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ABSTRACT

This paper addresses a lot sizing and scheduling problem inspired from a real-world
production environment apparent in food industry. Due to the scarcity of resources,
only a subset of production lines can operate simultaneously, and those lines need
to be assembled in each production period. In addition, the products are perishable,
and there are often significant sequence-dependent setup times and costs. We first
propose a standard mixed integer programming model for the problem, and then a
reformulation of the standard model in order to allow us to define a branching rule
to accelerate the performance of the branch-and-bound algorithm. We also propose
an efficient relax-and-fix procedure that can provide high-quality feasible solutions
and competitive dual bounds for the problem. Computational experiments indicate
that our approaches provide superior results when benchmarked with a commercial
solver and an established relax-and-fix heuristic from the literature.
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1. Introduction

The lot sizing and scheduling problem (LSP) aims to simultaneously determine the
production quantities and the sequence of production while minimizing costs. The
LSP has received great attention from researchers because of its importance in the
global economy and also due to the challenges to solve it in several practical situations
(Almada-Lobo, Clark, Guimaraes, Figueira, and Amorim (2015); Glock, Grosse, and
Ries (2014)). Several mixed integer programming approaches have been proposed to
deal with LSP, as detailed in the recent review of Copil, Worbelauer, Meyr, and
Tempelmeier (2017).

In this paper, we address an LSP originated from a Brazilian food company that
produces meat products. In this production setting, various production lines share
scarce resources (machines and workers) that need to be designated to the production
lines that will be open at the beginning of the each period. Moreover, the assembly of
the production lines may require the creation of temporary workstations and changes
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in the plant layout, and hence it is desirable for production lines to be assembled
at the start of each production period (typically a day) and remain open until the
end of the period. Since each product can be produced only by a specific production
line, the choice of which production lines to assemble in any given period affects the
set of products produced therein. Moreover, for each production line, changeovers
between items cause sequence-dependent setup costs and times, e.g., due to different
cleaning procedures required for the transition from product A to B vs. from product
B to A. All products are perishable and hence require monitored temperature storage,
which impacts the inventory holding costs significantly. The typical customers are
supermarkets and restaurants, where delays in meeting customer demand are likely to
result in loss of customers, and thus backlogging is only allowed with high penalties.

To sum up, we have three sets of decisions to make in each period of the planning
horizon: i) which production lines to assemble; ii) the sequence of production of the lots
in each line; and iii) the size of the production lots on each line. The aim of the problem
is to minimize the sum of costs associated with production (namely, inventory holding,
backlogging and setup) and costs associated with the assembly of the production lines,
while respecting constraints with regards to the fulfillment of customer demands, the
capacities of resources, the capacities of production lines, and the shelf life of products.

We remark that the main difference between the traditional LSP on parallel ma-
chines (considered, for example, in Almeder and Almada-Lobo (2011); Meyr and Mann
(2013); Xiao, Yang, Zhang, Zheng, and Gupta (2015)) and the problem addressed in
this paper is the need to decide in each period which production lines to assemble, con-
sidering the limited available capacity of the production resources required to perform
these assembly operations. It is then natural to ask “why not acquire the necessary
quantities of resources in order to keep all production lines active during all production
periods?” There are two key answers to this question:

i) acquiring new resources often require an infeasible investment, because the plant
needs to be enlarged, various machines need to be acquired and workers need to
be hired; and

ii) if all production lines remain in production all the time, then there will be
idle machines and idle workers, because demands for individual products vary
significantly from one period to another, and the production of large amounts of
perishable products may significantly increase the inventory holding costs and
the number of products discarded due to limited shelf life.

Therefore, in this paper we propose specific models and solution approaches to deal
with this problem.

A pioneer MIP model was proposed by Smith-Daniels and Ritzman (1988) to deal
with the simultaneous lot sizing and scheduling problem. The model was motivated by
observations made in process industries, and the aim is to minimize the sum of the in-
ventory holding and backlogging costs weighting the completion times of the products.
In the model, the products are grouped into families, and sequence dependent setup
times are considered between products of different families. Specific characteristics,
such as secondary production resources and perishable products are not considered.
Due to the limited computational resources of the time, the model was tested only in
small instances.

Other related research was carried out by Ozdamar and Birbil (1998), who studied
a capacitated lot sizing and loading problem (CLSLP) in industries with multiple
facilities. Each facility can be active or not in each period of a finite planning horizon.
Due to technological limitations, for each item, just a subset of existing facilities can



produce it. The CLSLP differs from the problem described in this paper, because
CLSLP does not consider: i) sequence dependent setups (hence no scheduling); ii) the
perishibility of the items; and iii) the capacity of secondary resources to assemble the
facilities. A hybrid heuristic approach combining simulated annealing, tabu search and
genetic algorithm was proposed and computational tests were performed considering
(relatively small) instances (up to 20 items, 5 facilities and 6 periods) and indicated
that the CLSLP is a very challenging problem from a computational perspective.

In another study, Almeder and Almada-Lobo (2011) investigated a lot sizing and
scheduling problem on multiple machines, where each machine needs to be equipped
with secondary resources (tools) to produce the items. These secondary resources can
be used on every machine and due to the scarcity of these resources, their utilization
needs to be synchronized. Therefore, variables and constraints were incorporated in
two classical lot sizing and scheduling models to capture the start time and the end
time of utilization of each tool in each machine. A specific solution approach was not
proposed, and the analysis of the computational performance of the models showed
that standard branch-and-cut algorithms can not provide good solutions in acceptable
computational times.

Afzalirad and Rezaeian (2016) studied a pure scheduling problem on unrelated par-
allel machines with sequence dependent setup times, and precedence and resource
constraints. As in Almeder and Almada-Lobo (2011), all machines are available any-
time, but to process each job, some secondary resources are required. An integer pro-
gramming model was proposed to minimize the completion time of the jobs, and the
resource utilization was managed using knapsack constraints. A genetic algorithm and
an artificial immune system (AIS) were proposed to find solutions for the problem.

The unrelated parallel machine scheduling problem was also studied by Villa, Val-
lada, and Fanjul-Peyro (2018) considering additional scarce resource. The addressed
problem is similar to the problem considered in Afzalirad and Rezaeian (2016) in the
sense that processing each job requires an amount of additional resources (that may
be a tool or a human resource). Several heuristic approaches were introduced including
construction and improvement procedures, where construction procedures are adap-
tations of heuristics proposed in the literature for other problems, while improvement
procedures are based on local search.

Finally, Giing6r, Unal, and Tagkin (2017) addressed a lot sizing and scheduling
problem on parallel machines motivated by foundry planning in aluminium alloy wheel
production. In this problem, the machines (production lines) are identical and in order
to produce an item, a specific secondary resource (mold) needs to be installed in the
machine. Besides that, the demands are given for the entire planning horizon rather
than for every single period (cumulative demand) and the all-or-nothing assumption
is valid for all production periods. Giingor et al. (2017) showed that the problem is
NP-hard, proposed valid inequalities and a polynomial-time heuristic algorithm for
the problem.

In addition to the fact that the LSP is A/P-hard (James & Almada-Lobo, 2011),
the real-world instances of the problem are very challenging from a computational
perspective. Moreover, even the pure lot sizing problem with multiple items sharing
resources is often computationally challenging (Akartunal, Fragkos, Miller, & Wu,
2016; Doostmohammadi & Akartunali, 2018), and sequencing lot sizes necessitates
novel approaches (Suerie & Stadtler, 2003) due to further complications, as also further
discussed in the recent lot sizing review of Brahimi, Absi, Dauzére-Péres, and Nordli
(2017). Therefore, many researchers proposed heuristic approaches to solve the LSP,
and MIP heuristics in particular achieved promising results for problems arising in



various practical applications (Sel & Bilgen, 2014; Toledo, da Silva Arantes, Hossomi,
Franca, & Akartunali, 2015). Starting with the MIP formulation of the problem on
hand, these heuristics decompose the problem into several small sub-problems, where
only a subset of the complicating binary/integer variables are determined. In this
paper, we propose an MIP heuristic to tackle the specific LSP in practice, in addition
to developing and evaluating branching rules and reformulations of the problem.

The paper is organized as follows: In Section 2, we detail the problem characteristics.
In Section 3, we present a standard MIP formulation of the specific problem on hand. In
Section 4, we discuss a reformulation and a branching rule for use in standard branch-
and-bound, and then present in detail the proposed heuristic employing a relax-and-
fix approach. In Section 5, we present and discuss computational results in order to
evaluate: (i) the efficiency of the proposed approaches, (ii) the impact of considering
the perishability of the products and scarce resources, and (iii) the impact of changing
the value of some input parameters on the solution structure of the problem and on the
computational performance of the proposed approaches. Finally, Section 6 concludes
the paper with future research.

2. Problem description

This paper deals with an LSP problem inspired by the Brazilian food industry that
produces packaged meat for retail and exportation. In this type of industry, the product
catalogue is usually broad, including meat from different animals that can be seasoned,
frozen or in natura. The plant operates with various production lines that share the
same scarce production resources, such as machines, tools, and workers. For example, a
particular cutting machine is used to process beef as well as pork, and these two types
of meat are often produced in different production lines. On the other hand, the workers
can operate all of the production lines, but often number of workers is not sufficient
to operate all production lines simultaneously. The production lines cannot remain
working all the time, because the necessary resources to keep it working are shared
between production lines, and therefore the lines are assembled in each production
period respecting the amount of available resources. As for each item, there is only
one line capable to produce it, hence the choice of which production lines to assemble
impacts which items to produce. The demand is dynamic and known as a result of
advanced customer orders, and as mentioned before, backlogging is allowed but highly
penalized.

The produced items are perishable with different shelf life. For example, in natura
meat can remain in stock only few days, while frozen meat can remain in stock for
up to two years. As the items require monitored temperature storage, the inventory
holding costs are significant and as only a subset of items can be produced in each
period and as the items are perishable, the inventory management is a challenging
activity for the production managers.

This production environment is also characterized by the existence of significant
sequence dependent setup times and costs when there are changes between items in the
same production line. Consider, for example, a case with only one production line and
three items: fine seasoned steak (p1), thick steak for barbecue (p2) and fine unseasoned
steak (p3). The necessary setup procedures to change from (p;) to (p2) are cleaning
and cutting machine configuration, while from (p;) to (ps) only cleaning is needed,
and from (p3) to (p1) cleaning and seasoning preparation are needed. Considering this,
changes involving different items imply different setup procedures, which are converted



into different setup times and costs. Moreover, a general cleaning is carried out at the
end of each production day in order to avoid contamination. This cleaning involves
the disassembly of the production lines and the temporary workstations, hence not
allowing a setup carryover from a day to the next, and the first setup of each day is
performed along the assembly procedures. Therefore, there is no setup time/cost for
the first produced item in each line and period.

In addition, we need to decide which production lines to assemble in each production
period, not violating the available capacity of each resource required to assemble the
lines. Figure 1 presents a framework of the studied industrial environment. We consider
a planning horizon with three periods (¢t = 1, ¢ = 2 and ¢ = 3) and consider six
production lines (L1,...,.L.6) sharing three scarce production resources (R1, R2 and
R3). The assembled lines are represented by blue rectangles, while the not assembled
lines are represented by white rectangles. For example, in period ¢ = 1 the lines L1, L2
and L5 were assembled, while the lines L3, L4 and L6 are not producing. The arrows
indicate the movement of resources between different periods.

Figure 1 also presents a table with the amount of each resource required to assemble
each production line and the amounts of available (A), consumed (C) and idle (I)
resources in each period. The amount of consumed resource is given by the sum of
resources used in each assembled production line, while the amount of idle resource is
the difference between the amount of available resource and the amount of consumed
resource. We can see that in each period, we can not assemble more production lines
because some resources are not available.

Figure 1. Framework of the considered production environment
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Required t=1 t=2 t=3
Rl R2 R3|R1 R2 R3|Rl1 R2 R3|R1 R2 R3
L1 2 3 1 assembled assembled not assembled
L2 1 1 4 assembled not assembled assembled
L3 1 2 2 not assembled not assembled assembled
L4 1 2 1 not assembled assembled not assembled
L5 2 1 3 assembled not assembled assembled
L6 1 1 3 not assembled assembled not assembled
A 5 6 9 5 6 9 5 6 9 5 6 9
(@] - - - 5 5 8 4 6 5 4 4 9
I - - - 0 1 1 1 0 4 1 2 0

3. Standard formulation

In order to model the problem, we first propose the CLSDPRL (Capacitated Lot-
sizing with Sequence Dependent setup costs, Perishable products, scarce Resources



and multiple production Lines) formulation, an extension of the CLSD (Capacitated
lot-sizing with sequence dependent setup costs) formulation proposed by Haase (1996).
The parameters and variables, as well as domains of variables, are presented in Table 1.
We note that for the set of resources K, we use the index k& = 0 to indicate “workers”
(which is often a single type of resource, as observed in our visits to factories) and any
index k£ > 1 to indicate the different types of machines or tools.

Table 1. Parameters and variables for the CLSDPRL formulation

Parameters

T,L | Set of periods (indexed by t), and of production lines (indexed by 1)
J, K | Set of items (indexed by ¢, 7), and of resources (indexed by k)
d;+, Ci¢ | Demand of item j, and production capacity of line /, in period ¢
aij,my; | Per unit production time, and the minimum lotsize of item j on line !
hj,b; | Inventory and backlogging costs per unit of item j
sclij, Sty | Setup cost and time for changeover from item ¢ to j on line [
ri; | Amount of resource k necessary to assemble the production line [
Ry | Capacity of resource k in period ¢
slj,ac; | Shelf life of item j, and cost to assemble the line [
Yt | Maximum number of items that can be produced on line ! in period ¢
P, | Set of items that can be produced on line [
Variables
veE—t >0 | Stock of item j of age t available in period ¢, where ¢ < min{t, s; }
45, > 0 | Quantity of item j used to meet the demand of period ¢ using vej,
I, Bj; > 0 | Inventory and backlogging of item j at the end of period ¢
21+ > 0 | Amount of item j produced on line [ and period ¢
Vij¢ > 0 | Auxiliary variables to represent the order of production of item j on line [
and period ¢
yijt € {0,1} | 1if item j is the first item produced on line ! and period ¢, and 0 otherwise
z15¢ € {0,1} | 1 if there is change of production from item ¢ to j on line [ and period ¢,
and 0 otherwise
01t € {0,1} | 1 if the line [ is assembled in period ¢, and 0 otherwise

In our model, we consider the following characteristics: i) dynamic and determin-
istic demand that must be fully met until the end of the planning horizon; ii) no
setup carryover or crossover between adjacent periods; iii) for each product, only one
production line capable of producing it; and iv) perishable items. We note that setup
carryover and crossover are not considered, and hence no setup cycles exist. The per-
ishability aspect is modelled using an adaptation of the approach proposed by Costa,
dos Santos, Alem, and Santos (2014), which consists of controlling the age of each
product in stock. Then, CLSDPRL follows:

Min Z(hj[jt +bBji) + Z sClij2iit + Z acyoy
t,j l7t7iaj l7t
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The objective function (1) represents the sum of the inventory holding, backlogging,
and setup costs, and costs to assemble the production lines. Constraints (2) are the
inventory balance constraints, and constraints (3) represent the big-bucket capacity
constraints for production lines. Constraints (4) ensure minimum lot sizes are respected
and an item can only be produced if the respective production is setup, while con-
straints (5) dictate that if a production line is assembled, only one item can be the first
item produced on that line. Constraints (6) introduce maximum number of items that
can be produced on each production line and period, and constraints (7) ensure that
the production can only occur on an assembled production line. Constraints (8) ensure
the flow balance for sequencing of lots, and (9) are the subtour elimination constraints.
Constraints (10) are the capacity constraints for resources. Constraints (11)-(13) model
the perishability aspect. More specifically, constraints (11) iteratively update the age
of the products in stock, while constraints (12) compute the amount of freshly pro-
duced stock and constraints (13) ensure that amount used of a particular age does not
exceed the available stock of that age. Finally, constraints (14) compute the inventory
of each item for each period. We also note that we set Bj7 = 0, Vj to ensure all
demands are satisfied until the end of the planning horizon.

4. Branching rule and relax-and-fix heuristic

4.1. Branching rule

We note that due to constraints (7), when we have §; = 0, then there can be no
production on line [ in period ¢, i.e., y;;; = 0,Vj and zj;;; = 0, V4, j. Therefore, if in a
given node of the branch-and-bound tree the value of §;; is fixed to zero, then we can



also fix directly the value of J + J? binary variables to zero.
In addition, we can introduce a new binary variables wy;;, where w;j; = 1 if item j
is produced on line [ in period ¢, and w;;; = 0 otherwise. Clearly, we have that

Wit = Yijt + Z Rlijts vzvjv t, (15)

7

We can also replace constraints (4) by (16), and constraints (6) and (7) by (17).

Ci .
mywje < Ty < jwm,W,] € Pt (16)
j
Z wyje < Yielye, VI, T (17)
JEP,

We define then the CLSDPRL"Y formulation obtained by adding constraints (15) and
the variables wyj; € {0,1},Vl,j,t into CLSDPRL and replacing (4) by (16), and (6)
and (7) by (17). We note that since (15) holds, if w;j; = 0, then y;;; = 0 and 25 = 0, V4,
and also 25+ = 0, Vi (by (8)). Therefore, we can exploit the fact that in a given branch-
and-bound tree node, when wyj; is fixed to zero, then also the value of 1 + 2.J binary
variables can be fixed to zero.

These observations motivated us to use CLSDPRL" and perform branch-and-bound
with a priority on branching of variables 0y, VI, t and wyj;, VI, j,t. In each search tree
node, given an optimal solution of the linear relaxation, we set our branching rule
as follows: if there is any variable d;; with a fractional value, we firstly perform the
branching in these variables before any other binary variables; and, if all variables
0y assume binary values, but there is any variables w;;; with a fractional value, we
perform the branching in this variables before the remaining binary variables. We note
that our branching rule simply sets a precedence relation between the variables to be
branched and is used in conjunction with other existing rules of Cplex solver. As any
commercial solver rather operates in a “black box” fashion with its own existing rules,
our branching rule simply encourages the solver for our rule when selecting the variable
to branch on.

Finally, we note that in Soler and Santos (2017), the binary production variables
wyj¢ were employed in the traditional CLSD model on a single machine, and a priority
rule branching these variables first was evaluated. Computational results indicated
that this approach can significantly improve the computational performance of the
standard branch-and-bound.

4.2. A relax-and-fix procedure

The relax-and-fix is a constructive procedure proposed for production planning prob-
lems (Dillenberger, Escudero, Wollensak, & Zhang, 1994). The procedure operates by
decomposing the set of the complicating binary/integer variables into subsets, which
are preferably ordered with decreasing significance. In each iteration, the integrality
requirements are only imposed on the binary/integer variables of the current subset,
while the binary/integer variables are either linearly relaxed or have their value fixed
in a previous iteration.

We propose a relax-and-fix procedure (RFH) that consists of two major iterations.

e First iteration: Solve a sub-problem of CLSDPRL" enforcing the integrality



requirements of 0y, Vi, t and wy;e, VI, j, ¢t (while 5, Vi, j,t and 2z, V1,4, j, t are
linearly relaxed);

e Second iteration: Solve a sub-problem of CLSDPRLY with the values of 0y, VI, ¢
fixed from the first iteration and enforcing the integrality requirements of all
remaining binary variables.

The decisions about which production lines to assemble are made in the first it-
eration considering the lot sizing component of the problem as well as the capacity
constraints of resources required, and the second iteration evaluates the lot sizing
component of the problem together with the sequencing decisions. This approach em-
pirically avoids myopic decisions, as the variables wy;¢, Vi, j,t are optimized in both
iterations (overlapping variables).Even though our framework cannot theoretically
guarantee feasible solutions (unless backlogging is allowed to the last period by re-
moving Bjr = 0), its strengths such as limited fixing after first iteration and use of an
effective formulation in the first iteration enable it to work very effectively in practice,
as we will further discuss in Section 5. We also note that this procedure cannot be
applied using the standard formulation CLSDPRL.

An advantage of this framework is that the subproblem referring to the second
iteration can be further decomposed into L subproblems (SP',l = 1,...,L), each
with a single production line and only the periods where é; = 0 does not hold. This is
based on the observation that the constraints (10) are already satisfied by the solution
obtained in the first iteration. Each subproblem SP! can be effectively solved using
a branch-and-cut algorithm with the branching rule proposed in Soler and Santos
(2017). Figure 2 presents an overview of our RFH heuristic.

Figure 2. A framework for RFH procedure
First iteration
Binary Binary Linear Linear

SWyZ%>

H =1
Second iteration 6 w y Z

Fix Binary Binary Binary

- w | y | Z ||
=3

Solution:

It is also important to note that, if necessary, the second iteration of the RFH
heuristic can be modelled as a parallel algorithm since there is no data dependence
among the subproblems SP!,l = 1,..., L. Each subproblem can be solved by a branch-
and-bound algorithm running on independent cores of a computer with at least L cores.
Alternative parallel schemes can be developed if the number of cores is less or (much)
more than L: In the former, more than one subproblem share the same core and hence
these subproblems are sequentially solved. In the latter, multiple cores can be allocated
for each subproblem and hence branch-and-bound algorithm can run in parallel (note
solvers like Cplex run branch-and-bound in parallel by default). Our proposition to
parallelize the second iteration can adopt tools such as MPI (OpenMPI), OpenMP,
and pthreads library depending on hardware and software infrastructures.

Nej



In the literature, relax-and-fix has been primarily employed as an heuristic proce-
dure. However, we remark that the dual bound obtained solving the subproblem of
the first iteration of a relax-and-fix procedure is always a dual bound of the original
problem, which is obviously at least as strong as the bound obtained by the pure
linear relaxation (and potentially much stronger). To the best of our knowledge, this
property (formally stated in Proposition 4.1) is only noted in Akartunali and Miller
(2009), albeit with limited empirical results and a lack of further discussion. Therefore,
we aim to elaborate further on this significant property with thorough computational
experiments in the following section.

Proposition 4.1. Let zp be the dual bound obtained by solving the subproblem re-
ferring to the first iteration of a relax-and-fix procedure applied to solve a problem P.
Then, zp is a dual bound for the original problem P.

Proof. W.l.o.g.,let P be a minimization problem. First, note that in the first iteration
of relax-and-fix, a subproblem P; is solved where some (but not all) of the binary
variables of P are linearly relaxed, along with all constraints of P. Therefore, P; is
a valid relaxation of P, and z < z* holds, where Z and z* are the optimal objective
function values for P; and P, respectively. Since zp is a dual bound for P;, we have
zp < Z. Hence, zp < z*. ]

Note that although the optimal solution z of P; is naturally a dual bound for
the original problem P, it is not always possible to optimally solve P; in limited
computational times, and hence zp is used in such cases.

5. Computational results

5.1. Features of the test instances

In order to empirically evaluate the effectiveness of the proposed approaches, we pro-
pose a set of 100 test instances with a broad range of scenarios. As the real-world
data cannot be disclosed due to confidentiality reasons, we randomly generated test
instances following the parameter settings we observed in a number of visits to facto-
ries of varying sizes and discussing with key stakeholders, in order to be in line with
the practice. We grouped the instances into five classes (to represent industries from
small- to large-size), each with 20 test instances and its own parameter settings, as
presented in Table 2. Here, the first four columns indicate the fundamental character-
istics of the problem such as number of time periods, and the remaining parameters
o, Oy b #°, ¢¢ and v were defined based on our observations, which we elaborate
in the following discussion.

In practice, demands are known two weeks in advance, hence we set |T'| € {10, 12,14}
to represent companies that operate five, six or seven days per week (may include
Saturday/Sunday or not). The number of production lines (|L|) ranges from 7 to 10,
employing 5 to 7 resources (|K|). Companies producing meat from various animals
(beef, pork and poultry) have product catalogues with more than 100 items (|.J]),
while industries specialised in meat from one (or two) animals have a product catalogue
with around 45 (or 80 to 90) items. We note that, when necessary for the diversity of
instances, we generated integer parameters using uniform distributions (indicated as,
e.g., p € Ula,b]). Next, we discuss further characteristics of the test instances, where
parameters are listed in the same order as in Table 1.

10



Table 2. Characteristics of the five classes of test instances

Class |T| [L| ]| |K] ¢ ¢ of o o

Uk LW N =

10 7 45 5 100 08 0.6 0
10 10 80 6 100 08 0.6 0
14 10 90 6 90 0.6 0.5 0
1210 110 7 90 0.6 0.55 100 150
14 10 110 7 90 0.6 0.55 50 150

o OO
GO OO OO0 GO O -2

Cu— min{sty;;}y — ¢
djs € U |0, b I3 , with ¢ as specified in Table 2. For each

period and line, the parameter ¢ introduces a slack between the capacity used
to produce current period’s demand and the production capacity of the line.
Since each production line can not operate in all periods (due to the scarcity of
resources and orders), the slack capacities of the periods a line [ is assembled
enable the production of the demands of the periods when [ is not assembled.
Hence, the smaller the value of ¢, the more often production lines need to be
assembled. The values adopted for this parameter were empirically determined
in order to reproduce real-world scenarios we have observed;

Cjy = 480 (minutes in a production day of eight hours);

a;; = 1 and my; = 2 (unit processing times do not significantly vary);

hj S U[l, 10] and bj = 10hj;

st;;; € U[15,45] and scy;j = 2sty;; (setup costs proportional to the setup times);
ri € U]0,2] when k > 0 (i.e., all machines) and ro; € U[5,10] (i.e., workers);

Ry = max lnllaxL{rkl}, O Z Ti o, With ¢} as specified for £ > 1 and k =0
R le[L]

in Table 2. The parameter ¢}, is the maximum percentage of production lines

that can operate simultaneously. For example, if ¢; = 0.8 for resource k, at most

80% of the production lines can operate simultaneously. The values adopted in

Table 2 represent a range of real-world observations;

o sl; c U4, TY;
e ac; = ), TCyT, Where ¢ € Ul¢P, ¢¢] with ¢® and ¢¢ as specified in Table 2.

5.2.

The parameter rcg represents the unit price of resource k.When the resources
are homogeneous, their costs are almost identical and hence the cost to assemble
lines is not considered, i.e., ®* = ¢¢ = 0 for classes 1, 2, and 3. On the other
hand, an extensive product catalogue necessitates a high number of significantly
different resources, hence varying values were adopted for classes 4 and 5;

Yt = 7, with v as specified in Table 2. This parameter is set to 6 when the
product catalogue has less than 80 products, and 8 otherwise;

P, built by randomly allocating each item to a line.

Performance analysis and discussion of results

To effectively evaluate the efficiency of the proposed approaches with respect to state-
of-the-art benchmarks, we consider the following computational experiments:

(1) SM: the standard model CLSDPRL was solved using the branch-and-bound
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algorithm of the Cplex solver with default settings;

(2) WF: the CLSDPRL" model was solved using the branch-and-bound algorithm
of the Cplex solver with default settings;

(3) BR: the CLSDPRL" model was solved using the branch-and-bound algorithm
of the Cplex solver with the branching rule proposed in Section 4.1;

(4) RF: the relax-and-fix procedure proposed in Dillenberger et al. (1994) (and also
used by James and Almada-Lobo (2011) and Sel and Bilgen (2014) recently) was
applied to solve the problem;

(5) RFH: the RFH heuristic proposed in Section 4.2 based on the CLSDPRL" model
was used to solve the problem.

We implement all the mathematical models and heuristics in C+4 with the library
Concert Technology of the Cplex 12.6. We ran all tests on a computer with two pro-
cessors (Intel Xeon E5-2680v2, 2.8GHz, 10 cores, 2 threads/core, 25 MB SmartCache)
and 128 GB RAM memory. For each instance, the best feasible solution (z¢) and
the best dual bound (Z) was obtained. The percentage deviation of the best feasible

solution from the lower bound (GAP) was computed as GAP = 100 (Zfz;z)

The subproblems regarding to RF and RFH were solved by the default branch-
and-bound algorithm of Cplex. The available computational time for RF was equally
divided between the |T'| iterations. For RFH, preliminary tests indicated that the
computational time to solve the subproblem of the second iteration of RFH does
often not exceed 200 seconds, since this subproblem can be decomposed into |L| easy
subproblems as discussed before. Therefore, we fixed the time limit to solve the first
iteration of RFH to (MT — 200) seconds, where MT is the maximum running time
in seconds. We also note that we did not parallelize the subproblems of the second
iteration in order to be fair to the other methods benchmarked here.

We note that constraints (18) can replace constraints (5). Since optimization solvers
may behave differently for a given formulation or approach when an equation is used
instead of an inequality (e.g. due to default cut generation or heuristics working
more/less effectively), we have run preliminary tests with both of these options for
all proposed approaches. This enables us to provide more fair comparisons between
different approaches, as we chose the more effective constraints for each method indi-
vidually. For the standard model, significantly better results were obtained, in partic-
ular in class 3, using the constraints (5). On the other hand, for the RFH approach,
slightly better results were obtained using constraints (18), and therefore, we replace
constraints (5) by constraints (18) in the CLSDPRL" model for the RFH procedure.

Z Yijt = 5lt7VZa L. (18)

JEP,

Table 3 presents the computational results obtained for each class of instances with
maximum running times of 1 hour and 15 minutes. The rows AGap, BGap, and WGap
indicate the average, best, and worst gaps, respectively, while Time is the observed
running time (in seconds), FS is the number of instances for which a feasible solu-
tion is found, and OPT is the number of instances solved until optimality. The best
performances are highlighted in bold for each class of instances.

For the maximum running time of 1 hour, we observe that CLSDPRLY (WF) per-
forms in general better than CLSDPRL (SM), and the proposed branching rule im-
proves the performance of the branch-and-bound algorithm of Cplex further when
solving the CLSDPRL" model. It is also worth noting that CLSDPRL proved opti-

12



Table 3. Computational results for 3600 and 900 seconds

Maximum time = 3600 seconds Maximum time = 900 seconds
Class SM WF BR RF RFH SM WF BR RF RFH
AGap 0.11 0.02 0.02 6.30 0.08 | 0.16 0.02 0.02 6.31 0.09
BGap | 0.00 0.00 0.00 3.13 0.00 | 0.00 0.00 0.00 3.14 o0.00
1 WGap | 0.60 0.06 0.06 15.37 1.35| 0.73 0.09 0.09 15.39 1.35
Time | 2316 1293 935 80 48 695 484 354 80 48
FS 20 20 20 20 20 20 20 20 20 20
OPT 8 14 17 0 13 8 13 14 0 11
AGap 0.69 0.09 0.09 6.27 0.12 | 2.07 097 0.13 6.29 0.15
BGap 0.11  0.02 0.00 3.95 0.00 | 0.12 0.09 0.03 9.82 0.03
9 WGap | 1.95 0.23 027 9.79 0.50 | 5.33 4.24 0.31 3.97 0.51
Time | 3600 3600 3600 563 426 900 900 900 563 426
FS 20 20 20 20 20 20 20 20 20 20
OPT 0 0 1 0 2 0 0 0 0 2
AGap | 54.34 59.44 35.26 23.29 10.79 | 79.98 83.57 82.13 — 29.71
BGap | 15.92 24.62 11.14 12.84 1.93 | 66.27 58.12 66.64 4.44
3 WGap | 82.27 91.17 72.59 43.74 36.26 | 83.29 94.06 91.81 — 80.77
Time | 3600 3600 3600 1814 3538 900 900 900 — 844
FS 19 20 20 20 20 16 19 19 0 20
OPT 0 0 0 0 0 0 0 0 0 0
AGap | 65.50 53.23 48.80 14.68 9.01 | 77.83 68.64 78.77 — 31.31
BGap | 58.22 26.88 15.40 8.93 3.05 | 72.45 45.27 61.16 —  6.61
4 WGap | 76.01 78.82 74.62 20.82 16.68 | 80.97 90.22 90.62 — 55.24
Time | 3600 3600 3600 2838 3600 900 900 900 — 900
FS 8 17 16 19 20 7 16 17 0 19
OPT 0 0 0 0 0 0 0 0 0 0
AGap | 70.72 68.70 65.40 31.65 15.26 — 87.70 88.33 — 49.60
BGap | 54.60 45.27 51.50 19.16 5.64 — 83.81 87.43 — 30.85
5 WGap | 81.48 88.63 86.14 46.78 26.49 — 90.24 89.23 — 70.27
Time | 3600 3600 3600 3600 3600 900 900 900 900
FS 12 12 14 10 20 0 6 2 0 15
OPT 0 0 0 0 0 0 0 0 0 0
AGap | 38.27 36.29 29.91 16.44 7.05 —  48.18 49.88 —  22.17
Mean BGap | 25.89 19.37 15.62 12.05 2.39 — 3748 43.07 —  8.66
WGap | 48.46 51.78 46.74 27.30 16.26 —  Bh.77 54.41 — 41.63
Time | 3343 3139 3067 1779 2242 859 817 791 — 624
Total FS 79 89 90 89 100 63 81 78 40 94
OPT 8 14 18 0 15 8 13 14 0 13

mality for only 8 instances from class 1, whereas CLSDPRLY proved optimality for
14 instances from class 1, and CLSDPRL" with the proposed branching rule proved
optimality for 17 instances from class 1, and 1 instance from class 2. The RFH ap-
proach found the optimal solution for 13 instances from class 1, and 2 instances from
class 2. Also note that RFH has near-optimal results in class 1, primarily due to its
advantage that it uses the most effective formulation of WF for its first iteration.
Next, we note that for maximum running time of 1 hour, RF failed to provide
feasible solutions for 11 instances (1 from class 4 and 10 from class 5), while the
CLSDPRL model failed to provide feasible solutions for 21 test instances (1 from class
3, 12 from class 4, and 8 from class 5), and CLSDPRL" was not able to find feasible
solutions for 11 test instances (3 from class 4 and 8 from class 5). When our branching
rule was used to solve the CLSDPRLY model, feasible solutions were not found for 10
test instances (4 from class 4 and 6 from class 5). On the other hand, RFH provided
very high quality solutions for all test instances, in particular for more challenging
problems where it significantly outperforms all other approaches. RFH outperformed
i) CLSDPRL both in running time and GAP for all test instances, ii) CLSDPRL"
for all classes except classes 1 and 2 (albeit with a minor difference in average gaps),
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and iii) BR for the more challenging classes of 3, 4 and 5 (and with no significant
difference of performance in classes 1 and 2). It is also noteworthy to remark that
RFH outperforms RF substantially with respect to the average gap for all classes of
test instances.

For the maximum running time of 15 minutes, similar observations can be made,
except that CLSDPRL"Y with our branching rule performed worse than the default
CLSDPRL". RFH again outperformed all other methods with respect to i) the ability
to find feasible solutions, ii) the quality of solutions found, and iii) the running time.
We also note that there are a few instances from classes 4 and 5, for which no method
could find a feasible solution with this maximum running time.

Table 4. Average dual bounds (ADB) and number of instances that each method provided the best dual
bound (NBB)

Maximum running time = 3600 seconds

SM WF BR RF RFH
Class | ADB NBB | ADB NBB | ADB NBB | ADB NB ADB NBB
1| 50874 3 50927 12 50927 18 | 18094 0 50168 0
2| 63202 0 63543 7 63545 13 | 22882 0 62560 0
3| 113226 0 113719 0 114293 2 31853 0 115818 18
4 | 172026 0 173906 3 174662 4 43623 0 176031 13
5 | 208449 1 209746 1 211573 7 47447 0 211981 11
Mean | 121555 0.8 | 122368 4.6 | 123000 8.8 | 32780 0 123312 8.4
Maximum running time = 900 seconds
1| 50845 3 50923 10 50924 17 | 18094 0 50168 0
2| 62729 0 63172 4 63529 16 | 22882 0 62560 0
3| 113430 1 113228 2 113979 7 — 0 113835 10
4 | 171400 0 172240 2 172630 4 — 0 173360 14
5 — 0 204676 1 206248 1 — 0 209415 18
Mean — 0.8 120848 3.8 121462 9 — 0 121867 8.4

In Table 4, we present, for each class and method, the average dual bounds (ADB)

and the number of instances that each method provided the best dual bound (NBB).
We observe that for instances from classes 1 and 2, the proposed branching rule pro-
vided best dual bounds for a greater number of instances than the other methods.
On the other hand, for instances from the remaining three classes, RFH outperforms
all other methods with respect to both ADB and NBB, indicating that it is not only
a superior method for obtaining very high quality solutions but also dual bounds, in
particular when problems are computationally challenging. It is in particular impres-
sive that the quality of dual bounds obtained by RFH is competitive with the quality
of dual bounds obtained by BR even when BR is superior. To the best of our knowl-
edge, this is the first paper showing very promising use of a relax-and-fix procedure
for obtaining dual bounds.

Table 5. Results for instances from class 5 with maximum running time = 3 hours.

Class 5 - Maximum running time = 3 hours
Approach | AGap BGap WGap Time FS ADB NBB
SM 36.11 13.39  75.05 10800 17 208956 0
WF 51.87 16.57  83.57 10800 14 214521 1
BR 34.83 9.87  T71.55 10800 17 213188 2
RF 16.02 9.65 21.13 3880 18 47537 0
RFH 7.25 2.13 14.98 10186 20 215362 17

We have also run tests for the 20 challenging instances from class 5 with maximum
running time of 3 hours in order to provide further insights with respect to the capa-
bilities of all methods compared. As the results in Table 5 demonstrate, the standard
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model (SM) performed better than the CLSDPRL" model (WF), while the branching
rule (BR) achieved slightly better results than the standard model. The RF heuristic
spent significantly less time than other methods, albeit with no feasible solution for
2 instances, and extremely weak dual bounds relative to other methods. The RFH
heuristic outperformed other methods with respect to the quality of solutions (includ-
ing the best and worst cases), the number of instances with a feasible solution found,
and the quality of the dual bounds.

5.3. Impact of the novel features and sensitivity analysis

5.83.1. Impact of the novel features

Next, we study the impact on the solution structure generated by the main novel char-
acteristics, namely scarce production resources and perishable products. Therefore, we
modify the CLSDPRLY formulation to obtain two different problems:

i) a problem without the scarcity of the production resources; and
ii) a problem without perishable products.

In order to obtain a problem without scarce production resources, we only need to
remove constraints (10). On the other hand, in order to obtain a problem without per-

ishable products, we need to remove the continuous variables fue;/t and qg;, Vj,t,t and
the associated constraints (11)-(14), and replace constraints (2) by constraints (19).

Iiy 1 —Bji1+ Z x5t = djt + Ljy — By, ¥y, t. (19)
)

We have tested these models on the same data set from Section 5.1, using the
branch-and-cut algorithm of Cplex with the branching rule (BR) and maximum run-
ning time of 1 hour. Table 6 presents the results obtained for each class and problem,
where we report for the modified models, in line with Table 3, gaps (average, worst,
and best), running time, number of instances with a feasible solution, and number of
instances optimally solved. In addition, for all models, we present aspects referring to
the structure of the solutions; more specifically, inventory holding cost (HCost), back-
logging cost (BCost), setup cost (SCost), cost to assemble production lines (ACost),
and total cost (TCost). Recall from Table 2 that the coefficients for costs to assemble
production lines is et to 0 for classes 1, 2, and 3, hence the associated entries are
marked with “-”.

Gaps and running times particularly indicate that, except for class 2, the problem
without scarce resources is much easier to solve. This is in particular the case for larger
classes of 3, 4 and 5, where feasible solutions found have relatively very small gaps.
On the other hand, the problem without the perishability of products is easier to solve
than the original problem, however, the instances from classes 3, 4, and 5 still remain
challenging. Therefore, the most difficult novel characteristic is the scarce production
resources.

Based on cost structures of solutions, we observe that without scarce resources, setup
and assembly costs increase, while inventory holding and backlogging costs significantly
decrease. This is not unexpected, as no restriction on resources allow more setups and
assembly of production lines in exchange for savings in backlogging and inventory. On
the other hand, in the case without perishable products, we note that solutions are very
similar to solutions of the original problem for instances from classes 1 and 2, while
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Table 6. Impact of scarce resources and perishable products.
Without scarce resources
Class 1 2 3 4 5 Mean
AGap 0.01 0.31 0.60 0.21 0.93 0.41
BGap 0.00 0.00 0.36 0.03 0.09 0.10
WGap 0.06 0.68 1.10 0.51 2.76 1.02
Time 236 3294 3600 3480 3451 2812
FS 20 20 20 20 16 19.2
OoPT 19 2 0 0 0 4.2
SCost | 11555 20042 30520 19729 21358 20641
HCost 2863 3823 7209 43846 58061 23161
BCost 1826 1264 2189 5072 5529 3176
ACost - - - 73396 95665 33812
TCost | 16244 25129 39918 142043 180612 80790

Without perishable products
AGap 0.01 0.06 17.95 20.67 51.00 17.94
BGap 0.00  0.00 0.77 4.53 8.92 2.84
WGap | 0.04 0.22 4531 51.39  80.54 | 35.50
Time 644 3032 3600 3600 3600 2895

FS 20 20 20 20 20 20
OPT 17 ) 0 0 0 4.4
SCost 7536 14040 17586 16047 16023 14246
HCost | 21858 25701 67030 66475 109860 | 58185
BCost | 21527 23855 61615 86137 349338 | 108494
ACost - - - 59227 82506 28347
TCost | 50921 63596 146231 227886 557728 | 209272
Original problem (BR)
SCost | 7540 14052 17026 15936 15585 [ 14028
HCost | 21862 25694 73654 80922 120595 | 64546
BCost | 21533 23857 106034 277708 701624 | 226151
ACost - - - 58762 82034 | 28159
TCost | 50935 63603 196715 433328 919837 | 332884

for other classes, backlogging costs are significantly reduced (with other costs only
marginally varying). This can be explained that perishability of products prohibits
stocking for too long (and hence motivating backlogging instead). Since both of these
modified problems are essentially relaxations of the original problem, total costs are
lower, though this difference is more striking for the case without scarce resources.

5.8.2. Sensitivity analysis

Next, we perform sensitivity analysis to study the impact of key parameters on the
structure of the solutions as well as on the computational performance of RFH and
BR. Specifically, we investigate parameters sl; and ac; testing on classes 1 and 2.

Sensitivity analysis with respect to shelf-life sl;:

As noted in Table 2, sl; was specified to be in U[4,T]. For our analysis, we also
consider sl; € U[1,4], and sl; € U[1,2] for the test instances of classes 1 and 2.

In Figure 3, each chart presents in the order of total, backlogging, inventory holding
and setup costs (as well as their percentage in the total) for each approach and range of
shelf-life parameters. We consistently observe for both approaches that the shorter the
shelf-life of products, the significantly higher the backlogging costs (both in absolute
and percentage terms). On the other hand, while other costs present slight variations,
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Figure 3. Sensitivity analysis for si;:

BR (top) and RFH (bottom)

BR approach

Class 1

o
2
&
&8
8
1]
g
@
4
3

_zvm wrsen)

23110 (43.39%)

_ 21533 (4228%)
_ 22362 (38.99%)

22556 (42.35%)

Banklngglng Total

Inventory
haldlng

Class 2
_ 67899

55200

_ 63603 |
_ 26653 (29.25%) | ‘

24563 (37.67%) !

I 23257 3751%)
e

26352 (40.42%) |

_ 21862 lﬂlﬁl%l —— 25696 (a0.8%) |

1 _ mslu 26%) i — 14411(21 22%)
= 7591 (14.25%) | 14286/(21.91%)
“ N 7540 (24.8%) — 14052,(22.09%)
1] 10000 20000 30000 40000 50000 SDDDD D lDOOD ZDDDD 30000 40000 50000 60000 70000
RFH approach
Class 1 Class 2
P 5737 e c7sss

@
&
R
RRa
o

:
B
-
a
B

[ 26819 (39.52%)|

24686 (37.85%)

27396 (47.73%)
23182 (43.51%)

Backlagging Total

_ 21582 (42. 34%1 i _ 23938 (37.62%)
z s
52 _ 22500 (38.85%) I _ 26611 (39:21%)
:E’ 5 | 22511 (42:25%) 1 26225 (40.21%) !
z2 _ 21824 (4281%) | _ 25643 (40.31%)
o _ mn. (13.42%) | ; ! _ 14440 (21.28%)
3 | 7585 (14.2%) | : | 14305/(21.93%)
_ 7568 (14.85%) | | : — 14042 lzz 07%)
t i t i + i + + i
o :.oooo 20000 30000 40000 50000 soooo 0 10000 20000 30000 40000 50000 60000 70000

M ur1,21 [0 ur1,4] [ U[4,T)

total costs always increase with shorter shelf-life, e.g., in class 1, total costs increase
around 4.5% from sl; € U[4, T to sl; € U[1,4], and further 7.7% from sl; € U[1, 4] to
Slj eU [1, 2].

In Table 7, we present the quality of the solutions found by each method, class,
and range of shelf-life. In general, RFH was able to find good quality solutions, albeit
with gaps slightly worse in comparison to BR (except for sl; € U[1, 2] in class 2). On
the other hand, running times of RFH are significantly better than running times of
BR. Considering mean gaps and running times, in particular for RFH, the problem
becomes more challenging using smaller values of shelf-life.

Table 7. Sensitivity analysis for sl; (computational impact)

Class | sl € BR RFH
7 AGap BGap WGap Time | AGap BGap WGap Time
Ul4,T)| 0.02 0.00 0.06 935 0.08 0.00 1.35 48
1 UJL, 4] 0.02 0.00 0.14 1091 0.06 0.00 0.62 55
UIL, 2] 0.01 0.01 0.09 885 0.08 0.01 1.04 112
Ul4,T] 0.09 0.00 0.27 3600 0.12 0.00 0.50 426
2 U[1,4] 0.09 0.01 0.22 3408 0.11 0.01 0.31 551
UIL, 2] 0.47 0.01 2.68 3559 0.39 0.01 1.65 1052
Ul4,T] 0.06 0.00 0.17 2268 0.10 0.00 0.93 237
Mean | UJ[1,4] 0.05 0.01 0.18 2249 0.08 0.01 0.46 303
UJ[1,2] 0.24 0.01 1.39 2222 0.24 0.01 1.34 582

Finally, to demonstrate the impact of shelf-life on the objective function value, we
have randomly selected an instance from class 1 (T = 10) and tested the cases of
slj = 2,...T. The optimal objective function value with respect to shelf-life is shown
in Figure 4, where the objective function value significantly decreases when the shelf-
life increases from 2 to 3 periods for this specific instance. Once sl; = 5 is reached, the
objective function value is stabilized. Similar behaviour can be observed with other
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instances as well.

Figure 4. Objective function values obtained when sl; vary in the set {2,3,...,T}
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Sensitivity analysis with respect to cost to assemble production lines (acy):

Originally, ac; was set to 0 for all instances of classes 1 and 2. For our analysis, we
consider ac; € U[500, 1000] and ac; € U[1000, 5000].

Similar to previous analysis, in Figure 5, each chart presents in the order of total,
assemble, backlogging, inventory holding and setup costs (as well as their percentage
in the total) for each approach and range of assemble cost.

Figure 5. Sensitivity analysis for ac;: BR (top) and RFH (bottom)
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As ac; values increase, besides the assemble costs, the inventory holding costs also
increase, while the setup cost decrease and the backlogging cost remain stable (though
its percentage decreases). As higher ac; values discourage assemble of production lines,
this directly reduces setups of products and encourages more inventory to be carried.
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In order to analyze the computational performance of the methods, we present in
Table 8 the average, best, and worst gaps, and the running times for each method,
class, and range of ac; values. In general, RFH provides high quality solutions that are
slightly worse than the solutions found by BR, while the running times of RFH are
significantly smaller than the running times of BR. An interesting observation is that
while increasing ac; values result in more challenging problems for RFH, the exact
opposite behaviour is seen for BR.

Table 8. Sensitivity analysis for ac; (computational impact)

Clas c BR RFH
ass aa AGap BGap WGap Time | AGap BGap WGap Time
{0} 0.02 0.00 0.06 935 0.08 0.00 1.35 48

1 U[500,1000] 0.01 0.00 0.01 352 0.02 0.00 0.15 54
U[1000,5000] 0.01 0.00 0.01 257 0.13 0.00 0.80 181

{0} 0.09 0.00 0.27 3600 0.12 0.00 0.50 426
2 U[500,1000] 0.04 0.01 0.11 2898 0.06 0.01 0.16 328
U[1000,5000] 0.27 0.01 2.43 3048 0.41 0.01 1.63 1567

{0} 0.06 0.00 0.17 2268 0.10 0.00 0.93 237
Mean | U[500,1000] 0.03 0.00 0.06 1625 0.04 0.00 0.15 191
U[1000,5000] 0.14 0.00 1.22 1652 0.27 0.00 1.21 874

Sensitivity analysis with respect to parameter ¢%:

As noted in Table 2, the value of parameter ¢? was set to 100 in classes 1 and 2, in
order to represent real-world scenarios observed in the industry. In order to perform
sensitivity analysis with respect to this parameter, additional computational tests were
performed using % = 60 and ¢? = 20.

As seen with generally increased times and gaps for both methods and classes in
Table 9, the problem becomes computationally more difficult to solve when the value
of ¢ is decreased.For all considered values of ¢%, RFH provides high quality solu-
tions that are on average slightly worse than the solutions found by BR, albeit with
significantly smaller times than BR. Moreover, the worst GAP obtained by RFH is
significantly better than the worst GAP obtained by BR when ¢? = 20.

Table 9. Sensitivity analysis for ¢ (computational impact)

q BR RFH

AGap BGap WGap Time | AGap BGap WGap Time
100 0.02 0.00 0.06 935 0.08 0.00 1.35 48
1 60 0.02 0.01 0.08 784 0.22 0.01 1.30 78
20 0.02 0.01 0.07 1051 0.19 0.01 0.86 161
100 0.09 0.00 0.27 3600 0.12 0.00 0.50 426
2 60 0.13 0.01 0.86 3600 0.26 0.01 1.02 536
20 0.64 0.05 5.78 3600 0.74 0.06 2.81 1242
100 0.06 0.00 0.17 2268 0.10 0.00 0.93 237
Mean | 60 0.07 0.01 0.47 2192 0.24 0.01 1.16 307
20 0.33 0.03 2.93 2326 0.46 0.04 1.84 701

Class | ¢

Next, in order to study the impact of the parameter ¢% on the structure of the
solutions found by the proposed approaches, Table 10 presents the percentages of the
setup cost (SCost), inventory holding cost (HCost), and backlogging cost (BCost) in
the total cost (T'Cost). We observe that for both approaches and classes, when the
value of ¢? decreases, the percentage of the setup cost decreases and the percentage
of the backlogging cost increases, while the percentage of the inventory holding cost
remain stable. Obviously, when ¢? is reduced, the demands (and hence total cost)
increase.
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Table 10. Sensitivity analysis for ¢ (impact on the structure of the solutions)

Class | ¢? BR REH
SCost(%) HCost(%) BCost(%) TCost | SCost(%) HCost(%) BCost(%) TCost
100 14.80 42.92 42.28 50935 14.85 42.81 42.34 50974
1 60 12.89 42.43 44.69 58597 12.85 42.22 44.93 58721
20 10.40 40.64 48.97 71532 10.33 40.57 49.10 71654
100 22.09 40.40 37.51 63603 22.07 40.31 37.62 63628
2 60 19.59 40.88 39.52 71950 19.44 40.77 39.79 72471
20 16.88 41.20 41.92 83360 16.85 40.99 42.16 83448
100 18.85 41.52 39.63 57269 18.86 41.42 39.72 57301
Mean | 60 16.58 41.58 41.84 65273 16.49 41.42 42.09 65596
20 13.89 40.94 45.17 77446 13.84 40.79 45.37 77551

5.4. An extension with residual shelf-life pricing

The model presented in Section 3 is suitable to address production planning problems
faced by various food industries such as meat, where the only concern is the expiration
of the products due to shelf-life, as also observed in our technical visits. However,
as discussed in Liitke Entrup, Gilinther, Van Beek, Grunow, and Seiler (2005), some
industries such as short-life dairy may benefit from a different pricing approach, where
the price of a product depends on its residual shelf-life by the time it is delivered to the
customer. Therefore, in this section, we discuss an extension of our model to include
shelf-life dependent pricing, and we perform computational tests to study the efficiency
of our proposed approaches in this setting.

Liitke Entrup et al. (2005) consider a lot sizing and scheduling problem with shelf-life
dependent pricing in the yoghurt production. The authors assume that the manufac-
turer yields a financial benefit if the products have a longer residual shelf-life when
delivered. More specifically, they propose a shelf-life dependent benefit as a linear func-
tion of the age of the product. Let ben; be the benefit when one unit of the product j
of age 0 is used to meet demand, and «; be the fraction of ben; when one unit of age
sl; is delivered to the customer. Figure 6 presents the benefit function, including the
expression of the benefit when one unit of age tl, 0<t < slj, is used to meet demand.

Figure 6. Benefit obtained according to the age of the products
Benefit

benj

benj(a]- -1)

t' + ben;
Sl] J

ajbenj

: Age of the
t' l;
55 Product

In this extended problem, the objective is to maximize the total benefits obtained,
discounting the total costs described in Section 3. Therefore, the original objective
function (1) is replaced by (20), and the new model is denoted by MP-CLSDPRL
(Maximum Profit CLSDPRL).
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We have modified the test instances of Section 5.1 with the addition of ben; €
U[5,50] and a;; = 0.2 in order to test the MP-CLSDPRL model. We have only consid-
ered the solution approaches BR and RFH with a maximum running time of 1 hour.
Results presented in Table 11 indicate that our heuristic offers superior quality feasible
solutions for classes 3, 4, and 5, overcoming the solution quality issue observed for the
BR approach, while also obtaining almost identical solution quality for classes 1 and
2. Moreover, our heuristic is able to provide competitive dual bounds, in particular
performing significantly better than the BR approach for the large size instances of
classes 3, 4, and 5. Finally, we note that RFH is able to provide feasible solutions for all
test instances (finding solutions with non-positive profits only for two instances from
class 5), while BR can provide feasible solutions only for 86 test instances (finding
solutions with non-positive profits for 29 test instances, more specifically, 4 from class
3, 13 from class 4, and 12 from class 5).

Table 11. Computational results for the MP-CLSDPRL model

Class BR REH
AGap BGap WGap Time FS NBB | AGap BGap WGap Time FS NBB
1 0.01 0.00 0.01 443 20 20 0.02 0.00 0.07 43 20 0
2 0.02 0.01 0.07 2838 20 20 0.02 0.01 0.08 452 20 0
3 73.45 7.00 48236 3600 20 1 5.20 0.82 21.18 3543 20 19
4 149.35  43.89 446.85 3600 14 3] 10.83 4.23 18.70 3584 20 17
5 200.82 150.36 513.63 3600 12 8 | 40.09 9.79 192.63 3600 20 12
Mean 84.73  40.25 288.59 2816 17.2 104 | 11.23 2.97 46.53 2244 20 9.6

To conclude this section, we also compare the results obtained by the original CLS-
DPRL model (Table 3, max. time 3,600 seconds) with the results of the MP-CLSDPRL
model. We first observe that for instances in classes 1 and 2, the gaps and running times
of each method are very similar for both CLSDPRL and MP-CLSDPRL models. On
the other hand, we remark that for instances of classes 3, 4, and 5, the BR approach
presents significantly higher gaps for MP-CLSDPRL than the gaps for CLSDPRL,
which is primarily driven by the fact that the BR approach was not able to find so-
lutions with positive profit for some instances of the MP-CLSDPRL model. A similar
gap difference is also observed for the RFH approach within the instances from class 5,
where RFH was not able to find solutions with positive profit for some instances of the
MP-CLSDPRL model, hence resulting in a higher gaps for MP-CLSDPRL. Finally,
we note that for instances of classes 3 and 4, RFH is able to achieve similar gaps for
both models.

6. Conclusion and future research

In this paper, we described a new lot sizing and scheduling problem stemming from the
food industry and proposed mixed integer programming formulations to model this. In
order to build effective solution methods for use in practice, a branching rule to accel-
erate the convergence of branch-and-bound algorithms to solve the proposed models as
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well as a relax-and-fix procedure with a nontraditional decomposition approach were
proposed. The computational results indicate that in particular the proposed heuristic
framework can obtain superior results for challenging problems.

There are a number of directions for potential future research. First of all, we note
that the nature of the problem with two main components, a lot sizing problem and
a scheduling problem integrated together with linking constraints, deserves interest
with regards to developing and evaluating customized decomposition approaches. In
an ongoing work, we are currently investigating Lagrangian relaxation based heuristic
approaches, which may provide further insights into the complexities of the problem.
Moreover, long computational times suggest that other heuristic and metaheuristic
approaches such as genetic algorithms and variable neighborhood search are worth
investigating from a practical and comparative perspective. Finally, the integrated
nature of the problem also requires a better theoretical understanding and therefore,
in the future, we are planning to perform a thorough polyhedral analysis on some
specific subproblems involving integrating constraints.
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