , for every vessel such that p ∈ [0.01,0.09]
and Rωv =

p
ps

,∑Rωv = ps, where 1− ps is the probability of no failure. Further challeng-

ing analytical and empirical researches are needed to effectively determine these probabilities.
Nevertheless, we have done some sensitivity analysis with different distributions, which include
different values of Rωv . Furthermore, the grounding cost for each vessel scenario is computed
using the formula K = 51.432V 0.728, where the volume V is randomly generated according to
a uniform random variable on [2187, 51704] plus a normal random variable with mean 15000
and standard deviation = 5000 (see Kontovas et al. (2010) for details on grounding costs and
volume of oil spills). Moreover, the VTS center in Vardø currently operates with two tugboats.
We use this number of tugboats for experiments in all the three cases. These tugboats have a
secondary function of escorting vessels that are in transit to Norwegian ports. Thus, they are
required to move relatively close to shore as reflected in our discretization of the area of interest
and movement constraints. The problem of whether the resource capacity are optimal or not
is out of the scope of this paper. We propose an optimal tugs policy based on the resource
available. However, the fleet of tug was reduced from three to two a year ago by the NCA and
could be justified by few main reasons. First, the accidents are very rare and most of the drift
time are very long with 20 to 30 hours (slow drift) and fast drift count for only 10 hours Eide
et al. (2007). Second, The NCA have acquired "ship arrestors", which considerably reduce the
vessel’s drifting speed and give more time to the tugs to hook-up with the vessel in time.

All computations are carried out on a personal computer with an Intel(R) Pentium(R) IV
3.0 CPU and 4.0 GB of RAM, running Windows 7. The optimization solver is Gurobi 5.5.0.

Table 1: Transition probabilities for path generation

Uw +UC North-east North-west North-south

Cell Left Straight Right Left Straight Right Left Straight Right
Prob 0.25 0.25 0.5 0.5 0.25 0.25 0.25 0.5 0.25

5.2 Case 1: Illustrative Example

We start by considering a corridor of length 40 kilometers and width 20 kilometers divided
into 800 cells of 1-by-1 kilometer. Six vessels sail in the corridor 18 km off the coastline.
These vessels are patrolled by two tugboats moving close to shore with a maximal speed of
10.7 knots (1 knot= 1.85 km/h). Each vessel moves in the corridor with an average speed
between 6.5 and 19.5 knots. Moreover, a planning horizon of 6 hours is used with a time step
of one hour. For this case, tugboats are constrained to move relatively slowly. Each cell c has
a total of 15 reachable cells in Ftg(c), which represents the number of possible hops per time
period. Figure 3 shows an optimal solution, where tugboats are represented by small squares
and are allowed to move between shore and the green line. Tug2 is initially positioned 3 km
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off the coast and 15 km from the origin point with coordinate (0,0) in the figure, while Tug1
is positioned 2 km away from the coast and 34 km from the origin point along the coast. The
optimal positions of tugboats are also shown in Figure 3. In addition, the initial position of each
vessel is represented by a red circle and the vessel scenarios for each time period as blue circles
linked with blue sticks. Moreover, the corridor is delimited by a yellow line and the coast is
shown by a red line. The cost, in million NOK, for each vessel scenario is labeled close to each
drift trajectory. The number of scenarios, |Ω̄|, is equal to 36 for six vessels and six time periods.
For every time period, Figure 3 illustrates the optimal decision of the model and the potential
drift trajectories. In the figure for time period t, we only show the six drift trajectories that are
associated with a distress call at t.

Both MIP-L and MIP-U give the same objective value of NOK 0.67 million as well as
tugboat positions at each time period. This optimal solution is obtained in 15 seconds for MIP-
U and 170 seconds for MIP-L. For this test instance, MIP-L model has a total number of 60,765
constraints and 36 continuous variables, whereas MIP-U has a total number of 825 constraints
and 36,000 continuous variables. The two models have the same number of binary variables of
2,880. At each time period in the planning horizon, the optimal decisions are influenced by the
vessel scenarios of the next time periods. This is well illustrated in period 2, where Tug2 moves
slightly away from the path with high cost of NOK 41 million. In fact, there are more scenarios
with considerable cost on the east side of Tug2 both in periods 2, 3 and 4. Additionally, if we
consider only vessel scenarios at the fourth time period, it might not be optimal to move Tug2
east, which is actually optimal when considering vessel scenarios in the next time periods.
As expected, the tugboats move towards the corridor until they reach the green line limit (see
Figure 3). The closer the tugboats move away from the coastline, the greater the probability of
successful hook-up of potential drifting vessels.

5.3 Case 2: Computational Tests

To evaluate the performance and quality of the models developed, we present results for
realistically sized test instances. The cells for this case are built with geographical positions
from the region of interest for the VTS. Clearly, we collect the geographical coordinates of
the center position of each cell and transform them into Cartesian coordinates for calculations.
Once the model is run, the optimal positions of tugboats as well as drift trajectories and vessels
positions are transformed back to geographical coordinates. The region of interest covers about
1,100 km of coastline and the corridor is on average 50 km off the coastline. We partition the
area between the corridor and the coastline into cells of 5 by 5 km, which gives a total number
of 2,200 cells. In practice, the number of cells is slightly smaller than the number given above.
This is explained by the fact that the corridor and the coastline are not straight lines and neither
totally parallel to each other. Thus, we use few triangle cells with different sizes to better
represent the region of interest. Vessels typically have an operating speed of 14 to 15 knots and
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(a) Results for periods 1 and 2

(b) Results for periods 3 and 4

(c) Results for periods 5 and 6

Figure 3: Results for Case1: Illustrative Example. The green and blue solid lines represent the movement
of tugboats and drift trajectories of vessels, respectively.

Models and algorithms for optimal dynamic allocation of patrol tugs to oil tankers along the
northern Norwegian coast

58



tugboats about 12 knots (Eide et al., 2007). In addition, the operators have subdivided the region
of interest into two zones. The first tugboat is assigned to the first zone, Zone A, spanning from
the border to Russia to Torsvåg, and Zone B from Torsvåg to Røst is patrolled by the second
tugboat.

5.3.1 Case 2A: Many Breakpoints

In this subsection, we mainly compare the MIP-U and MIP-L models with regards to solution
quality and run time, and present the gap between the optimal OTP value and optimal MIP-U
or MIP-L values. Accordingly, a test set of 6 vessels and 2 tugboats over a period of 20 hours
with one hour time steps are randomly generated. In this test set, the tugboats cannot move
more than 25 km away from the shore. That is, the patrol zone accounts for about 1,100 cells
along the coastline. The test case constitutes 30 instances and the results for the two MIPs are
presented in Table 2. The run time is in minutes and the objective function in million NOK.

Preliminary calculations indicate that K = 1,000 is the minimum number of breakpoints in
MIP-L and MIP-U, that gives an optimal solution of OTP. Consequently, we use 2,000 break-
points in order to be highly confident that MIP-L and MIP-U give the optimal solutions of the
OTP model. For each instance, the total number of binary variables for both MIPs are 22,974
with 120 and 240,000 continuous variables respectively for MIP-L and MIP-U. The total num-
ber of constraints for MIP-L is 261,924 and 22,045 for MIP-U.

As presented in Table 2, the MIP-U model is about 93 times faster than MIP-L. Additionally,
the variability in run times for MIP-L is larger than that of MIP-U. The average solution value is
NOK 0.5797 million for MIP-U and NOK 0.5792 for MIP-L. Although the objective values of
the two MIPs are slightly different, the optimal decisions for the tugboat positions are the same
for every test result. In addition, the relative optimality gap defined by (min{ f (x̄), f (x)}−
MIP-L)/MIP-L is the negligible 0.03%, with a maximum of 0.05%.

Table 2: Case 2A. Test results for 30 instances
GAP=(min{ f (x̄), f (x)}−MIP-L)/MIP-L

MIP-U MIP-L min{ f (x̄), f (x)} %GAP

Obj.Val Time (min) Obj.Val Time (min)
Avrg 0.5797 7.57 0.5792 707.07 0.5796 0.029
Std.dev 0.3955 10.43 0.3954 95.42 0.3955 0.019
Min 0.1251 1.49 0.1250 573.72 0.1251 0.006
Max 1.5497 52.18 1.5485 888.63 1.5493 0.052

5.3.2 Case 2B: Few Breakpoints

The choice of 2000 breakpoints leads to optimal tugboat positions in all instances examined
at the expense of high run times. As presented in Table 2, it takes between 1.5 and 52.2 minutes
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to obtain a solution of MIP-U, and even longer for MIP-L. In order to assess the solution quality
with relatively few breakpoints, the two MIPs models are run with another set of 50 instances in
the same manner as in Case 2A, with 500 breakpoints for MIP-U and 200 for MIP-L. This gives
a total number of 82,974 variables and 22,045 constraints for MIP-U, and 23,094 variables
with 45,924 constraints for MIP-L.

The average relative optimality gap is 0.51%, with a maximum of 5.4% (see Table3). The
solution are obtained in 1.99 minute and 13.17 minutes on average for MIP-U and MIP-L, re-
spectively. Moreover, the runtime for MIP-U is less than 9 minutes for every test instance. The
MIPs are able to obtain optimal decisions on tugboat positions for 15 instances out of 50. Al-
though the number of vessels are the same for each instances, the initial vessel positions along
the corridor are different for each test case. Consequently, the number of scenarios varies for
every test instance. Clearly, some vessels might leave the region before the end of the planning
horizon, and thus reduce the number of vessel scenarios. This explains the high standard de-
viation both on the objective values and runtime presented in Table 3. However, these results
remain practically reasonable as one might run the model every hour within a receding horizon
framework discussed in the next subsection.

Table 3: Case 2B. Test results for 50 instances with small number of breakpoints GAP=(min{ f (x̄), f (x)}−
MIP-L)/MIP-L

MIP-U MIP-L min{ f (x̄), f (x)} %GAP

Obj.Val Time (min) Obj.Val Time (min)
Avrg 0.6901 1.9958 0.6855 13.1669 0.6886 0.5152
Std.dev 0.7139 1.9709 0.7092 7.0475 0.7120 0.9421
Min 0.1762 0.1517 0.1746 2.4903 0.1757 0.0003
Max 2.0669 8.4818 2.0560 26.9707 2.0616 5.4455

5.3.3 Case 2C: Effect of Time Horizon

The number of scenarios increases with the length of the planning horizon. We use one large
test instance from Case 2A and run the MIP models for different planning horizons, ranging
from two to 22 hours. The result in Figure 4 shows how the computational time increases with
the length of the time horizon and highlights the run times performance of MIP-U compared
to that of MIP-L. Furthermore, it is clear from Figure 4 that MIP-U better copes with larger
instance size than MIP-L. However, MIP-L is of course essential in computing a relative opti-
mality gap.

The weather forecast is available in real time at the VTS center and dynamic information
from vessels are transmitted on average every 2 seconds (Eide et al., 2007). This information
can be used for repeated updates of the model resulting in better predictions of future vessel
scenarios; see for example Park et al. (2009) and Wang et al. (2007) for background on such re-
ceding horizon control. Accordingly, MIP-U could be run in real time, with parameters updated
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every time period. For instance, the model could be run for 20 hours, while only the first hour
is being implemented. Then we update the parameters and run the model again for the next 20
hours and so forth.

Figure 4: Case 2C. Influence of the number of scenarios on the computational time. The blue solid line
represents the performance of the MIP-L model and the green solid line is that of the MIP-U model.

5.3.4 Case 2D: Sensitivity Analysis with Larger Scale Problems

To analyze the sensitivity of the MIP-U model as well as its scalability, we run different test
instances with a total of 10 vessels for a number of tugboats ranging from one to six. For each
number of tugboats and distribution of drift trajectories, we run the MIP-U model and compare
its solution value with two different distributions for the same tugboat positions. These settings
allow us to analyze the sensitivity of the solution value to different probabilities of failure Rωv ,
grounding costs Kωv for each vessel scenario and fleet size.

In Figure 5, the green solid line represents the optimal cost distribution while the red and
blue solid lines represent the variation of the expected cost for two different distribution of drift
trajectories. Unsurprisingly, the solution values are very sensitive with changes in the failure
probabilities and grounding costs. This is mainly due to the high uncertainty about weather
conditions and ocean currents. Although the integration of the MIP-U model with the receding
horizon control algorithm, described in Section 4.2, could considerably address this issue, more
accurate parameters estimation are required. Additionally, the expected environmental cost
obviously decreases with higher number of tugboats as shown in Figure 5. Increasing the fleet
size will bring additional acquisition costs, which are strategic decisions not discussed in this
paper. Our model, however, focuses on operational decision level by proposing optimal real-
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time allocation and positioning of tugboats based on the available fleet size. Nevertheless, the
NCA has decided to reduce the speeds of drifting vessels by acquiring new ”ship arrestors"
and reduce its fleet size from three to two tugboats. Moreover, the maximum runtime for these
larger scale instances is less than 45 minutes, which is sufficient to run the model every one
or two hours with the receding horizon control algorithm. Sophisticated heuristics algorithms
might reduce this computing time further. For cases where larger fleet sizes are needed, this
scalability issue can also be easily addressed by subdividing the region of interest into smaller
zones and optimally assign tugboats to each zone. The new problem will then be very similar
to that of the location/allocation and deployment of ambulances in the EMS systems.

Figure 5: Case 2D. Influence of the number of tugboats and distributions of the drift trajectories on the
expected environmental cost. The green solid line represents the optimal costs for the current distribution
while the red and blue solid lines represent the variation in the costs with different distributions.

5.4 Case 3: Historical Events

In this subsection, we discuss three real-world cases with historical data from the NCA. Case
3A involves no grounding incident, but highlights the potential cost saving opportunities that
could be gained by having solutions of the OTP problem guide decisions. In Cases 3B and 3C,
we present two different instances where an accident actually occurred and run the model for
15 hours prior to the time of distress.

A path p = (c1, ...,cT ) for each vessel scenario ωv is generated using AIS and NMI informa-
tion with the algorithm presented in Section 4.2. Specifically, we collect the wind and current
velocities, and wave force of the center point of each cell at each time period of the planning
horizon and use the algorithm described in Section 4.2. to generate a path for each vessel sce-
nario ωv. In addition, the number of vessels in the region and their geographical positions for
every time period, the time of distress and grounding locations are collected from AIS. More-
over, we use the basemap library in python to plot and draw the map with vessel scenarios and
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tugboat positions.

5.4.1 Case 3A: May 7, 2014

On the 7th of May 2014, six vessels sailed along the coastline of the High North. Their
initial positions, speed over the ground (SOG) and direction at 1:30am are given in Table 4. At
each time period of one hour, a potential vessel scenario is randomly generated, based on the
historical wind and current directions and the model presented in Section 4.2, for every vessel.
The problem size for this case is the same as Case 2A.

Table 4: Case 3A. Initial vessel positions and speeds

Vessel 1 Vessel 2 Vessel 3 Vessel 4 Vessel 5 Vessel 6

Direction North-west West-north West-north North-west West-north North-west
Latitude N68o02 N68o15 N68o21 N71o07 N71o22 N70o38
Longitude E009o44 E010o34 E010o50 E019o24 E021o49 E032o10
SOG 12.4 10.5 13.7 13.2 11.5 13.3

The optimal solution for MIP-U was found in 5.6 minutes with an objective value of NOK
0.34 million. The actual events had the first tug boat located at 70o58′N− 025o51′E and the
second one at 69o40′N−018o59′E, and they were stationary during the whole planning horizon
of 20 hours in accordance with current VTS policy.

The optimal locations for the first six time periods are presented in Figure 6. The priority
is given to vessel scenarios with high cost. In the first time period, Tug2 moves north because
of the high costs located in that direction. Tug1 moves west toward a vessel with small cost of
NOK 15 millions in period 4, leaving a vessel with higher cost of NOK 41 millions, but this is
due to the high cost of NOK 82 and NOK 51 million that appear in periods 5 and 6, respectively.

In this instance where no accident happened, the real cost was of course equal to zero.
However, the expected cost under this policy is actually NOK 0.75 million, significantly higher
than the optimized of NOK 0.34 million.

5.4.2 Case 3B: March 21, 2014

On the 21st of Mars 2014 at 11:10pm, a vessel ran aground at 71o01.06′N− 028o27.46′E
after about 15 hours of drifting time. At the time of distress, 07:55am, the nearest tugboat
was located at 70o40′N−023o40′E, and was not able to reach the drifting vessel on time. The
tugboat moved toward the vessel but was 142.8 km away at the time of grounding. We run the
MIP-U model with this case for 15 hours prior to the time of distress and present the results
for the first and last time periods in Figure 7. The blue lines in Figure 7 represent the predicted
drift trajectories for all the vessels that moved into the region in that time horizon, including the
one that ran ashore, while the actual path followed by the drifting vessel is presented in green
solid line. The two directed paths in red solid lines are the actual positions of tugboats from
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(a) t=1

(b) t=2

(c) t=3

(d) t=4

(e) t=5

(f) t=6

Figure 6: Case 3A. Illustration of the first six time periods. The dashed green lines represent tugboat
movements at each time period and the blue solid lines represent vessel trajectories.
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the time of distress to the time of grounding and the paths in dashed green line are suggested
positions of tugboats by the model prior to the distress call. It is important to note that, in
these green paths, the last positions represent the location of tugboats at time of distress of the
vessel that ran ashore, not at the grounding time. A zoomed-in view of the grounding location
of the drifting vessel as well as the nearest tugboat (Tug1) are presented in Figure 8, where
the distance between the predicted and actual grounding location is about 17 km. Although
this value is not large, further research as highlighted in the last section, needs to be done for
accurate drift trajectories.
The probability of successful hook-up of the grounded vessel by Tug1 with the predicted drift
trajectory and the MIP-U model is 0.79 and that of the actual drift trajectory is equal to 0.86.
That is, the grounded vessel had 86% chance to be rescued if the MIP-U model was imple-
mented at that time. Based on the actual position of Tug1 at time of distress from the current
policy (see the first position of the red path in Figure 8) the vessel had only 0.22 probability to
be hooked-up. For this real-world instance, the expected cost is equal to NOK 0.19 million if
using the OTP model and NOK 0.28 million for the actual movement of tugboats.

(a) t=1

(b) t=15

Figure 7: Case 3B. Results for the first instance with grounded vessel. The dashed green lines represent
the suggested movements of tugboats by the MIP-U model and the predicted drift trajectories in blue
solid lines. In addition, the actual drift trajectory of the vessel that ran aground is represented by green
solid lines. The paths in red are the actual positions of tugboats from the time of distress to the time of
grounding.

5.4.3 Case 3C: September 12, 2014

In this case, a vessel ran ashore at 71o02.97′N − 023o53.89′E on September 12 2014 at
2:25pm. The nearest tugboat, located at 70o41.58′N−023o19.21′E, stayed static for the whole
drifting time of about 9 hours. As explained by the operators at the VTS center, vessels are
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Figure 8: Zoom on the grounded vessel for case 3B. The dashed green lines represent the suggested
movements of the nearest tugboat by the MIP-U model and the predicted drift trajectories are represented
in blue solid lines. In addition, the actual drift trajectory of the vessel that ran aground is represented in
green solid lines. The path in red is the actual positions of the nearest tugboat from the time of distress
to the time of grounding and the estimated grounding cost in million NOK for each drift trajectory is
labeled in yellow.

not given the same priority and sometimes vessels moving out of the corridor will “misinform”
the VTS center that they are not in trouble but merely fishing (or some other false message)
while they are in fact drifting with the risk of grounding. This peculiar situation often stems
from misunderstandings about the cost of rescue to the ship owner. The rescue is in fact free for
the ship owner, but this is not widely known. The MIP-U model is also run for 15 hours prior
to the time of distress of the grounding vessel. The results for the first and last time periods

(a) t=1

(b) t=15

Figure 9: Results for Case 3C. The dashed green lines represent the suggested movements of the tugboats
by the MIP-U model and the predicted drift trajectories are represented in blue solid lines. In addition,
the actual drift trajectory of the vessel that ran aground is represented in green solid lines. The two cycles
in red are the actual static position of the tugboats from the time of distress to the time of grounding and
the estimated grounding cost in million NOK for each drift trajectory is labeled in yellow.

are presented in Figure 9 and the zoom on the grounding location is presented in Figure 10,
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Figure 10: Zoom on the grounded vessel for case 3C. The dashed green lines represent the suggested
movements of the nearest tugboat by the MIP-U model and the predicted drift trajectories are represented
in blue solid lines. In addition, the actual drift trajectory of the vessel that ran aground is represented
in green solid lines. The cycle in red is the actual static position of the nearest tugboat from the time
of distress to the time of grounding and the estimated grounding cost in million NOK for each drift
trajectory is labeled in yellow.

where the red circle represents the position of the nearest tugboat. The predicted drift trajectory
has a grounding position 43 km away from the location where the vessel actually run aground.
For this particular case, the model and the current policy have a close probability of success-
ful hook-up of 0.79 and 0.69, respectively. This is mainly due to the actual static position of
the tugboat and the grounding location, which in this case is rather fortunate. In addition, the
MIP-U model does not know which drift will occur in advance and thus, tries to minimize the
overall expected cost. Indeed, there are two drift trajectories with high costs on the right side
of the nearest tugboat. This is why the tugboat does not move closer to the drift trajectory that
actually occurred. The expected cost for this real-world instance is equal to NOK 0.07 million
if using the OTP model and NOK 0.24 million for the current policy.

6 Conclusions

In this article, we developed a nonlinear binary integer programming model to minimize the
clean-up costs, socioeconomic losses and environmental costs associated with oil spill from
grounding accidents. Two linearizations of the model lead to mixed integer models that bound
the optimal value of the original problem with practically near zero optimality gaps. The pa-
per also presents methods for obtaining input data to the model. Preliminary results for small
and realistically-sized instances indicate noteworthy features of our approach. Optimal tugboat
positions are obtained in less than two minutes for realistic instances with a small number of
breakpoints. A test with a real-world instance in Case 3A indicates a total clean-up and socioe-
conomic costs saving opportunity of 45%. Moreover, tests with three representative historical
data sets highlight the importance and benefits of implementing the MIP-U model at the NCA.
Specifically, we demonstrate that on a single day in 2014, decision support by the proposed
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model might have reduced the expected cost from grounding accidents that day from NOK 0.75
million to NOK 0.34 million. In two other studies of actual grounding incidents in 2014, we
predict that adoption of the decision support tool in the hours prior of the grounding events
might have increased the probability of avoiding those accidents from 22% to 86% in the first
incident and from 69% to 79% in the second. The NCA finds these estimates exceptionally
interesting and the proposed decision support tool highly promising as the basis for a real-time
automated system that can assist the NCA’s VTS operators. Although the model is not yet im-
plemented in practice, the examples use real data, which provide an indicate of what we can
expect.

It is recommended that further studies are initiated in order to obtain more accurate input
for the model. First, the region should be partitioned into an "optimal" number of cells. A large
cell size will reduce the precision on tugboat positions as well as vessel scenarios. Conversely,
small cells size gives good precision at the expense of high model complexity. Second, more
than one vessel scenario at each time period and scenario could be considered, which might
lead to a need for Monte Carlo sampling techniques. Third, and most importantly, there is a
need for better assessments of grounding costs at each coastline segment as well as estimates
of probabilities of distress calls. Furthermore, the model can be extended and incorporate a
receding horizon control algorithm to effectively address the uncertainty and dynamic environ-
ment of the problem. In fact, there might be new vessels entering and leaving the region during
the planning horizon. In addition, one of the tugboats could be out of patrol because of sev-
eral reasons such as escort of vessels and crew shift. All this information needs to be updated
dynamically. Finally, different objective functions could be used for the OTP problem. For
instance, minimizing the superquantile instead of the expected cost could be of great interest to
the NCA.
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Capar, İbrahim, Burcu B. Keskin, Paul A. Rubin. 2015. An improved formulation for the
maximum coverage patrol routing problem. Computers and Operations Research 59 1 – 10.
doi:http://dx.doi.org/10.1016/j.cor.2014.12.002. URL http://www.sciencedirect.com/

science/article/pii/S0305054814003232.

Caprara, Alberto, Paolo Toth, Matteo Fischetti. 2000. Algorithms for the set covering problem.
Annals of Operations Research 98(1) 353–371. doi:10.1023/A:1019225027893.

Chircop, P.A., T.J. Surendonk, M.H.L. van den Briel, T. Walsh. 2013. A column generation
approach for the scheduling of patrol boats to provide complete patrol coverage. Proceedings

of the 20th International Congress on Modelling and Simulation. 1–6.

Models and algorithms for optimal dynamic allocation of patrol tugs to oil tankers along the
northern Norwegian coast

70



Church, Richard, Charles ReVelle. 1974. The maximal covering location problem. Papers of

the Regional Science Association 32(1) 101–118. doi:10.1007/BF01942293. URL http:

//dx.doi.org/10.1007/BF01942293.

Church, Richard L., Charles S. ReVelle. 1976. Theoretical and computational links between the
p-median, location set-covering, and the maximal covering location problem. Geographical

Analysis 8(4) 406–415. doi:10.1111/j.1538-4632.1976.tb00547.x. URL http://dx.doi.

org/10.1111/j.1538-4632.1976.tb00547.x.

Church, Richard L., Maria P. Scaparra, Richard S. Middleton. 2004. Identifying critical infras-
tructure: The median and covering facility interdiction problems. Annals of the Association

of American Geographers 94(3) 491–502. doi:10.1111/j.1467-8306.2004.00410.x. URL
http://dx.doi.org/10.1111/j.1467-8306.2004.00410.x.

Dalton, Tracey, Di Jin. 2010. Extent and frequency of vessel oil spills in US marine protected
areas. Marine Pollution Bulletin 60(11) 1939 – 1945.

D’Amico, Steven J., Shoou-Jiun Wang, Rajan Batta, Christopher M. Rump. 2002. A sim-
ulated annealing approach to police district design. Computers and Operations Research

29(6) 667 – 684. doi:http://dx.doi.org/10.1016/S0305-0548(01)00056-9. URL http://www.

sciencedirect.com/science/article/pii/S0305054801000569. Location Analysis.

Davari, Soheil, Mohammad Hossein Fazel Zarandi, Ahmad Hemmati. 2011. Maximal cov-
ering location problem (mclp) with fuzzy travel times. Expert Systems with Applications

38(12) 14535 – 14541. doi:http://dx.doi.org/10.1016/j.eswa.2011.05.031. URL http:

//www.sciencedirect.com/science/article/pii/S0957417411008153.
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