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Abstract

Assessment of risk levels for existing credit accounts is
important to the implementation of bank policies and offering
financial products. This paper uses cluster analysis of be-
haviour of credit card accounts to help assess credit risk level.
Account behaviour is modelled parametrically and we then
implement the behavioural cluster analysis using a recently
proposed dissimilarity measure of statistical model parameters.
The advantage of this new measure is the explicit exploitation
of uncertainty associated with parameters estimated from
statistical models. Interesting clusters of real credit card
behaviours data are obtained, in addition to superior prediction
and forecasting of account default based on the clustering
outcomes.

Keywords: Behavioural credit scoring; credit behaviour
clusters; clustering parameter uncertainty; default prediction.

1. Introduction

Behavioural credit scorecards can be defined as statistical
models of customer behaviour, i.e. card usage and repayments,
over time (Till and Hand, 2003). The aim of these models is to
identify which of the existing customers may experience diffi-
culty paying back the loan (Thomas et al., 2002). Identification
of distinct risk levels might support operating decisions with re-
gard to increasing credit limits or offering a financial product
(Thomas et al., 2002; Till and Hand, 2003).

In this paper, we present a new methodology for identifying
different risk groups based on the available data of customer
behaviour. The method aims to assign credit card accounts to
clusters such that the behaviours of accounts in the same clus-
ters are similar. This cluster analysis can be used as a tool for
building different behavioural scorecards or developing distinct
marketing strategies for groups of accounts.

A typical interest in retail banking is predicting the probabil-
ity of a customer not being able to make the minimum amount
of the agreed monthly repayment for three consecutive months,
this event referred to as ‘default’. A default prediction model

based on aggregate summaries of account behaviour is tradi-
tionally used in behavioural credit scoring (Thomas, 2009). The
aggregate summary can be defined as a statistic which describes
the time series in a single value such as the mean or median.
This approach might result in loss of valuable information in-
herent in the dynamic behaviour data. We introduce a new ap-
proach to the development of the default prediction and fore-
casting models. This approach utilises the outcomes of the clus-
ter analysis of the credit behaviours. To distinguish between a
prediction model and a forecasting model, the former predicts
the default status over an observed behaviour period, whereas
the forecasting model predicts the default status at a future pe-
riod after observing the behaviour.

A fundamental aspect in clustering methods is the specifica-
tion of a dissimilarity measure that is appropriate for the data.
As behaviours can be considered as time series, serial depen-
dence needs to be considered in the definition of the dissimilar-
ity measure. Two stages for defining the dissimilarity between
pairs of time series objects will be considered in this paper. The
first is fitting a multivariate time series model to express the
dynamic characteristics of the account. This stage reduces the
dimension of the data by providing the model parameters as a
summary, in addition it makes the dissimilarity comparison fea-
sible between credit accounts with different numbers of trans-
actions.

The second stage computes the dissimilarity between confi-
dence regions of the model parameters. Since the objects being
clustered are parameters of a statistical model, they exhibit sta-
tistical uncertainty. Notably, this uncertainty is driven by the
amount of data used to estimate the model. This uncertainty-
aware dissimilarity measure, recently introduced in Bakoben
et al. (2016), is intended to account for this uncertainty in the
estimated model parameters. The consideration of such uncer-
tainty produces more reliable clusters than clusters based only
on parameter estimates. We are not aware of any literature that
has addressed the cluster analysis of credit behaviours using the
time series clustering approaches that are described in this pa-
per.

A previous study that considers differentiating credit ac-
counts based on their behaviours is the paper by Hsieh (2004).
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The author applies a self-organizing map neural network for the
purpose of identifying distinct profitable groups based on trans-
action variables including repayment behaviour. This was based
on aggregate values of the account behaviours. In another study
by Wei and Mingshu (2013), credit card accounts were divided
into clusters based on an objective cluster analysis (OCA) for
application and behavioural variables. The standard Euclidean
distance was used for dissimilarity computations. Then a neu-
ral network was created for each cluster to predict the ‘good’
and ‘bad’ accounts. Again this study considers aggregate rep-
resentations of behaviours which may result in loss of valuable
information about the dynamic changes in account behaviours
over time.

One of the earliest studies concerned with cluster analysis
of credit account behaviours is the paper by Edelman (1992)
which performs the clustering on delinquency count. In Edel-
man (1992), the overall total delinquencies of accounts ob-
served at each month over a two-year period were clustered us-
ing the k-medoids clustering method with Euclidean distance,
where the main purpose of the analysis is to identify clusters
of months or a combination of months and products. Adams
et al. (2001) divide credit card accounts into two clusters on the
basis of least squares parameter estimates of a linear regression
model. The linear model is fitted to the cumulative numbers of
missed repayments over a twelve months period. Again with
respect to credit card behaviours, Till and Hand (2003) clus-
ter delinquency counts into groups based on Euclidean distance
of the linear slope of a polynomial model for the delinquency
count over time. Note that those papers were concerned with
clustering a univariate behaviour while the clustering approach
presented in this paper is applicable to multiple behaviours.

This paper is organised as follows. Section 2 describes the
available real data set of credit card account behaviours. Sec-
tion 3 illustrates the two stages of the cluster analysis. Section
4 introduces the prediction and forecasting models of default.
The empirical results of clustering account behaviours are pre-
sented in Section 5. Section 6 and 7 show the outcomes of the
default prediction and forecasting models, respectively. Finally,
Section 7 summarises the work of this study.

2. Data set

The credit card data set includes monthly behaviours for 494
accounts at an anonymous bank in the UK for a maximum pe-
riod of 37 months. The objective with this data is to assign
customers into clusters based on their monthly behaviours and
we aim to discriminate between high and low risk customers.

For a single customer s, we denote the corresponding be-
havioural credit account by Ys and its length by Ts. Each ac-
count has the following characteristics: ys,repay denotes a vector
of the monthly repayment amount made by the customer, ys,bal
denotes a vector of total balance on the account at the end of
each month and ys,cl denotes a vector of the monthly credit limit
which is static for most customers. The latter two behaviours
will be considered indirectly through a new behaviour vector,

ys,ut, that is called utilisation rate; the ratio of total balance to
credit limit,

utilisation rate =
total balance
credit limit

,

where the value of utilisation rate should be between 0 and 1.
However, there are cases when this rate goes below or over the
standard range. For example, customers overpay their loans (i.e.
ys,bal < 0) or the total balance exceeds the credit limit (i.e.
ys,bal > ys,cl). The mean of utilisation rate in the credit data is
0.6355. The minimum and maximum values are −7.0990 and
3.5600, respectively.

Other characteristic in the credit card data set includes delin-
quency count – a cumulative number of missed number of pay-
ment. This ranges between 0 and 12. In addition, a default
status, xs(t) ∈ {0, 1} for t = 1, . . . Ts, is defined based on
the delinquency count. If a customer misses several consecu-
tive payments (usually three) by time t, then the default status
xs(t) = 1 otherwise xs(t) = 0.

Note that only the repayment amount and utilisation rate will
be used to build the clusters.

For the purpose of evaluation, a proportion of 60% training
data from the credit accounts is used for the construction of the
model and 40% of the accounts are held out for testing.

3. Clustering method

This section describes the two stages of defining dissimilarity
between credit card behaviours. Section 3.1 describes the first
stage that is the time series modelling of customer behaviour,
Section 3.2 describes the conventional approach for defining
dissimilarity between model parameters and Section 3.3 illus-
trates the inclusion of parameter uncertainty in the dissimilarity
measure for the cluster analysis of credit card behaviours.

3.1. Time series modelling

First, we reduce the dimension of the observed behaviours to
make the dissimilarity comparison feasible between the credit
accounts. We follow the time series model-based reduction
method in Bakoben et al. (2015).

For a single account s, the monthly repayment be-
haviour, ys,repay = [ys,repay(t = 1), . . . , ys,repay(t = Ts)]

T ,
and the utilisation rate behaviour, ys,ut =
[ys,ut(t = 1), . . . , ys,ut(t = Ts)]

T , can be described by a
bivariate vector autoregression model (VAR) of order one
(Lütkepohl, 2005) as follows:

(
ys,repay(t)
ys,ut(t)

)
=

(
θs,1 θs,2
θs,3 θs,4

)(
ys,repay(t− 1)
ys,ut(t− 1)

)
+

(
u1(t)
u2(t)

)
, (1)

where u = [u1(t), u2(t)]T is a vector of weakly stationary
white noise process, u ∼ N(0,Σ). Each equation in a VAR
model is estimated separately by an ordinary likelihood estima-
tor (Lütkepohl, 2005).
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By fitting the bivariate VAR model of order one to N be-
havioural credit accounts, we obtain N vectors of VAR coeffi-
cients θs = [θs,1, . . . , θs,p]

T where in this case p = 4.

3.2. Conventional clustering approach

As described in Bakoben et al. (2015), Euclidean distance
can be computed directly between a pair of VAR coefficients
vectors. For two credit account behaviours Yr = [yr,repay,yr,ut]
and Ys = [ys,repay,ys,ut], Euclidean distance between their
corresponding VAR coefficients θr = [θr,1, . . . , θr,p]

T and
θs = [θs,1, . . . , θs,p]

T is computed as follows:

deuc(Yr,Ys) =

√√√√ p∑
i=1

(θr,i − θs,i)2. (2)

3.3. Uncertainty-aware clustering

These estimated VAR parameters are subject to statistical un-
certainty. This type of uncertainty can be characterised by the
covariance matrix of the estimated parameter vector, denoted by
Ψ. Bakoben et al. (2016) proposed an approach for the explicit
inclusion of uncertainty in the computation of dissimilarity be-
tween data points. The idea of the new metric is to measure
the overlap between (1− α) confidence regions of VAR coeffi-
cients. Each confidence region is represented geometrically by
an ellipsoid defined by:

Es(θs,Ψs) : {(x− θs)T (cΨ̂s)
−1

(x− θs) ≤ 1},

where the scalar c =
√
pFp,Ts−p−1,1−α, Ts is the length of the

corresponding credit account and α is the significance level.
The ratio of overlap between each pair of ellipsoids (Er, Es)

is given by

Rr,s ≡
VEr∩Es

VEr + VEs − VEr∩Es
, r 6= s, VEr , VEs > 0, (3)

where the hyper-volumes of ellipsoids VEr and VEs are com-

puted by the mathematical formula VE = πp/2|Ψ|1/2
Γ(p/2+1) (Friendly

et al., 2013). The volume of the overlap region, VEr∩Es , is esti-
mated by Monte Carlo simulations (Robert and Casella, 2010)
as there is no-closed formula for the overlap volume. Then, the
dissimilarity between confidence regions of VAR coefficients is
defined by

dell(Yr,Ys) = 1−Rr,s, dell ∈ [0, 1]. (4)

The next step in the credit behaviours cluster analysis is the
implementation of the k-medoids partitioning cluster method
(Kaufman and Rousseeuw, 1987, 2008). Each account is as-
signed to the cluster with the closest medoidm. The k-medoids
method with the uncertainty-aware dissimilarity attempts to

identify clusters that minimise the sum of this distance to the
medoids m1, . . . ,mk.

For a credit account Ys, a vector of cluster allocation zs =
(zs,1, . . . , zs,k), is defined where each element in the vector, zs,l
for l = 1, . . . , k, is given by,

zs,l =

{
1 if argminl dell(Ys,Yml

)
0 Otherwise. (5)

4. The use of clusters for model predictions and forecasts

We develop a model to predict default. This model will also
be used to evaluate the clustering performance. Here, we in-
troduce a binary response variable, x̃s, which indicates whether
an account has ever been defaulted or not. This binary value
for an account s is measured over the available account’s period
[t = 1, . . . , t = Ts] as follows:

x̃s = max[xs(t = 1), . . . , xs(t = Ts)],

where x̃s = 1 indicates that the account s has been defaulted
at least once.

The default status is predicted based on the cluster assign-
ment that is an explanatory variable in the logistic regression
model:

p(x̃s = 1|zs) =
eβ0+

∑k
j=1 βjzs,j

1 + eβ0+
∑k

j=1 βjzs,j
. (6)

Equation 6 is also used for forecasting in which the cluster
analysis is performed on the first 2/3 of each account profile and
the forecast default is measured over the last 1/3 period. This is
due to variable lengths of the available credit account profiles,
hence choosing specific lengths for the observation and fore-
cast periods is not reasonable as the profile length of an account
might be less than the specified observation period. Figure 1 il-
lustrates the observation and forecast period in the default fore-
casting model. Note that some time-window after credit card
origination is required to allow for measurement in observation
period (e.g. t = 13 to t = 24 in Figure 1).

t = 1, . . . , 12 t = 13, . . . , 24 t = 25, . . . , 37

Observation period Forecasting period

1

Figure 1: Illustration for observation and forecasting period in default
forecasting model.

In order to evaluate the new default model, we compare its
performance to the conventional aggregate model. This mod-
els the default status with aggregate representations of the time
series defined here by a vector gs = (ḡrepay, ḡut)

T which con-
sists of the mean values of the univariate time series ys,repay and
ys,ut. The aggregate repayment behaviour is given by

ḡrepay =

∑Ts

t=1 ys,repay(t)

Ts
. (7)
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Similarly, the aggregate utilisation rate behaviour is com-
puted. Then, the aggregate default model is defined by

p(x̃s = 1|gs) =
eβ0+β.gs

1 + eβ0+β.gs
, (8)

where β is a 2-dimensional parameter vector for the aggre-
gate representations gs.

The prediction and forecasting performance of default mod-
els are evaluated by the following common assessment crite-
ria: the H-measure (Hand, 2009), Kolmogorov-Smirnov statis-
tic (Duda et al., 2001), Gini-index (Hastie et al., 2009) and
area under the receiver-operating characteristic curve (AUC)
(Fawcett, 2006).

5. Results: Clusters of credit card behaviours

We apply the uncertainty-aware clustering method described
in Section 3 with the number of clusters k = 3. This number
was selected considering a reasonable objective clustering of
the credit account behaviours and finding the optimal number
of clusters is beyond the scope of this paper.

The proportions of credit accounts in the three clusters are
presented in Table 1. Table 1 also shows the cluster outcomes
based on clustering using the standard Euclidean distance. In
comparison to the ellipsoid based clusters, Euclidean distance
tends to create one cluster that includes a large proportion of
accounts whereas the other clusters include a small proportion
of the credit account sample. For example, cluster C1 comprises
62% of the total accounts. This demonstrates the importance of
incorporating uncertainty in clustering.

Table 1: The size of clusters C1, C2 and C3 obtained from the k-
medoids clustering using the ellipsoid dissimilarity dell and Euclidean
distance deuc for a sample of 494 credit accounts.

k-medoids cluster # C1 C2 C3
dell 244(50%) 115(23%) 135(27%)
deuc 307(62%) 144(29%) 43(9%)

The outcome of the k-medoids clustering is displayed in Fig-
ure 2 using principal component analysis (PCA) (Jolliffe, 2010).
The PCA was applied to the VAR parameter estimates, θ, to vi-
sualise the structure of the resulting clusters by reducing the di-
mensionality of the VAR parameters. The PCA plots show ma-
jor trends which are determined by the first three components.
It appears that the three clusters are not clearly separated and
it is difficult to observe clear patterns in the original parameter
space.

To further investigate the behaviours of the accounts in the
three clusters, we study each behaviour in the data space.

Repayment amount, credit limit and total balance behaviours

The boxplots in Figure 3 show representations of the ac-
count behaviours in data space on the basis of the outcomes of

uncertainty-aware clustering which was performed on the pa-
rameter space. These plots represent the logarithm of the be-
haviour sample means for the account profiles separately for
clusters C1, C2 and C3.

The credit accounts belonging to cluster C3 seem to make
low payments compared to accounts in the other two clusters.
This amount is slightly larger in cluster C1 than C2. As shown
in the second plot, the highest credit limit seems to be for the
accounts assigned to cluster C1, whereas almost equal median
values of the credit limits are observed for the accounts in clus-
ters C2 and C3. Although the median of credit limits for the
accounts in cluster C3 is lower than the median for accounts
in C1, both groups seem to have equal amount of outstanding
debt (Total balance). That might be because they spend equal
amount of money or members of cluster C3 are not paying their
debt or paying only small amount of the debt. This information
can be explored by comparing the boxplots of the total balance
and credit limits between the three clusters. Additionally, a few
extremely low outstanding amounts in C1 and high outstanding
amounts in C3 are clearly observed.

Delinquency Counts

In this section, we explore the delinquency behaviour in the
obtained clusters. Recall this variable was not included in the
clustering process but the cluster analysis of VAR parameters
revealed interesting aspects of the delinquency behaviour as
shown in Figure 4. This figure represents the sample means of
delinquency for the credit accounts within each cluster at each
month from t = 1 to t = 37.

From the left plot in Figure 4, the credit accounts in the three
clusters might be described as those accounts who never default
as the delinquency count is always less than 2. These accounts
were assigned to cluster C1. Also accounts in C2 never defaulted
and the mean of the delinquency count for this group is less than
the mean of delinquency for accounts in cluster C1 particularly
when t > 20. In contrast, the last cluster C3 includes those
whose delinquency count is gradually increasing over their pro-
file period and consequently default. Thus, cluster C3 can be
considered as the highest risk group compared to the other two
clusters.

Looking at the delinquency plot obtained from the clustering
approach that utilises Euclidean distance (right plot in Figure
4), the general structure seems to be similar to the structure ob-
tained using the ellipsoid dissimilarity measure. However, the
Euclidean based clustering approach seems to assign some of
the high risk accounts to the other clusters. This is clearly ap-
parent by comparing the overall means of the delinquency over
time in the high risk cluster in Euclidean clustering and these
measured based on the clustering outcomes of the ellipsoid dis-
similarity measure.

6. Default prediction model

In this section, we present the result of fitting a logistic re-
gression model for default based on the outcomes of clustering
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Figure 2: Visualising the outcomes of the k-medoids clustering based on the ellipsoid dissimilarity dell for VAR parameter estimates, using
principal components.

VAR model parameters taking into account the associated er-
ror estimates. The default status is computed over the available
profile period of each account. This prediction model was pre-
viously defined in Equation 6, in which the cluster assignment
is a predictor variable for the binary default status. In this sec-
tion, the prediction model is fitted to a training sample of size
296 credit accounts.

This model is compared to the default prediction model in
which cluster analysis was performed without the consideration
of the VAR parameter errors. The performance is measured for
a test sample of size 198 credit accounts.

Table 2 reports the coefficient estimates of the default predic-
tion models for the k-medoids clustering outcomes. It is inter-
esting to find that the cluster assignment is statistically signif-
icant for predicting the default status in most cases. Different
signs for the influence of the cluster assignment on the default
status are only observed in the clusters using the ellipsoid dis-
similarity measure dell. The coefficient associated with cluster
C2 suggests a negative effect of the cluster assignment on the
default status relative to cluster C1, whereas cluster C3 suggests
a positive effect relative to C1. This indicates the proportion of
the default class in one of the clusters is higher than in other
clusters. A noticeable negative coefficient with high error is ob-

served for cluster C3 when clustering using Euclidean distance.
This is due to the small number of objects in this cluster of
which none are from the default class (see Table 3).

Table 3 displays the frequencies and proportions of
default/non-default across clusters in the training data. The
results of ellipsoid dissimilarity measure show the proportion
of default in cluster C3 is relatively higher than the other two
clusters, cluster C1 comes next and the lowest proportion is ac-
counted for cluster C2.

A comparison to the aggregate model (Equation 8) for the
prediction performance of account defaults is reported in Table
4. It is interesting to find that including the uncertainty of the
statistical model parameters in the cluster analysis improved the
prediction performance of the default status with AUC value of
0.7637 (s.e. 0.0397). The prediction model using the cluster as-
signment based on the ellipsoid dissimilarity measure also per-
forms well in comparison to the aggregate model, AUC 0.5310
(s.e. 0.0450).

Additional models are created in an attempt to improve the
default prediction performance. Both the cluster assignment
and the aggregate behaviours are included as predictors in the
logistic regression model. Note that, adding the cluster assign-
ment variable to the aggregate model shows a remarkable im-
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Figure 3: Behaviours of accounts at clusters C1, C2 and C3. These behaviours are measured on different scales. The clustering results are obtained
from the k-medoids method with the ellipsoid dissimilarity dell applied to VAR parameter estimates for credit account behaviours data set.

Table 2: Coefficients of the logistic regression models for predicting account defaults based on cluster assignments. Cluster analysis is performed
using the k-medoids method with the proposed ellipsoid dissimilarity measure dell and Euclidean distance deuc. The regression models are built
on a training sample. Note that C1 is the baseline category.

k-medoids method Estimate Std. Error z value p(|z|)
(a) Ellipsoid dissimilarity dell
Intercept −1.6964 0.2319 −7.3147 2.58e−13

C1 - - - -
C2 −0.5473 0.4602 −1.1893 0.2343
C3 2.3345 0.3292 7.0916 1.33e−12

(b) Euclidean distance deuc
Intercept −0.4647 0.1514 −3.0686 0.0022
C1 - - - -
C2 −1.5068 0.3557 −4.2366 2.27e−5

C3 −17.1014 843.4605 −0.0203 0.9838

provement in the default prediction performance and the un-
certainty clustering made an even bigger improvement to the
aggregate model.
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Figure 4: The means of delinquency counts in clusters C1, C2 and C3 over the available 37 months of account records. Clusters are obtained using
the k-medoids method with the ellipsoid dissimilarity dell (left plot) and Euclidean distance deuc (right plot). The cluster analysis was applied to
the VAR parameters of 494 accounts.

Table 3: Frequencies of default/non-default status in a training sam-
ple. Clusters are obtained using the k-medoids clustering method with
the ellipsoid dissimilarity measure dell and Euclidean distance deuc.

k-medoids clusters C1 C2 C3
dell
non-default(x̃ = 0) 127(43%) 62(21%) 29(10%)
default(x̃ = 1) 19(6%) 8(3%) 51(17%)
deuc
non-default(x̃ = 0) 117(40%) 76(26%) 25(9%)
default(x̃ = 1) 67(23%) 11(4%) 0(0%)

Table 4: Performance assessments for default prediction models
based on the cluster assignment obtained from the k-medoids clus-
tering method using the Ellipsoid dissimilarity dell and the standard
Euclidean distance deuc. These models are compared with the default
prediction model based on aggregate means of the behaviours. The
assessment is performed on a hold-out test sample.

H-measure KS Gini AUC
dell 0.3748 0.5443 0.5273 0.7637
deuc 0.1416 0.3405 0.3563 0.6781
Aggregate model 0.0573 0.1569 0.0620 0.5310
Aggregate model+ dell 0.3962 0.5543 0.5110 0.7555
Aggregate model+ deuc 0.1818 0.3679 0.3527 0.6764

7. Default forecasting model

This section focuses on forecasting the default status of the
credit accounts over unseen future periods of their profiles. As
with the prediction models presented in the previous section, the
cluster assignment is used as an explanatory variable in the fore-
casting models. Recall the clusters are obtained from the obser-

vation period, whereas the default is computed over the fore-
casting period. Table 5 presents the frequencies of default/non-
default classes in the training data.

Table 5: Frequencies of default/non-default status in a training sample
for the default forecasting model. Clusters are obtained using the k-
medoids clustering method with the ellipsoid dissimilarity measure dell
and Euclidean distance deuc.

Clusters C1 C2 C3
dell
non-default(x̃ = 0) 165(30%) 127(23%) 114(20%)
default(x̃ = 1) 6(1%) 30(5%) 119(21%)
deuc
non-default(x̃ = 0) 284(51%) 110(19%) 12(2%)
default(x̃ = 1) 152(27%) 3(1%) 0(0%)

Table 6 reports the coefficients of the logistic regression mod-
els for forecasting the default status based on the cluster assign-
ments. Interestingly, the coefficient estimates are only signifi-
cant in the model based on the uncertainty-aware dissimilarity
measure. Again, as observed in the prediction model in the pre-
vious section, some of the forecasting model coefficients have
high standard errors as a result of small samples of the default
class.

Table 7 compares the forecasting performance between the
proposed forecasting models, where the cluster assignment is
the explanatory variable. Similar to the prediction model,
the proposed forecasting models are compared to the forecast
model on aggregate summaries. The most favourable model is
that based on clustering VAR parameters with the associated
uncertainty. The performance values might be reasonable for
this particular type of application. The AUC for the best model
is 0.7251 (s.e. 6×10−4), whereas the AUC for the model based
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Table 6: Coefficients of the logistic regression models for default forecasting based on cluster assignments. Cluster analysis is performed using
the k-medoids method with the ellipsoid dissimilarity measure dell and Euclidean distance deuc. The regression models are built on the training
sample. The baseline cluster is C1.

k-medoids method Estimate Std. Error z value p(|z|)
(a) Ellipsoid dissimilarity dell
Intercept −3.1209 0.4171 −7.4827 7.28e−14

C1 - - - -
C2 1.8766 0.4463 4.2044 2.62e−5

C3 2.8363 0.4420 6.4175 1.39e−10

(b) Euclidean distance deuc
Intercept −0.7726 0.1026 −7.5342 4.91e−14

C1 - - - -
C2 −17.7934 639.5973 −0.0278 0.9778
C3 −17.7934 1581.9722 −0.0112 0.9910

on Euclidean distance is 0.6123 (s.e. 4 × 10−4). The forecast
model based on aggregate summaries shows the lowest perfor-
mance, AUC 0.5355 (s.e. 7× 10−4).

Table 7: Performance assessments for default forecasting model based
on the cluster assignments obtained from the k-medoids clustering
method using the Ellipsoid dissimilarity measure dell and the standard
Euclidean distance deuc. These models are compared with the default
forecasting model based on aggregate means of the behaviours. The
assessment is performed on the test sample.

H-measure KS Gini AUC
dell 0.1825 0.3382 0.4502 0.7251
deuc 0.0810 0.2237 0.2246 0.6123
Aggregate model 0.0276 0.1219 0.0709 0.5355
Aggregate model + dell 0.1744 0.3230 0.4094 0.7047
Aggregate model + deuc 0.1130 0.2799 0.2172 0.6086

8. Conclusion

This paper introduced a new behavioural clustering approach
that can support the construction of behavioural credit score-
cards. In the clustering process, the credit accounts were rep-
resented by statistical parameter estimates of their behaviours
to represent their associated serial dependence. This results in
a significant dimension reduction of data. In addition, the un-
certainty of the parameter estimates was considered using an
uncertainty-aware dissimilarity measure.

Taking into account the uncertainty of the model parame-
ters has revealed interesting behavioural clusters. Although the
delinquency behaviour of the accounts was not included in the
clustering process, the cluster analysis was able to differentiate
between the high risk group and low risk group.

We also developed a new default model that includes clus-
ter assignments that can be used for prediction and forecasting
purposes. This models default status with cluster assignments.
Both the prediction and forecasting models based on the el-
lipsoid dissimilarity clusters have shown good performance in
comparison to the models based on the outcomes of the clus-

ter analysis which ignores the uncertainty of the parameters,
and also better performance than models based on aggregate
behaviours.

This research could be extended by performing the uncer-
tainty cluster analysis on time-windows over the account pro-
files and study the changes in risk levels over profile history.
This is an interesting extension of the study but it requires
longer behaviour profiles.
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