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Abstract

From a theoretical point of view, α-returns to scale is a relevant
alternative to traditional Data Envelopment Analysis models for esti-
mating production technologies under global returns to scale assump-
tions such as strictly increasing or strictly decreasing returns to scale.
However, from a methodological and empirical point of view, the es-
timation of α remains a question that must be answered. This paper
proposes an effective methodology to estimate an optimal value of α
based upon a goodness-of-fit strategy. A global method using a grid-
search is presented first. In addition, for generalized Free Disposal
Hull technologies, a minimum extrapolation principle is developed to
estimate directly the optimal α-returns from a linear program. This
study examined 63 US industries over the period 1987-2012 to demon-
strate the relevancy of our approach.
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1 Introduction

Boussemart, Briec, Peypoch, and Tavera (2009) introduced a specification of
strictly increasing and decreasing returns to scale in multioutput technolo-
gies based on the notion of α-returns to scale. Their work relies on pre-
vious literature on homogeneous multioutput technology developed by Lau
(1978) and Färe and Mitchell (1993). α-returns to scale model appears to
be more theoretically founded than traditional Data Envelopment Analysis
(DEA) returns to scale models in particular the non-decreasing returns to
scale (NDRS) model. The α-returns explicitly imposes that the origin be-
longs to the production possibility set and is a proper way to model global
increasing returns to scale as they are defined in the traditional economic
literature.

While Boussemart et al. (2009) showed how these concepts can be imple-
mented in a DEA framework using a variation of the piecewise homogeneous
constant elasticity of substitution-constant elasticity of transformation (CES-
CET) model introduced by Färe, Grosskopf, and Njinkeu (1988), they did
not discuss the choice of the value for α. In the Boussemart et al. (2009)
paper, α is an exogenous parameter as returns to scale (RTS) are fixed ex
ante in traditional DEA models. In other words, assumptions of constant
returns to scale (CRS), non-increasing returns to scale (NIRS) or NDRS are
first imposed as axioms to define the technology, and the inefficiency scores
are then calculated. In the same line, in Boussemart et al. (2009) the value
of α has to be fixed first before computing inefficiency on the transformed
data under the CES-CET specification.1

The main contribution of this study is that it considers α as an endoge-
nous parameter and to estimate its optimal value as it is done in a traditional
econometric framework. By not imposing a fixed α, we allow for a very flexi-
ble range of technologies in comparison to the three DEA cases (NIRS, CRS,
NDRS). To make the comparison with Cobb-Douglas technologies, the RTS
is defined as the sum of the output/input elasticities, which are free parame-
ters in the specified technology. They are estimated from the observed data
using least-square or maximum likelihood criteria. Our objective is also to
estimate α from an observed set of data by maximizing a goodness-of-fit
criterion that we define as the geometric mean of the efficiency scores.

Under a piecewise homogeneous CES-CET technology, a global approach
using a grid-search method is proposed. While this strategy is quite general,
it is also time-consuming, which is a well-known drawback. In addition, the α
parameter is not really endogenous in the sense that it is selected as the best
value within a predetermined set. Then a more promising approach which
fully endogenizes α is developed. It is based on a minimum extrapolation
principle for a generalized free disposal hull (FDH) technology defined as the

1One notable exception is the variable returns to scale (VRS) model in DEA for which
none of the above RTS assumptions is imposed. However, we cannot directly compare
α-returns, which imposes global RTS, to the VRS model, which is based on local RTS.
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union of individual FDH technologies on which α-returns are applied. Finally,
we show how the optimal α can be estimated by linear programming.

After presenting background information about of α-returns to scale in
Section 2, the estimation methods are discussed in Sections 3 and 4. Section
5 discusses the tractability of the methodological framework by presenting
an empirical implementation of the framework on 63 industries totaling the
entire US economy during the period 1987-2012. Finally, the conclusions are
presented in Section 6.

2 Background

2.1 Production Technology: Definition and Assump-
tions

The production technology transforms inputs x = (x1, · · · , xn) ∈ Rn
+ into

outputs y = (y1, · · · , yp) ∈ Rp
+ under the technology T :

T =
{

(x, y) ∈ Rn+p
+ : x can produce y

}
(2.1)

We suppose that the technology obeys the following axioms:

• T1: (0, 0) ∈ T , (0, y) ∈ T ⇒ y = 0 i.e., no free lunch;

• T2: the set A(x) = {(u, y) ∈ T : u ≤ x} of dominating observations
is bounded ∀x ∈ Rn

+, i.e., infinite outputs cannot be obtained from a
finite input vector;

• T3: T is closed;

• T4: For all (x, y) ∈ T , and all (u, v) ∈ Rn+p
+ , we have (x,−y) ≤

(u,−v)⇒ (u, v) ∈ T (free disposability of inputs and outputs).

2.2 α-Returns to Scale Technologies and Distance Func-
tions

We first define the distance functions. The input Farrell measure is defined
by EI(x, y) = infθ {θ≥ 0 : (θx,y) ∈ T} .

A production technology T is said to be homogeneous of degree α if for
all η > 0:

(x, y) ∈ T ⇒ (ηx, ηαy) ∈ T. (2.2)

Lau (1978) termed these technologies ”almost homogeneous technologies of
degree 1 and α” for all η > 0. A complete characterization is given by Färe
and Mitchell (1993). Obviously, CRS corresponds to α = 1 while strictly
increasing returns corresponds to α > 1 and strictly decreasing returns cor-
responds to α < 1. Boussemart et. al. (2009) termed this property of the
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technology α-returns to scale. It has been shown in Boussemart, Briec, and
Leleu (2010) have shown that under such an assumption almost all the ex-
isting measures (Farrell output measure, hyperbolic measure, proportional
distance function) can be related in closed form under an α-returns to scale
assumption.

We further propose a nonparametric model of production technologies for
which distance functions can be calculated by solving the DEA models first
introduced by Charnes, Cooper, and Rhodes (1978) for constant returns to
scale and Banker, Charnes, and Cooper (1984) for variable returns to scale.
Let us consider a set of J firms A = {(x1, y1) , ..., (xJ , yJ)} ∈ Rn+p

+ . We
denote J = {1, · · · , J}. The production technology can be estimated by
enveloping the observed firms. Under this DEA framework, the production
set for constant returns to scale is defined as:

TCRS =

{
(x, y) ∈ Rn+p

+ : x ≥
∑
j∈J

λjxj, y ≤
∑
j∈J

λjyj, λ ≥ 0

}
(2.3)

We also use a more general CES-CET model introduced by Färe et al.
(1988) and adapted by Boussemart et. al. (2009) to α-returns to scale. It
consists of two parts: the output part, which is characterized by a Constant
Elasticity of Transformation formula, and the input part, which is character-
ized by a Constant Elasticity of Substitution formula. Formally, we consider
the map z 7→ zr = (zr1, · · · , zrm). For all r > 0, this function is an isomorphism

from Rm
+ to itself, and its reciprocal is the map z 7→ z1/r = (z

1/r
1 , · · · , z1/r

m ).
Let us consider the following set:

Tγ,δ =
{

(x, y) : x ≥
(∑
j∈J

λjx
γ
j

)1/γ
, y ≤

(∑
j∈J

λjy
δ
j

)1/δ
, λ ≥ 0

}
(2.4)

Tγ,δ satisfies T1-T4. It is obvious that TCRS = T1,1.
For the sake of simplicity, we shall denote the technical efficiency measure

as:

EI(x, y; γ, δ) = min{θ ≥ 0 : (θx, y) ∈ Tγ,δ}. (2.5)

In the context of our model, we then obtain:

EI(x, y; γ, δ) = min
θ,λ≥0

{
θ : θx ≥

(∑
j∈J

λjx
γ
j

) 1
γ
, y ≤

(∑
j∈J

λjy
δ
j

) 1
δ
}

(2.6)

It is then easy to see that the Farrell input technical efficiency measure
can be computed on Tγ,δ using linear programming. An elementary change
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in the variables yields:[
EI(x, y)

]γ
= min µ

s.t. µxγ ≥
n∑
j=1

λjx
γ
j (2.7)

yδ ≤
n∑
j=1

λjy
δ
j

µ, λ ≥ 0.

3 General Procedure

Intuitively, the goodness-of-fit is an index that measures how far the observed
data is closed from the production frontier. Obviously for one particular
decision-making unit (DMU) the efficiency score is a goodness-of-fit index.
Therefore, at the sample level we are looking for a pair of parameters (γ, δ)
that maximize the input efficiency scores for all DMUs. A natural approach
consists in considering the geometric mean of the Farrell input measures.
The program one should solve is:

max
γ,δ

L(X, Y ; γ, δ) (3.1)

where
L(X, Y ; γ, δ) =

∏
k∈J

EI(xk, yk; γ, δ) (3.2)

The problem we are facing is that even though each EI(xk, yk; γ, δ) can be
computed by linear programming, the global optimization program involves
some nonlinear transformations of the observed data. Hence, a general proce-
dure consists in the elaboration of a grid search method based upon a suitable
discretization of two defined sets in which γ and δ are, respectively, assumed
to lie. Let us consider γ, γ, δ, δ > 0 where γ < γ and δ < δ. Assuming that γ

and δ are sufficiently large, we propose a discretization. This is accomplished
by fixing γ = γ0, γ = γm, δ = δ0, δ = δm. More generally, one assumes that

γh = γ0 + h
m

(γm − γ0) and δl = δ0 + l
m

(δm − δ0) for h, l = 0, 1, ...,m. Let
us denote Γm = {γ0, ...., γm} and ∆m = {δ0, ...., δm}. One needs to find the
pair (γh, δl) maximizing the product of the efficiency scores. Hence, we are
seeking to solve the maximization:

max
h,l

∏
k∈J

EI(xk, yk; γh, δl). (3.3)

If (h∗, l∗) yields a maximum, then the best approximation is given by the
subset Tγ∗,δ∗ .
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Example 3.1 Suppose that n = p = 1 and consider the following production
units:

1 2 3

Input 1 4 5/2
Output 1 2 3/2

It is easy to see that the best approximation satisfying T1-T4 yields the
production set:

T =
{

(x, y) ∈ R2
+ : y ≤

√
x
}
.

This two-dimensional production set satisfies the 1
2
-returns to scale assump-

tion. In particular, notice that (x2, y2) = (4, 2) = (4.1, (4)
1
2 .1). Moreover,

since the production function f : x 7→
√
x is strictly concave, (x3, y3) =

(5/2, 3/2) = (x1+x2
2

, y1+y2
2

) does not belong to the efficient frontier of T .
Fixing the value of γh = γ0 + 1/2m and of δh = δ0 + 1/2m such that

m = {0, 1, 3, 4, 5, 6, 7, 8, 9, 10} and γ0 = δ0 = 1/2, the technology set becomes:

T k1/2,1/2 = {(xk, yk) : xk ≥
3∑
j=1

(λjx
1/2
j )2, yk ≤ (

3∑
j=1

λjy
1/2
j )2, λ ≥ 0}

...

T k3,1/2 = {(xk, yk) : xk ≥
3∑
j=1

(λjx
3
j)

1/3, yk ≤ (
3∑
j=1

λjy
1/2
j )2, λ ≥ 0}

...

T k5,5 = {(xk, yk) : xk ≥
3∑
j=1

(λjx
5
j)

1/5, yk ≤ (
3∑
j=1

λjy
5
j )

1/5, λ ≥ 0}.

And the input-Farrell technical efficiency is defined by:

(EI
k)1/2(xk, yk; 1/2, 1/2) = min{θ1/2 : θ1/2x

1/2
k ≥

3∑
j=1

λjx
1/2
j , y

1/2
k ≤

3∑
j=1

λjy
1/2
j , λ ≥ 0}

...

(EI
k)3(xk, yk; 3, 1/2) = min{θ3 : θ3x3

k ≥
3∑
j=1

λjx
3
j , y

1/2
k ≤

3∑
j=1

λjy
1/2
j , λ ≥ 0}

...

(EI
k)5(xk, yk; 5, 5) = min{θ5 : θ5x5

k ≥
3∑
j=1

λjx
5
j , y

5
k ≤

3∑
j=1

λjy
5
j , λ ≥ 0}.
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The computation is made through the following linear program:

(EI
k)γ(xk, yk; γ, δ) = min θγ

s.t θγxγk ≥
3∑
j=1

λjx
γ
j

yδk ≤
3∑
j=1

λjy
δ
j

θ, λ ≥ 0.

The grid search is obtained through the computation of L(X, Y ; γ, δ) =∏3
k=1E

I
k(xk, yk; γ, δ):

Table 1: Grid search of the optimum values of γ and δ

δ
γ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.5 0.3 0.17 0.14 0.13 0.12 0.12 0.12 0.11 0.11 0.11
1 0.9∗ 0.3 0.21 0.17 0.16 0.14 0.14 0.13 0.13 0.12

1.5 0.34 0.52 0.3 0.23 0.19 0.17 0.16 0.15 0.14 0.14
2 0.13 0.9∗ 0.43 0.3 0.24 0.21 0.19 0.17 0.16 0.16

2.5 0.05 0.55 0.62 0.39 0.3 0.25 0.22 0.2 0.18 0.17
3 0.02 0.34 0.9∗ 0.52 0.37 0.3 0.26 0.23 0.21 0.19

3.5 0.01 0.21 0.65 0.68 0.47 0.36 0.3 0.26 0.24 0.22
4 0 0.13 0.47 0.9∗ 0.58 0.43 0.35 0.3 0.27 0.24

4.5 0 0.08 0.34 0.7 0.72 0.52 0.41 0.34 0.3 0.27
5 0 0.05 0.24 0.55 0.9∗ 0.62 0.48 0.39 0.34 0.3

(∗) the maximum value of L.

The maximum value of L is 0.9 for the following pair of parameters:

γ 0.5 1 1.5 2 2.5

δ 1 2 3 4 5

Since α = γ/δ, it is obvious that α? = 1/2.

4 Minimal Extrapolation and Linear Programs

to Estimate α

In this section, we propose a tractable procedure to find an optimal value
of α under a generalized FDH technology. This approach fully endogenizes
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α and estimates its value by linear programming. For each firm k ∈ J , we
consider an individual technology defined by:

Qγ,δ(xk, yk) =
{

(x, y) ∈ Rn+p
+ : x ≥ λ1/γxk, y ≤ λ1/δyk, λ ≥ 0

}
. (4.1)

For each j ∈ J let us denote:

E
(k)
I (xj, yj; γ, δ) = min{θ : (θxj, yj) ∈ Qγ,δ(xk, yk)} (4.2)

By definition, one has E
(k)
I (xk, yk; γ, δ) = 1. From Boussemart et. al. (2009)

one can show that:

E
(k)
I (xj, yj; γ, δ) =

[
max

h∈car(yk)

yj,h
yk,h

]δ/γ
.
[

max
i∈car(x)

xk,i
xj,i

]
. (4.3)

Suppose now that we define a global technology as the union of each
individual technology by:

T †γ,δ =
⋃
k∈J

Qγ,δ(xk, yk). (4.4)

From Bousemart et. al. (2009) and using (4.2) one has:

E†I(xj, yj; γ, δ) = min{θ : (θxj, yj) ∈ T †γ,δ} (4.5)

= min
k∈J

([
max

h∈car(yh)

yj,k
yk,h

]δ/γ
.
[

max
i∈car(x)

xk,i
xj,i

])
(4.6)

By defining α = δ/γ, the problem we are facing is to find α?, which
maximizes the quantity M defining the index of goodness of fit.

M(X, Y ; γ, δ) =
∏
j∈J

E†I(xj, yj; γ, δ) (4.7)

subject to the constraint that (xj, yj) ∈ T †γ,δ for all j ∈ J .

By construction, for all j ∈ J one has (xj, yj) ∈ T †γ,δ, since the subset

T †γ,δ is constructed as the finite union of several individual production sets,
each containing the observed production vectors.

It follows that this program can be solved by solving the maximization
problem:

max
α

∏
j∈J

min
k∈J

([
max

h∈car(yk)

yj,h
yk,h

]1/α

.
[

max
i∈car(x)

xk,i
xj,i

])
. (4.8)

Taking, the logarithm, we obtain:

max
α

∑
j∈J

min
k∈J

([
1/α ln

(
max

h∈car(yk)

yj,h
yk,h

)]
+ ln

([
max
i∈car(x)

xk,i
xj,i

]))
. (4.9)
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Let us denote β = 1/α, cj,k = ln
(

maxh∈car(yk)
yj,h
yk,h

)
, and dj,k = ln

([
maxi∈car(x)

xk,i
xj,i

])
.

The above program can be converted to:

max
β

∑
j∈J

min
k∈J

(βcj,k + dj,k) . (4.10)

which is solved by the following linear program:

max
β,λj

∑
j∈J

λj

st. λj ≤ (βcj,k + dj,k) k ∈ J , j ∈ J . (4.11)

The linear program has |J | + 1 variables and |J |2 constraints. Finally,
one obtains α? = [β?]−1. Below, we use the same example introduced in the
preceding section to provide an intuitive illustration of the above results.

Example 4.1 Suppose that n = p = 1 and considers the input-output points
(x1, y1) = (1, 1), (x2, y2) = (4, 2) and (x3, y3) = (5/2, 3/2). The minimum
extrapolation yields the production set:

T =
{

(x, y) ∈ R2
+ : y ≤

√
x
}
.

which satisfies the 1
2
-returns to scale assumption. Let us construct the indi-

vidual technologies for each observation. We have:

Qγ,δ(x1, y1) = Qγ,δ(1, 1) =
{

(x, y) ∈ R2
+ : x ≥ λ1/γ.1, y ≤ λ1/δ.1, λ ≥ 0

}
.

Qγ,δ(x2, y2) = Qγ,δ(4, 2) =
{

(x, y) ∈ R2
+ : x ≥ λ1/γ.4, y ≤ λ1/δ.2, λ ≥ 0

}
.

Qγ,δ(x3, y3) = Qγ,δ(
5

2
,
3

2
) =

{
(x, y) ∈ R2

+ : x ≥ λ1/γ.
5

2
, y ≤ λ1/δ.

3

2
, λ ≥ 0

}
.

The computation of efficiency measures yields:

E
(1)
I (1, 1; γ, δ) = 1, E

(2)
I (1, 1; γ, δ) =

(1

2

) γ
δ .4, E

(3)
I (1, 1; γ, δ) =

(2

3

) γ
δ .

5

2

E
(1)
I (4, 2; γ, δ) =

(
2
) γ
δ .

1

4
, E

(2)
I (4, 2; γ, δ) = 1, E

(3)
I (1, 1; γ, δ) =

(4

3

) γ
δ .

5

8

E
(1)
I (

5

2
,
3

2
; γ, δ) =

(3

2

) γ
δ .

2

5
, E

(2)
I (

5

2
,
3

2
; γ, δ) =

(3

4

) γ
δ .

8

5
, E

(3)
I (

5

2
,
3

2
; γ, δ) = 1

For the entire technology, we have:

EI(1, 1; γ, δ) = min
{

1, 4
(1

2

) γ
δ ,

5

2

(2

3

) γ
δ

}
9
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EI(4, 2; γ, δ) = min
{1

4

(
2
) γ
δ , 1,

5

8

(4

3

) γ
δ

}
EI(

5

2
,
3

2
; γ, δ) = min

{2

5

(3

2

) γ
δ ,

8

5

(3

4

) γ
δ , 1
}

Setting β = γ
δ
, we should solve the maximization program:

max
β

(
min

{
1, 4
(1

2

)β
,
5

2

(2

3

)β}
,min

{1

4

(
2
)β
, 1,

5

8

(4

3

)β}
,min

{2

5

(3

2

)β
,
8

5

(3

4

)β
, 1
})

Taking the logarithm and applying a maxi-min prodedure yields:

max
λ,β

λ1 + λ2 + λ3

λ1 ≤ 0

λ1 ≤ ln 4− β ln 2

λ1 ≤ ln
5

2
+ β ln

2

3
λ2 ≤ − ln 4 + β ln 2

λ2 ≤ 0

λ2 ≤ ln
5

8
+ β ln

4

3

λ3 ≤ − ln
5

2
+ β ln

3

2

λ3 ≤ ln
8

5
+ β ln

3

4
λ3 ≤ 0

The solution is β? = ln 4
ln 2

= 2. Hence, we retrieve α? = 1
2
.

5 An Analysis of the α-Returns to Scale for

US Industries

This section discusses an empirical implementation of the minimum extrapo-
lation principle to estimate the α-returns to scale. We applied our framework
to 63 industries representing the entire US economy from the period 1987-
2012.

5.1 The data

The underlying technologies are defined with one output and three inputs.
The output is measured by the gross output while the input vector contains

10
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intermediate inputs, labor, and capital services (including equipment, struc-
ture, and intellectual property products). All basic data is collected from
the production accounts established by the Bureau of Economic Analysis
(BEA). For 63 different sectors (detailed in the Appendix) over the period
1987-2012, the variables are expressed in constants as US dollars (quantity
indexes are weighted by their corresponding value levels in 2009). Volumes
of capital services are estimated by the capital depreciation at the constant
price. The quantity index of labor is based on the evolution of full-time
equivalent employees.

5.2 Empirical implementation of the global model

The gross output, intermediate inputs, labor, and capital services for industry
j at year t are denoted by Y t

j ,M
t
j , L

t
j, K

t
j , t. According to equation 4.11, the

global α-returns to scale of year t can be computed by the following linear
program:

max
λtj ,β

t

63∑
j=1

λtj

s.t λtj ≤ βtctj,k + dtj,k (5.1)

∀k ∈ {1, ..., 63}, ∀j ∈ {1, ..., 63}

where ctj,k = ln
(
Y tj
Y tk

)
, dtj,k = ln

(
max

[
Mt
j

Mt
k
,

Ltj
Ltk
,

Kt
j

Kt
k

])
.

Running LP (5.1) for all t ∈ {1987, ..., 2012} , one can estimate both
the time-series of efficiency scores and the α-returns to scale for the US
global technology. More precisely, trough the value of the objective function,

one can derive the efficiency scores equal to exp
(∑63

j=1

λtj
63

)
. The α-returns

to scale are evaluated with the optimal levels of the variables βt such as
αt = (βt)−1.

5.3 Results

Table 2 presents the results for the efficiency scores and the optimal α-returns
to scale.

Figure 1 presents the efficiency scores for the global technology over the
period 1987-2012. According to our results, the US economy has continuously
improved its productive performance for the last 26 years. The subprime cri-
sis did not affect significantly the growth rate of efficiency scores. Moreover,
the progress observed during the final years 2007-2012 reflects a continuation
of the trend detected over the pre-crisis period (2003-2007).
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Table 2: Technical efficiency for the US economy and returns to scale

Year Efficiency αt

1987 0.839 1.09
1988 0.845 1.11
1989 0.850 1.10
1990 0.849 1.09
1991 0.858 1.09
1992 0.853 1.11
1993 0.864 1.10
1994 0.871 1.12
1995 0.873 1.10
1996 0.874 1.09
1997 0.880 1.06
1998 0.871 1.06
1999 0.878 1.05

Year Efficiency αt

2000 0.875 1.05
2001 0.871 1.04
2002 0.885 1.03
2003 0.883 1.02
2004 0.899 1.01
2005 0.915 1.02
2006 0.918 1.01
2007 0.914 1.03
2008 0.920 1.01
2009 0.923 1.02
2010 0.937 1.01
2011 0.938 1.00
2012 0.944 1.01
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90%
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98%

100%

1987 1992 1997 2002 2007 2012

Figure 1: Efficiency scores of the US economy

Figure 2 details the levels and evolutions of the returns to scale. Af-
ter an initial sub-period of nine years (1987-1995) during which US global
technology was characterized by increasing returns to scale (α > 1), another
nine-year interval (1996-2004) shows a rapid decline.
Since that time, it appears that the US economy has nearly converged to
a constant returns to scale technology. This implies that industries tend to
their most productive scale size (MPSS), thereby improving their productive
performances. This last result is in agreement with the positive evolution of
the efficiency scores, which is confirmed by the strong negative correlation
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Figure 2: α-returns to scale for global technology

between the efficiency scores and the α-returns (R=-0.86).

Conclusion

While α was settled as an exogenous parameter in the initial contribution of
Boussemart et al. (2009), the main contribution of this paper is to consider
α as an endogenous parameter. We proposed a practical methodology to
estimate its optimal value based upon a goodness-of-fit strategy. For gener-
alized FDH technologies, we showed that the estimation of α can be done by
linear programming. The empirical application to US industries shows the
relevancy of the estimation strategy. In this paper, we considered a unique α
that can be applied uniformly to all components of input/output-vectors and
to all DMUs. In the future, this topic could be further studied by examining
two additional ideas. First, it would be interesting to investigate a specific
α for each input/output component. Second the idea of individual α-returns
to scale can be considered where α could be specific to each DMU.
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Appendix

J Industry
1 Farms
2 Forestry, fishing, and related activities
3 Oil and gas extraction
4 Mining, except oil and gas
5 Support activities for mining
6 Utilities
7 Construction
8 Wood products
9 Nonmetallic mineral products
10 Primary metals
11 Fabricated metal products
12 Machinery
13 Computer and electronic products
14 Electrical equipment, appliances, and components
15 Motor vehicles, bodies and trailers, and parts
16 Other transportation equipment
17 Furniture and related products
18 Miscellaneous manufacturing
19 Food and beverage and tobacco products
20 Textile mills and textile product mills
21 Apparel and leather and allied products
22 Paper products
23 Printing and related support activities
24 Petroleum and coal products
25 Chemical products
26 Plastics and rubber products
27 Wholesale trade
28 Retail trade
29 Air transportation
30 Rail transportation
31 Water transportation
32 Truck transportation
33 Transit and ground passenger transportation
34 Pipeline transportation
35 Other transportation and support activities
36 Warehousing and storage
37 Publishing industries (includes software)
38 Motion picture and sound recording industries
39 Broadcasting and telecommunications
40 Information and data processing services
41 Federal Reserve banks, credit intermediation, and related activities
42 Securities, commodity contracts, and investments
43 Insurance carriers and related activities
44 Funds, trusts, and other financial vehicles
45 Real estate
46 Rental and leasing services and lessors of intangible assets
47 Legal services
48 Computer systems design and related services
49 Miscellaneous professional, scientific, and technical services
50 Management of companies and enterprises
51 Administrative and support services
52 Waste management and remediation services
53 Educational services
54 Ambulatory health care services
55 Hospitals and nursing and residential care facilities
56 Social assistance
57 Performing arts, spectator sports, museums, and related activities
58 Amusements, gambling, and recreation industries
59 Accommodation
60 Food services and drinking places
61 Other services, except government
62 Federal government
63 State and local government
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