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Abstract. This paper introduces a model for rating a firm’s default risk based on fuzzy logic

and expert system and an associated model of sensitivity analysis (SA) for managerial purposes.

The rating model automatically replicates the evaluation process of default risk performed

by human experts. It makes use of a modular approach based on rules blocks and conditional

implications. The SA model investigates the change in the firm’s default risk under changes

in the model inputs and employs recent results in the engineering literature of Sensitivity

Analysis. In particular, it (i) allows the decomposition of the historical variation of default risk,

(ii) identifies the most relevant parameters for the risk variation, and (iii) suggests managerial

actions to be undertaken for improving the firm’s rating.
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1 Introduction

This paper presents a model for rating firms combined with a model for accomplishing sensitivity

analysis (SA). The rating model is based on a fuzzy expert system, the SA model is based on

recent results aiming at quantifying the impact of the model’s input factors on the model’s

output change.

Several recent works analyze credit rating under managerial and financial perspectives (Bon-

sall IV et al. 2017, Griffin, Hong and Ryou 2018, Kouvelis and Zhao 2017, Kisgen 2006,

Karampatsas et al. 2014, An and Chan 2008, Lim et al. 2017).

The evaluation of credit rating may be performed via several different quantitative methods

(Hwang 2013a, 2013b, Pfeuffer et al. 2019, Doumpos et al. 2015, Doumpos and Zopounidis

2011, Angilella and Mazzù 2017). However, financial (quantitative) data are often insufficient

or even unreliable for measuring the credit rating of an enterprise where judgmental, qualitative

information is to be considered (Angilella and Mazzù 2015). Fuzzy logic is suited for providing

financial analyses and for building rating models whose functioning is influenced by human

judgment and whose parameters are vague and difficult to express into precise real numbers

(Chen and Chiou 1999, Syau et al. 2001, Jiao et al. 2007. See also Levy et al. 1991, Peña et

al. 2018, Bai et al. 2019).

Fuzzy logic is often employed along with techniques of artificial intelligence. Typically,

expert systems, artificial neural networks, machine learning, and hybrid intelligence systems are

applied to almost every area of management (see Ignizio 1990 for an overview of expert systems).

Several studies show that artificial intelligence achieves high performance in predicting credit

rating, in terms of explanatory power and stability (e.g., Lee 2007, Kim and Ahn 2012, Huang

et al. 2004). As for finance, applications of artificial intelligence are numerous (Brown et al.

1990, Matsatsinis et al. 1997, Bahrammirzaee 2010, Dirks et al. 1995, Ferreira et al. 2019,

Dawood 1996, Volberda and Rutges 1999, Lincy and John 2016, Chen and Li 2014).

Fuzzy expert systems have been advanced as well in several areas of finance and management

(Magni et al. 2004, Marzouk and Aboushady 2018, Magni et al. 2006, Malagoli et al. 2007,

Cheng et al. 2013, Doumpos and Figueira 2018, Vassiliou 2013, Agliardi and Agliardi 2009).

We present a rating model which is an input-output model formally represented by a fuzzy

expert system: It automatically provides a firm’s default risk (model output) and its associated

credit rating on the basis of 18 selected key drivers (model inputs). The latter are aggregated in

a modular approach via “if-then” implications applied to fuzzy numbers. As such, it is capable

of taking into account both quantitative and qualitative financial and managerial variables. The

proposed rating model is a judgmental expert-based system for credit risk assessment, differing

from widely adopted statistical and machine learning approaches. Statistical models are based

on mathematical descriptions aiming at representing the patterns in the economic data via

selecting an optimal method a priori; machine learning techniques are computational-based,

data-driven algorithms, less relying on assumptions about data (Galindo and Tamayo 2000).

In contrast, judgmental expert-based systems reproduce the evaluation and decision processes

performed by human experts, through logical inference, knowledge base, and heuristics. More
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specifically, in comparing machine learning with expert systems, both belong to the artificial

intelligence techniques class, but machine learning is an adaptive information processing system

using learning and generalization capabilities whereas an expert system is a computer system

containing a well-structured, static body of knowledge imitating expert skills, capable to solve

difficult problems requiring significant human expertise (Bahrammirzaee 2010).

In addition, we associate the fuzzy expert system with a sensitivity analysis (SA) model

which enables performing a detailed financial and managerial analysis, proposing a combination

method which has been analogously applied to other research areas of management and policy

making, such as the assessment of ecological and human sustainability of countries (Grigoroudis

et al. 2014, Andriantiatsaholiniaina et al. 2004). In particular, given a change in the output

of a model and given two associated sequences of input parameters, a SA technique enables

measuring the impact of each input parameter on the output change. Also, it enables ranking

the parameters according to their importance. In such a way, it is possible to understand the

reasons why the output change has occurred and the appropriate actions that may lead the

decision maker toward an improvement in the output change by a proper management of the

key drivers.

SA techniques are widely employed in various areas of finance and management (Huefner

1972, Luo et al. 2015, Donders et al. 2018, Madu 1988, Borgonovo and Peccati 2004, 2006,

Borgonovo et al. 2010, Délèze and Korkeamäki 2018, Talavera et al. 2010, Percoco and Bor-

gonovo 2012, Marchioni and Magni 2018, Chapman et al. 1984, Vázquez-Abad and LeQuoc

2001, Parnes 2010).

Among the various SA techniques, a recent approach is based on the notion of Finite Change

Sensitivity Index (FCSI) (Borgonovo 2010a, 2010b), which we employ in our model. The FCSI

represents a powerful analytical tool, which is used for studying a finite change in the model

output. We aim at applying this SA technique to the rating model in order to identify the

causes of variation in the default risk and then analyze the effects of different financial and

managerial actions on the prospective rating.

However, while the FCSIs provide the correct ranking of the input factors in terms of

their impact on the output change, they are not aimed at providing an exact decomposition

of the output change, in the sense that the sum of the contributions of the input factors

to the output change is not equal to the output change, owing to some double-counting of

interactions among variables. In other words, given a change in the default risk and given a

set of n economic parameters that affect the model output, the FCSI provides the parameter’s

contribution to an output change which includes individual contribution and joint interactions

with the other model inputs. However, the sum of all the FCFIs does not equate the output

change.1 For this reason, we fine-tune the FCSI notion via a duplication-free procedure and

supply a “clean FCSI”. We apply it to the rating model for managerial and financial analysis

for exactly decomposing the contributions of the input factors to the output change. We

1For example, suppose the selected inputs are n = 3. It might turn out that 45% of the output change has
been generated by the change of parameter 1, 35% has been generated by the change of parameter 2, and 30%
has been generated by the change of parameter 3. The sum of the contributions is 0.45+ 0.35+ 0.30 = 1.1 6= 1.
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call the combined model (fuzzy expert system + SA model) the “Default Risk & Sensitivity

Model” (DRSM): It rates the firm and, at the same time, ranks the parameters affecting the

risk change in terms of their importance. We show how the DRSM may be applied for (i)

rating a firm automatically, based on a given set of input parameters, (ii) identifying the causes

of the change of the default risk in two different years, (iii) decomposing the change in the

default risk and ranking the key drivers in terms of impact on such a change. For illustrative

purposes, we also apply the DRSM to an Italian-controlled industrial company. We provide

its rating in various years and analyze the change of the default risk and the change in rating

in different years. Furthermore, while DRSM merges a fuzzy expert system with a model of

sensitivity analysis, we stress that the proposed SA application for credit rating can be usefully

combined to any approach for rating firms such as statistical and machine learning techniques

adopting analogous fuzzy-logic models; in particular, SA may be applied as a tool enhancing

the interpretability and comprehensibility of fuzzy models, whose comprehension is often hard

because of the adoption of complex rule bases. Furthermore, SA is helpful for testing and

validating the representativeness of the underlying credit scoring model: Additional simulation

runs which measure the sensitivity of the output under changes in the various inputs may

corroborate the model or reveal the need for revising some of the choices made in the model

setup (Pianosi et al. 2016).

The remainder of the paper is structured as follows. Section 2 presents the fuzzy expert

system. Section 3 illustrates the basic notions of sensitivity analysis and defines the FCSI and

its use. Section 4 fine-tunes the FCSI via a duplication-free procedure and provides an exact

decomposition of the output change of a model. Section 5 applies the DRSM (rating model

+ clean FCSI) to an Italian-controlled industrial company and shows some possible uses of it.

Some remarks conclude the paper.

2 Fuzzy-logic expert system for credit rating

The current work introduces a credit rating model based on fuzzy logic and expert system,

which derives the default risk and the rating class of a corporation according to rules blocks

based on conditional implications. Our fuzzy-logic rating model considers a set of 18 economic

and financial variables (the model inputs), both quantitative (such as Leverage, OCF-to-Debt,

EBITDA on Sales) and qualitative (as Product Positioning and Industry Prospects), which are

grouped under a managerial and financial perspective in first-level intermediate variables which

are in turn gathered to form second-level intermediate variables which are in turn grouped to

form a third level of intermediate variables. Finally, the latter determine the firm’s default

risk (model output). Figure 1 represents the conceptual map of variables aggregation from the

model inputs to the Default Risk through the various intermediate steps (see also descriptions

of input and intermediate variables in the Appendix).2

2The inputs may themselves be considered 0-level intermediate variables, determined by lower-level basic
parameters. For example, the Return On Investment (ROA) is a function of three parameters: NOPAT, R&D
and invested capital (see Appendix).
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INPUT    Int. var. (1st )                Int. var. (2nd )                 Int. var. (3rd )               OUTPUT 

 

 
 

Leverage (−) 

Long-Term Leverage (−)  (Risk of) Capital Structure (−) 

FFO-on-Debt (+)                                 

 

 

Interest Coverage 1 (+) 

     Interest Coverage (−)   

Interest Coverage 2 (+)                      Financial Vulnerability (+) 

 

 

OCF-to-Debt (+) 

FCR (+)    Debt Coverage (−)      

Debt Service Cov. (+)                         Financial Risk (+) 

 

 

OWC Intensity (+) 

     WC Management (+) 

Fin. Cycle (−) 

 

                         Operating Efficiency (−) 

                   

EBITDA on Sales (+)  

     Profitability (+) 

ROA (+) 

 

 

Custom. Conc. (+) 

Prod. Position. (−)   Strategic Risk (+) 

Industry Prosp. (−) 

                                    Operating Risk (+)               Operating Risk (+) 

 

EBITDA Standard Dev. (+) 

Operating Leverage (+)  Specific Risk (+) 

Industrial Coverage (−) 

 

Default       

Risk 

Figure 1: Conceptual map of variables aggregation

5



 

0-level  1st-level  2nd-level  3rd-level  4th-level 

𝑥 ⃗⃗⃗   ⟶ 𝑓1(𝑥 ⃗⃗⃗  ) ⟶ 𝑓2(𝑓1(𝑥 ⃗⃗⃗  )) ⟶ 𝑓3 (𝑓2(𝑓1(𝑥 ⃗⃗⃗  ))) ⟶ 𝑓4 ( 𝑓3 (𝑓2(𝑓1(𝑥 ⃗⃗⃗  )))) 

[  
   
   
   
   
   
 𝑥1 = 𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑥2 = 𝐿𝑜𝑛𝑔 − 𝑇𝑒𝑟𝑚 𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑥3 = 𝐹𝐹𝑂 − 𝑜𝑛 − 𝐷𝑒𝑏𝑡𝑥4 = 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 1𝑥5 = 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 2𝑥6 = 𝑂𝐶𝐹 − 𝑡𝑜 − 𝐷𝑒𝑏𝑡𝑥7 = 𝐹𝐶𝑅𝑥8 = 𝐷𝑒𝑏𝑡 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑥9 = 𝑂𝑊𝐶 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑥10 = 𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝐶𝑦𝑐𝑙𝑒𝑥11 = 𝐸𝐵𝐼𝑇𝐷𝐴 𝑜𝑛 𝑆𝑎𝑙𝑒𝑠𝑥12 = 𝑅𝑂𝐴𝑥13 = 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛𝑥14 = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔𝑥15 = 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 𝑃𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑠𝑥16 = 𝐸𝐵𝐼𝑇𝐷𝐴 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑥17 = 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐿𝑒𝑣𝑒𝑟𝑎𝑔𝑒𝑥18 = 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ]  

   
   
   
   
   
 

 ⟶ 

[  
   
 (𝑅𝑖𝑠𝑘 𝑜𝑓) 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝑒𝑏𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑊𝐶 𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡𝑃𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑐 𝑅𝑖𝑠𝑘𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑅𝑖𝑠𝑘 ]  

   
 
 ⟶ 

 [𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑅𝑖𝑠𝑘 ] 
⟶ [ 𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑅𝑖𝑠𝑘𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑅𝑖𝑠𝑘] ⟶ 𝑦 = 𝐷𝑒𝑓𝑎𝑢𝑙𝑡 𝑅𝑖𝑠𝑘 

Figure 2: The expert system as a composed function
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The approach is then modular and gives rise to an evaluation tree that is run from branches

to trunk. The link between the set of the input parameters and the output may be represented

as a function of the 18 variables, xi, i = 1, 2, . . . , 18 affecting the dependent variable, y (Default

risk), so that y = f(~x), where ~x = (x1, x2, . . . , x18). For any given value of ~x, the model

automatically provides the default risk. Mathematically, the model is a composed function.

There are 4 composing functions, whose values represent the four steps through which the

inputs are processed and the output is fleshed out:

~x → f1(~x) → f2(f1(~x)) → f3(f2(f1(~x))) → f4(f3(f2(f1(~x)))) = y.

As shown in Figure 2, starting from 18 parameters, one gets a vector of 7 components (via f1),

then a vector of 3 components (via f2), then a vector of 2 components (via f3) and, finally

one single component, the model’s output (via f4). Figure 1 is the representation of the fuzzy

expert system as a conceptual map, Figure 2 is the same expert system described as a composed

function.

Each composing function is either monotonically increasing or monotonically decreasing

with respect to prior-level intermediate variables. Figure 1 indicates monotonicity via plus (+)

or minus (−) sign. Specifically, a given variable z may affect the next-level variable q positively

(+) or negatively (−). Variable z affects variable q positively if q increases (decreases) whenever

z increases (decreases); it affects q negatively if q decreases (increases) whenever z increases

(decreases).

Each variable of the model (inputs, intermediate variables, model output) can be associated

with several attributes, which are represented graphically by fuzzy numbers and a membership

function. For instance, the input factor Fixed Charge Ratio (FCR, defined in the Appendix) is

characterized by the membership function reported in Figure 3. The horizontal axis collects the

numerical values of FCR, while the vertical axis reports the membership degrees (or activation

levels) of each linguistic attribute. For each value of FCR, all the attributes are activated at a

certain degree, ranging from 0 to 1. For example, a FCR equal to 1.05 is at the same time:

• low at degree 0;

• medium low at degree 0.22;

• medium high at degree 0.78;

• high at degree 0.

The intermediate variables at any level and the model output Default Risk are evaluated

using rules blocks built upon conditional (“if-then”) implications which map the variables

attributes at the previous level onto the attributes of the next level through a modular approach.

For instance, in Table 1 we report the rules block for determining (the risk of) the Capital

Structure (first-level intermediate variable), depending on the input variables Leverage, Long-

Term Leverage, and FFO-on-Debt. For example, the first four-rule block informs about the
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Figure 3: Membership function of FCR

degree of risk of the capital structure under changes in the FFO-on-Debt while Leverage and

Long-Term Leverage are kept at low levels. Note that, for increasing value of FFO-on-Debt,

the risk level of the Capital Structure increases (i.e., the capital structure becomes riskier),

meaning that the weight of debt becomes higher. For example, the fourth rule may be read as

follows:

IF

Leverage is Low

Long-Term Leverage is Low

FFO-on-Debt is High

THEN

(Risk of) Capital Structure is Very High

Each rule of any block is activated simultaneously, at a certain degree, precisely because

each variable has a certain membership degree for each attribute. All variables (including the

output, Default Risk) are fuzzy numbers which are associated with membership degrees.

Reading Figure 1 backward from output to inputs, one can see that the Default Risk de-

pends on two variables, Financial Risk and Operating Risk. Financial Risk depends in turn

by Financial Vulnerability and Operating Efficiency, each of which in turn depends on other

variables; specifically, Financial Vulnerability depends on (Risk of) Capital Structure, Interest

Coverage, Debt Coverage while Operating Efficiency depends on WC Managament and Prof-

itability. In turn, each of the latter depends on some group of inputs. Likewise, Operating

Risk depends on Strategic Risk and Specific Risk,3 which in turn depend on different groups of

inputs.

Whenever the input vector is selected, the output (Default Risk) is automatically provided.

Table 2 reports the rules block for Default Risk, conditionally to Financial Risk and Operating

Risk (e.g., focusing on the fourth rule, if Financial Risk is AAA and Operating Risk is BBB,

then the Default Risk is evaluated at AA). Note that the Financial Risk, the Operating Risk,

and the Default Risk are described in terms of eight rating classes, from the safest one, AAA,

3Operating Risk is associated to Financial Risk to determine the Default Risk, so it is repeated as a 2nd-level
and 3rd-level intermediate variable. In terms of composing function, one may interpret it as an identity function.
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Table 1: Rules block for (Risk of) Capital Structure

IF THEN

Leverage Long-Term Leverage FFO-on-Debt (Risk of) Capital Structure

low low low high
low low medium-low high
low low medium-high very-high
low low high very-high
medium-low low low medium-high
medium-low low medium-low high
medium-low low medium-high high
medium-low low high very-high
medium-high low low medium-low
medium-high low medium-low medium-high
medium-high low medium-high high
medium-high low high high
high low low medium-low
high low medium-low medium-low
high low medium-high medium-high
high low high high
low medium-low low medium-high
low medium-low medium-low high
low medium-low medium-high high
low medium-low high very-high
medium-low medium-low low medium-low
medium-low medium-low medium-low medium-high
medium-low medium-low medium-high high
medium-low medium-low high high
medium-high medium-low low medium-low
medium-high medium-low medium-low medium-low
medium-high medium-low medium-high medium-high
medium-high medium-low high high
high medium-low low low
high medium-low medium-low medium-low
high medium-low medium-high medium-low
high medium-low high medium-high
low medium-high low medium-low
low medium-high medium-low medium-high
low medium-high medium-high high
low medium-high high high
medium-low medium-high low medium-low
medium-low medium-high medium-low medium-low
medium-low medium-high medium-high medium-high
medium-low medium-high high high
medium-high medium-high low low
medium-high medium-high medium-low medium-low
medium-high medium-high medium-high medium-low
medium-high medium-high high medium-high
high medium-high low very-low
high medium-high medium-low low
high medium-high medium-high medium-low
high medium-high high medium-low
low high low medium-low
low high medium-low medium-low
low high medium-high medium-high
low high high high
medium-low high low low
medium-low high medium-low medium-low
medium-low high medium-high medium-low
medium-low high high medium-high
medium-high high low very-low
medium-high high medium-low low
medium-high high medium-high medium-low
medium-high high high medium-low
high high low very-low
high high medium-low very-low
high high medium-high low
high high high medium-low
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Table 2: Rules block for Default Risk

IF THEN

Financial Risk Operating Risk Default Risk

AAA AAA AAA
AAA AA AAA
AAA A AAA
AAA BBB AA
AAA BB AA
AAA B AA
AAA CCC AA
AAA CC AA
AA AAA AA
AA AA AA
AA A AA
AA BBB A
AA BB A
AA B A
AA CCC A
AA CC A
A AAA A
A AA A
A A A
A BBB A
A BB BBB
A B BBB
A CCC BBB
A CC BBB
BBB AAA A
BBB AA BBB
BBB A BBB
BBB BBB BBB
BBB BB BBB
BBB B BB
BBB CCC BB
BBB CC BB
BB AAA BBB
BB AA BB
BB A BB
BB BBB BB
BB BB BB
BB B BB
BB CCC B
BB CC B
B AAA BB
B AA BB
B A BB
B BBB BB
B BB BB
B B BB
B CCC BB
B CC B
CCC AAA B
CCC AA B
CCC A B
CCC BBB CCC
CCC BB CCC
CCC B CCC
CCC CCC CCC
CCC CC CCC
CC AAA CCC
CC AA CCC
CC A CCC
CC BBB CC
CC BB CC
CC B CC
CC CCC CC
CC CC CC
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to the riskiest one, CC. The output provided by the rule block, the Default Risk, is a fuzzy

number. Through a defuzzification procedure, the default risk is automatically converted into

a crisp (real) number in the normalized interval [0, 1].4

Finally, a conversion table (Table 3) converts the (crisp) default risk into a rating class.

Given a sequence of inputs, there automatically corresponds a firm’s default risk and, hence, a

class of rating. The logical chain is then as follows:

Inputs (fuzzy numbers) ~x

=⇒ first-level intermediate variables (fuzzy numbers) f1

=⇒ second-level intermediate variables (fuzzy numbers) f2

=⇒ third-level intermediate variables (fuzzy numbers) f3

=⇒ Default Risk (fuzzy number) f4 = y

=⇒ Default Risk (crisp number) defuzzification

=⇒ Rating class (letter) conversion

Table 3: Conversion table from default risk to rating class

Default risk Rating class

[0, 0.125) AAA
[0.125, 0.25) AA
[0.25, 0.375) A
[0.375, 0.5) BBB
[0.5, 0.625) BB
[0.625, 0.75) B
[0.75, 0.875) CCC
[0.875, 1] CC

The 18 attributes selected represent a minimum set of meaningful risk components and profiles.

The choice depends on our operational experience in corporate finance practice (debt restruc-

turing in particular) and on the fact that they are commonly used by rating agencies’ models.

Therefore, the choice of this minimum set reflects the knowledge base of the experts. However,

the fuzzy expert system is flexible enough for customization: It may be augmented with other

appropriate input factors, which may be aggregated via if-then rules in a modular approach,

as previously seen.

In general, statistical data might be collected and processed to determine and tune member-

ships degrees and decisions rules. Industry prospects, for example, might be based on data

available from accredited sources; product positioning might be based on data from interviews

to a statistically significant sample of customers; accounting data such as ROA might be com-

pared with a sample of comparable firms of the same sector and membership degrees might

be evaluated on the basis of the sample mean. Even in our model, study sectors and com-

parisons with industry means as well as our expertise have been relevant for determining the

4The defuzzification procedure applied to the Default Risk uses the Center of Maximum method (CoM) (von
Altrock 1995).
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membership degrees. Decision rules in our model are based on our expertise as advisors and

academics, but automatic extensions may be conceived in several ways, with the purpose of

automatically infer the fuzzy rules based on large samples of historic data. Large amounts of

historical data make it possible to use different types of approaches, based on the knowledge

or technology or types of analysis software available; for example, neuro-fuzzy models, used to

model the membership functions as well as to create the blocks of rules, or genetic algorithms

or the widely employed fuzzy-clustering methods. This is particularly important if the model

is enriched with a high number of inputs, which would make the work of the experts extremely

burdensome and characterized by a significant degree of inaccuracy. In this respect, there may

be a trade-off between interpretability and automatic learning methods and several authors

have dealt with the problem of rule generation (see Guillaume 2001, Gómez-Skarmeta et al.

1999, Zhang et al. 2009, Xiao and Liu 2005). In Guillaume and Charnomordic (2011) a free

software is proposed, available on the web, which allows the interpretation of systems built

automatically from the data, in all phases of design.

3 Sensitivity Model and FCSI

In this section, we associate the fuzzy expert system described above with a model of sensitivity

analysis (SA). The expert system and the SA model form what we call the Default Risk &

Sensitivity Model (DRSM).

SA is the “study of how the uncertainty in the output of a model (numerical or otherwise)

can be apportioned to different sources of uncertainty in the model input” (Saltelli et al. 2004,

p. 45). Given a model and a set of inputs (parameters), SA measures the parameters’ influence

in terms of variability of the model output. Specifically, SA models aim to investigate the

variation of the objective function (in our case, the firm’s default risk) under changes in the

model inputs, also aiming at identifying the most influential risk factors affecting the model

output.

Many SA techniques are defined in the literature (see Borgonovo and Plischke 2016, Pianosi

et al. 2016, for review of SA methods) and the choice of technique depends on several factors,

among which the purpose of the analysis and the size of the variation of the parameters.

In our case, the default risk variation caused by changes in key drivers or groups of key

drivers, is analyzed in both chronological and managerial perspectives:

• DRSM decomposes the historical realized variation of the enterprise default risk into the

effects of key parameters and identifies the main reasons of rating variation across time

• DRSM suggests managerial actions which should be undertaken for improving the rating,

especially for increasing the success of complex financial operations such as bond issues,

mergers and acquisitions, and debt restructuring.

The scope of DRSM is multiple and concerns several dimensions of analysis:

• it supports the evaluator in identifying the effects of each parameter on the rating variation
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• it enables accomplishing a selective analysis in terms of groups of parameters. For exam-

ple, it measures the impact of the following main groups on the default risk profile: (i)

Financial Vulnerability, (ii) Operating Efficiency, (iii) Operating Risk

• it enables ranking any group of variables according to their relevance on the default risk

variation

• it enables identifying the maximum effect of a variable or group of variables on the default

risk

• it supports the financial manager in her/his activities of financial planning and optimiza-

tion, and in functions of programming, control and capital structuring

• it offers managerial actions for improving and controlling the credit risk profile of the

enterprise.

It is worth noting that

• the DRSM can be performed even starting from primitive, 0-level economic and financial

variables as they result from the operations (such as revenues, COGS, long-term debt), not

just from worked drivers such as indices and ratios (e.g. Leverage, Long-Term Leverage,

FFO-on-Debt. See also footnote 2)

• the application of SA is independent of the adopted rating model: While we present

it in conjunction with the fuzzy expert system illustrated in the previous sections, the

SA model is readily available for any algorithm and any set of parameters defining any

possible rating model (i.e., the SA model does not depend on the credit rating model).

Finite Change Sensitivity Indices (FCSIs; Borgonovo 2010a, 2010b) represent a Sensitivity

Analysis technique focusing on the output change due to a finite variation of the inputs. The

FCSI technique is applicable for whatever parameters variation; it does not require any peculiar

variation scheme or sufficiently small parameters changes.5

Let f be the objective function, defined on the parameter space X, which maps the vector

of inputs (or parameters or key drivers) x = (x1, x2, . . . , xn) ∈ X onto the model output y(x):

f : X ⊂ R
n → R, y = f(x), x = (x1, x2, . . . , xn) . (1)

Let x0 = (x0
1, . . . , x

0
n) be the base (or initial) value of the parameters and f(x0) be the corre-

sponding model output. The parameters vary from x0 to x1 = (x1
1, x

1
2, . . . , x

1
n) ∈ X, the so-called

realized value, and the related output is f(x1). The output variation is ∆f = f(x1)− f(x0).

Let (x1
i , x

0
(−i)) = (x0

1, x
0
2, . . . , x

0
i−1, x

1
i , x

0
i+1, . . . , x

0
n) be obtained by varying the parameter

xi to the new value x1
i , while the remaining n − 1 parameters are fixed at x0. Similarly,

5FCSIs are based on the properties of functional ANOVA decomposition for finite changes (Rabitz and Alis
1999, Borgonovo 2010b).
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(x1
i , x

1
j , x

0
(−i,j)) = (x0

1, x
0
2, . . . , x

0
i−1, x

1
i , x

0
i+1, . . . , x

0
j−1, x

1
j , x

0
j+1, . . . , x

0
n) is the vector of inputs as-

suming that xi and xj are set to the new values, while the remaining n − 2 are unvaried, and

so forth for all j-tuples of inputs, j = 1, 2, . . . , n.

Two viable definitions of Finite Change Sensitivity Indices are First Order FCSI and Total

Order FCSI. The First Order FCSI of parameter xi considers the individual effect of xi on the

variation of f (Borgonovo 2010b):

∆1
i f = f(x1

i , x
0
(−i))− f(x0) (2)

and, in normalized version, Φ1,f
i = ∆if

∆f
.

The Total Order FCSI of a parameter, instead, measures the total effect of the input on

f , including both the individual contribution and the interactions between the parameter and

the other parameters. The interaction between xi and xj, denoted as ∆i,jf , is the portion of

f(x1
i , x

1
j , x

0
(−i,j))− f(x0) that is not explained by the individual effects ∆1

i f and ∆1
jf : ∆i,jf =

f(x1
i , x

1
j , x

0
(−i,j)) − f(x0) −∆1

i f −∆1
jf . Likewise, the interaction between the triplet of inputs

xi, xj and xh, identified as ∆i,j,hf , is the portion of f(x1
i , x

1
j , x

1
h, x

0
(−i,j,h)) − f(x0) that is not

explained by the individual effects and by the interactions between any pair of inputs xi, xj

and xh:

∆i,j,hf = f(x1
i , x

1
j , x

1
h, x

0
(−i,j,h))− f(x0)−∆1

i f −∆1
jf −∆1

hf −∆i,jf −∆i,hf −∆j,hf

(analogously for a group of s > 3 parameters). The variation of f between the base and the

realized case, ∆f , can be written as the sum of individual effects and interactions between

parameters and groups of parameters (Borgonovo 2010b):6

∆f =

individual effects
︷ ︸︸ ︷
n∑

i=1

∆1
i f +

pairs
︷ ︸︸ ︷
∑

i1<i2

∆i1,i2f +

triplets
︷ ︸︸ ︷
∑

i1<i2<i3

∆i1,i2,i3f + · · ·+

s-tuples
︷ ︸︸ ︷
∑

i1<i2···<is

∆i1,i2,...,isf + · · ·+

n-tuple
︷ ︸︸ ︷

∆i1,i2,...,inf

︸ ︷︷ ︸

interactions

,

(3)

where the general term
∑

i1<i2···<is
∆i1,i2,...,isf is the sum of the interactions between groups of

s parameters.

The Total Order FCSI of xi, denoted as ∆T
i f , is defined as the sum of the individual effect

of xi and the interaction effect of xi, which is the sum of any interaction involving xi, identified

as ∆I
i f :

∆T
i f = ∆1

i f +∆I
i f = ∆1

i f +
∑

i1<i2
i∈{i1,i2}

∆i1,i2f + · · ·+
∑

i1<i2···<is
i∈{i1,i2,...,is}

∆i1,i2,...,isf + · · ·+∆i1,i2,...,inf (4)

and the normalized Total Order FCSI is ΦT
i =

∆T

i
f

∆f
.

6Each interaction between parameters and group of parameters is counted only once in this formula.
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Borgonovo (2010b, Proposition 1) showed that ∆T
i f is also obtained as

∆T
i f = f(x1)− f(x0

i , x
1
(−i)), ∀i = 1, 2, . . . , n, (5)

where (x0
i , x

1
(−i)) is the point with each parameter equal to the realized value x1, except for the

parameter xi which is equal to x0
i .

Considering a subset of parameters Sk = {xi1 , xi2 , . . . , xis}, the relevance of the subset is

defined from the notion of importance measures of a single parameter in (2) and (5). The

First Order FCSI of Sk is ∆1
Sk
f = f(x1

(i1,i2,...,is)
, x0

(−(i1,i2,...,is))
) − f(x0), that we denote as

f(x1
Sk
, x0

(−Sk)
)− f(x0), and the Total Order FCSI is ∆T

Sk
f = f(x1)− f(x0

(i1,i2,...,is)
, x1

(−(i1,i2,...,is))
),

which can be denoted as f(x1)− f(x0
Sk
, x1

(−Sk)
).

Furthermore, given a pair of disjoint subsets of parameters (i.e. whose intersection is the

empty set), here denoted as Sk and Sl, the interaction between Sk and Sl is ∆Sk,Sl
f =

f(x1
Sk
, x1

Sl
, x0

(−Sk,Sl)
) − f(x0) − ∆1

Sk
f − ∆1

Sl
f ; the interaction between an increasing group of

disjoint subsets (e.g., a triplet of subsets) can be calculated similarly to an increasing group of

parameters.

Finally, consider a group of d disjoint subsets whose union is the whole set of parameters; ∆f

can be decomposed in the sum of individual effects of any subset and the interactions between

any group of subsets, similarly to (3). The Total Order FCSI of the subset Sk, ∆
T
Sk
f , can be

calculated as the sum of its individual effect ∆1
Sk
f and its interaction effect ∆I

Sk
f , defined as

the sum of any interaction involving Sk, consistently with equation (4):

∆T
Sk
f = ∆1

Sk
f +∆I

Sk
f = ∆1

Sk
f +

∑

k1<k2
k∈{k1,k2}

∆Sk1
,Sk2

f + . . .

+
∑

k1<k2···<ks
k∈{k1,k2,...,ks}

∆Sk1
,Sk2

,...,Sks
f + · · ·+∆Sk1

,Sk2
,...,Skd

f.

Despite its usefulness, the definition of Total Order FCSI does not provide a clean decomposition

of the output change in terms of Total FCSIs. In other words, the sum of the parameters’ effects

is not equal to the function variation.

The reason is that (4) includes duplications of the interactions between pairs, triplets, s-

tuples. More precisely, the summand
∑

i1<i2
∆i1,i2f includes twice the interaction between

any pair of parameters, the summand
∑

i1<i2<i3
∆i1,i2,i3f contains three times the interaction

between any triplet of parameters, and, in general,
∑

i1<i2···<is
∆i1,i2,...,isf contains s times the

interactions between any s-tuple of parameters. Conversely, in (3), the interaction terms only

appears once. As a result:

∆T
1 f +∆T

2 f + . . .+∆T
nf 6= ∆f

or, dividing by ∆f ,

ΦT
1 + ΦT

2 + . . .+ ΦT
n 6= 1.

This means that the Total FCSIs do not sum up to 100% of the output change: It either
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explains less or more than 100%.

Example 1. Let f be the market value of the equity of a firm, depending on the share price

p and the number of shares q. The vector of inputs is x = (p, q) and the equity market value

is f(p, q) = p · q. We assume that the initial state is x0 = (p0, q0) = (10, 200), which implies

that the equity value is f(p0, q0) = p0 · q0 = 10 · 200 = 2, 000; we also assume that, after

one year, price and number of share have changed to x1 = (p1, q1) = (13, 300), so that the

market value of equity is f(p1, q1) = 13 · 300 = 3, 900. The change in the equity value is then

∆f = f(x1)− f(x0) = 3, 900− 2, 000 = 1, 900. We aim at identifying the relevance of the share

price and the number of share in terms of the variation of the market value of equity. From eq.

(2), the First Order FCSI of share price is ∆1
pf = f(p1, q0)−f(p0, q0) = 13 ·200−10 ·200 = 600

and the First Order FCSI of q is ∆1
qf = f(p0, q1)− f(p0, q0) = 10 · 300− 10 · 200 = 1, 000. The

interaction between p and q, ∆p,qf is equal to the interaction effect of both the parameters:

∆p,qf = f(p1, q1)− f(p0, q0)−∆1
pf −∆1

qf

= 13 · 300− 10 · 200− 600− 1, 000

= 300

= ∆I
pf = ∆I

qf.

However, from (4), the Total Order FCSI of the share price is ∆T
p f = ∆1

pf+∆I
pf = 600+300 =

900 and the Total Order FCSI of the number of shares is ∆T
q f = ∆1

qf +∆I
qf = 1, 000 + 300 =

1, 300.7 Therefore, the sum of the Total Order FCSIs is different from ∆f :

∆T
p f +∆T

q f = 900 + 1, 300 = 2, 200 6= 1, 900 = ∆f.

The reason is that the interaction term between price and number of shares is included in

both ∆T
p f and ∆T

q f , so there is double-counting that prevents the correct decomposition of the

output change. Equivalently, one may write

ΦT
p + ΦT

q = (900/1, 900) + (1, 300/1, 900) = 0.4737 + 0.6842 = 1.1579 6= 1.

In this case, the Total FCSI explains too much. ♦

We now solve the problem by introducing a duplication-cleaning procedure which eliminates

the redundant, multiple interactions and allows a complete and exact decomposition of the

output change through the Clean Total Order FCSIs.

4 Cleaning the Total Order FCSI

We fine-tune the FCSI by defining the clean interaction effect of parameter xi, as the interaction

effect ∆I
i f multiplied for a special corrective factor α. Denoting as ∆I∗

i f the clean interaction

7The Total Order FCSIs can also be determined from (5): ∆T
p f = f(p1, q1)−f(p0, q1) = 13·300−10·300 = 900

and ∆T
q f = f(p1, q1)− f(p1, q0) = 13 · 300− 13 · 200 = 1, 300.
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effect:

∆I∗
i f = ∆I

i f · α, (6)

where we define α as

α =

∑

j1<j2
∆j1,j2f + · · ·+

∑

j1<j2···<js
∆j1,j2,...,jsf + · · ·+∆j1,j2,...,jnf

∑n

j=1 ∆
I
jf

. (7)

Since α is the ratio of the sum of the true interaction effects over the total imputed interaction

effect, it measures the degree of redundancy (if it is smaller than 1) or deficiency (if it is greater

than 1) of the Total Order FCSI. From (3), α can be rewritten as

α =
∆f −

∑n

j=1 ∆
1
jf

∑n

j=1 ∆
I
jf

(8)

whence

∆I∗
i f = ∆I

i f ·
∆f −

∑n

j=1 ∆
1
jf

∑n

j=1 ∆
I
jf

=

interaction imputed to parameter i
︷ ︸︸ ︷

∆I
i f

∑n

j=1 ∆
I
jf

·

overall interaction
︷ ︸︸ ︷
(

∆f −

n∑

j=1

∆1
jf
)

(9)

The clean interaction effect ∆I∗
i f can then be interpreted as the component of ∆f −

∑n

j=1 ∆
1
jf

according to the proportion of ∆I
i f over the sum of ∆I

jf for any parameter.

We can now define the Clean Total Order FCSI of parameter xi, ∆T∗
i f , as the sum of

individual contribution and clean interaction effect of xi:

∆T∗
i f = ∆1

i f +∆I∗
i f (10)

and, in normalized version, ΦT∗
i =

∆T∗

i
f

∆f
. We now show that the clean indeces perfectly decom-

pose the output change, explaining the 100% of the variation.

Proposition 1. The sum of Clean Total Order FCSIs is equal to the variation of the model

output f :
∑n

i=1 ∆
T∗
i f = ∆f . In normalized version,

∑n

i=1 Φ
T∗
i = 1.

Proof. From (9),

n∑

i=1

∆I∗
i f =

n∑

i=1

∆I
i f

∑n

j=1 ∆
I
jf

·
(

∆f −

n∑

j=1

∆1
jf
)

= ∆f −

n∑

j=1

∆1
jf. (11)

From (10) and (11),

n∑

i=1

∆T∗
i f =

n∑

i=1

∆1
i f +

n∑

i=1

∆I∗
i f =

n∑

i=1

∆1
i f +∆f −

n∑

i=1

∆1
i f = ∆f. (12)

Diving both terms of the equality by ∆f , one gets
∑n

i=1 Φ
T∗
i = 1.

The duplication-cleaning procedure is applicable not also for measuring the relevance of single
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drivers but also for determining the importance of disjoint subsets of parameters. The clean

interaction effect of a subset Sk, denoted as ∆I∗
Sk
f , can be obtained from (6) and (9) just

considering interactions between subsets, interaction effect and individual effect of the subset,

instead of the effects of single parameters:

∆I∗
Sk
f = ∆I

Sk
f ·

∑

l1<l2
∆Sl1,Sl2

f + · · ·+
∑

l1<l2···<ls
∆Sl1,Sl2,...,Sls

f + · · ·+∆Sl1,Sl2,...,Sld
f

∑d

l=1 ∆
I
Sl
f

=
∆I

Sk
f

∑d

l=1 ∆
I
Sl
f
·
(

∆f −

d∑

l=1

∆1
Sl
f
)

.

(13)

Similarly, the Clean Total Order FCSI of Sk, represented as ∆T∗
Sk
f , can be determined from (10)

by summing up the individual effect and the clean interaction effect of the subset:

∆T∗
Sk
f = ∆1

Sk
f +∆I∗

Sk
f. (14)

Example 2. Consider Example 1. From (9), the clean interaction effect attributable to the

price, p, is

∆I∗
p f =

∆I
pf

∆I
pf +∆I

qf
·
(

∆f −∆1
pf −∆1

qf
)

=
300

300 + 300
·
(

(13 · 300− 10 · 200)− 600− 1, 000
)

= 150

and is equal to the clean interaction effect of q: ∆I∗
q f = ∆I∗

p f = 150. From (10), the clean

Total Order FCSI of p is ∆T∗
p f = ∆1

pf + ∆I∗
p f = 600 + 150 = 750 and the clean Total Order

FCSI of q is ∆T∗
q f = ∆1

qf +∆I∗
q f = 1, 000 + 150 = 1, 150.8 The sum of the clean Total Order

FCSIs is equal to the variation of f : ∆T∗
p f +∆T∗

q f = 750 + 1, 150 = 1, 900 = ∆f .

5 A case study

We apply DRSM to an Italian-controlled industrial company, mainly operating in the auto-

motive business. We have used real, publicly available, consolidated financial statements of

the company in recent years. We denote as 0 the base year, and rating has been determined

for four years: 0, 3, 5, and 6. The vector of inputs x = (x1, x2, . . . , xn) ∈ X consists of the

18 economic and financial variables (rating model inputs) which we have described in Section

2. The model output y(x) is the default risk. We calculate the default risk and the credit

rating of the company in the four periods via the application of the fuzzy-logic expert rating

model introduced in this work and determine the changes in default risk from period to period.

The evolution of the default risk, rating and risk variation across time is summarized in the

following table:

8In this trivial case, interaction effect is split up in half, but this is not so in general.
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Year Default Risk Rating Risk variation

0 0.8185 CCC −

3 0.7143 B −0.1042

5 0.5079 BB −0.2064

6 0.5714 BB +0.0635

In the first two intervals (0, 3) and (3, 5) the company has reduced its default risk and improved

the credit rating from class CCC (in 0) to B (in 3) and from class B (in 3) to BB (in 5); in the

last interval (5, 6) the default risk has increased, but the rating class has not varied.

Decomposition of the change in default risk and ranking of parameters. We focus

on the decrease in default risk from year 0 to year 3. Specifically, the change in default risk in

this time interval has been ∆f = −0.1042 (see Table 4). The (clean) importance measures of

the 18 key parameters are reported in Table 5. Note that

• many variables have no individual effect whatsoever nor interaction effects (e.g. FFO-on-

Debt and Interest Coverage 2): Their influence on the change in default risk is zero

• for all inputs (except Interest Coverage 1), First Order FCSI and interaction effect have

opposite sign, which means that they tend to offset each other

• one input (Interest Coverage 1) has no First Order effect but (slightly) affects the change

in default risk via the interaction effect.

As now evident, the sum of Clean Total Order FCSIs is equal to the variation of the default

risk (∆f = −0.1042). Table 5 ranks the input variables according to their relevance on the

change in default risk. It turns out that

• the decrease in default risk (and the related rating improvement) is mainly determined by

the increase of OFC-to-Debt (rank 2), which improves the financial vulnerability profile,

by the increase of OWC Intensity (rank 3), which determines an efficiency enhancement,

and by reduction of Leverage and Long-Term Leverage (ranks 4 and 5), which contribute

to decrease the financial vulnerability of the firm

• the improvement in rating is smoothed by the increase of EBITDA Standard Deviation,

which increases the Operating Risk via the Specific Risk. The standard deviation of

EBITDA is the most relevant variable of the set of parameters (rank 1). The improvement

in rating is also negatively affected by the decrease of Operating Leverage and Interest

Coverage 1 (however, their effect on the output change is very mild)

• all the remaining variables have no influence on the default risk variation.

Figure 4 is the graphical representation of Table 5. The parameters are reported on the horizon-

tal axis, sorted by decreasing influence on rating variation (hence, rank of parameters decreases
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from left to right); as for the vertical dimension, the Clean Total Order FCSIs (∆T∗
i f) are

reported: A bar above the axis informs that the parameter has increased the default risk, while

a bar below the axis informs that the parameter has decreased the default risk.

Table 4: Values of the parameters in 0 and 3

Variable 0 3 Variation

1 Leverage 0.8589 0.7249 −0.1340
2 Long-Term Leverage 0.8126 0.5295 −0.2831
3 FFO-on-Debt 0.0959 0.1143 0.0184
4 Interest Coverage 1 0.7292 2.0779 1.3487
5 Interest Coverage 2 −0.2502 0.5485 0.7987
6 OCF-to-Debt −0.0518 0.0919 0.1437
7 FCR 0.2790 0.3118 0.0328
8 Debt Service Coverage −0.2915 0.2869 0.5784
9 OWC Intensity 0.0404 0.3073 0.2669
10 Financial Cycle 0.6250 0.6438 0.0188
11 EBITDA on Sales 0.0399 0.0182 −0.0217
12 ROA −0.0122 0.0256 0.0378
13 Customer Concentration 0.6063 0.6250 0.0187
14 Product Positioning 0.6438 0.6250 −0.0188
15 Industry Prospects 0.5188 0.6063 0.0875
16 EDITDA Standard Deviation 0.3550 0.7313 0.3763
17 Operating Leverage 0.3550 0.3750 0.0200
18 Industrial Coverage 2.0836 2.2674 0.1838

Output
Default Risk 0.8185 0.7143 −0.1042

Impact on output change of one key driver as opposed to the residual drivers. As

the most determinant parameter for risk reduction in (0, 3) is OCF-to-Debt, a viable application

of DRSM is to investigate the role of OCF-to-Debt as compared with the residual input factors.

To this end, we divide the set of parameters into OCF-to-Debt, on one side, and the subset

of the residual 17 drivers, on the other side. We determine (i) the individual contribution of

OCF-to-Debt, (ii) the individual effect of the above mentioned subset, and (iii) the interaction

between OCF-to-Debt and the subset. It is worth noting that the individual effect of the

subset consisting of the residual drivers quantifies the change in the default risk in case all

variables except OCF-to-Debt vary from the initial value at time 0 to the realized value at time

3 (with OCF-to-Debt kept constant at its initial value at 0). Table 6 shows that the individual

variation of OCF-to-Debt explains the 62.76% of the change in default risk in the interval

(0, 3), while the individual effect of the other 17 variables, taken together, determines the

89.44% of the default risk variation. Therefore, the OCF-to-Debt has a relative impact equal

to 70.17% = 62.76%/89.44% of the impact of the other 17 parameters considered together,

thereby confirming the crucial influence of OCF-to-Debt on risk variation.
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Table 5: (Clean) importance measures and ranks of the parameters

Variable
First Order

FCSI
Interaction

Total Order
FCSI

Normalized Total
Order FCSI Rank

16 EBITDA Standard Deviation 0.0782 −0.0202 0.0580 −55.62% 1
6 OCF-to-Debt −0.0654 0.0177 −0.0476 45.71% 2
9 OWC Intensity −0.0535 0.0145 −0.0390 37.44% 3
1 Leverage −0.0531 0.0144 −0.0387 37.13% 4
2 Long-Term Leverage −0.0531 0.0144 −0.0387 37.13% 5
17 Operating Leverage 0.0023 −0.0006 0.0017 −1.61% 6
4 Interest Coverage 1 0 0.0002 0.0002 −0.19% 7
3 FFO-on-Debt 0 0 0 0% 8
5 Interest Coverage 2 0 0 0 0% 8
7 FCR 0 0 0 0% 8
8 Debt Service Coverage 0 0 0 0% 8
10 Financial Cycle 0 0 0 0% 8
11 EBITDA on Sales 0 0 0 0% 8
12 ROA 0 0 0 0% 8
8 Customer Concentration 0 0 0 0% 8
14 Product Positioning 0 0 0 0% 8
15 Industry Prospects 0 0 0 0% 8
18 Industrial Coverage 0 0 0 0% 8

Sum −0.1446 0.0404 −0.1042 100.00%
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Figure 4: (Clean) Total Order FCSIs of the parameters (∆T∗
i f)

Table 6: The role of OCF-to-Debt

Effect Description Change in risk %

Individual effect
of OCF-to-Debt

OCF-to-Debt varies,
residual drivers are constant

−0.0654 +62.76%

Individual effect
of residual drivers

OCF-to-Debt is constant,
residual drivers vary

−0.0932 +89.44%

Interaction effect
Interaction between
OCF-to-Debt and residual drivers

+0.0544 −52.20%

Sum −0.1042 100.00%
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Analysis of groups of variables. A further useful application of the DRSM consists of ana-

lyzing the role of selective groups of variables bearing special importance, aiming at identifying

the influence of different areas of financial management on default risk variation. This analysis

aims at pointing out the most effective managerial actions and policies for the evolution of the

enterprise credit risk across time. For example, referring to Figure 1, consider the following

areas pinpointed by the second-level intermediate variables, namely, Financial Vulnerability,

Operating Efficiency, and Operating Risk:

• Financial Vulnerability represents the degree at which the firm is exposed to risk owing

to an excessive debt. It is a second-level intermediate variable and is affected by 8 input

factors. We denote it as V ;

• Operating Efficiency represents the degree at which the firm is able to manage the op-

erations in an efficient way. It is a second-level intermediate variable which has to do

with the economic profitability (EBITDA, ROA) and the ability of collecting cash from

customers early and delaying payments to suppliers (operating cycle, cash cycle). It is

affected by 4 input factors. We denote this group as E;9

• Operating Risk joins two kinds of risk: The strategic risk, related to such drivers as

the customer concentration, the product positioning, the industry prospects, and the

specific risk, referred to specific features of the firm under analysis (standard deviation

of EBITDA, operating leverage, industrial coverage). It is a second-level intermediate

variable which is affected by 6 key drivers. We denote it as R.

For each subset Sk we determine the First Order FCSI (∆1
Sk
f) and any interaction involving

Sk. For instance, the individual effect of the Financial Vulnerability on the risk change from

0 to 3 is ∆1
V f = f(x1

V , x
0
(−V )) − f(x0) = −0.1078, meaning that it has played a positive role.

As for the pairwise interaction, the interaction of this group with the Operating Efficiency is

∆V,Ef = f(x1
V , x

1
E, x

0
R)− f(x0)−∆1

V f −∆1
Ef = 0.0535, meaning that it has negatively (albeit

very slightly) affected the rating; the interaction with the Operating Risk has acted positively,

since ∆V,Rf = f(x1
V , x

1
R, x

0
E) − f(x0) − ∆1

V f − ∆1
Rf = −0.0798. The interaction between the

three groups is ∆V,E,Rf = f(x1) − f(x0) − ∆1
V f − ∆1

Ef − ∆1
Rf − ∆V,Ef − ∆V,Rf − ∆E,Rf =

0.0388. Individual effects and interactions are collected in Table 7. Using the duplication-

cleaning procedure, we perfectly decompose the change in default risk. Indeed, the sum of any

contribution (individual effect and interaction), counted just once, is equal to the change in

risk, ∆f = −0.1042. The ranking is shown in Table 8 and in Figure 5. As can be gleaned from

inspection of table and figure,

• the better rating at time 3 is primarily driven by the reduction in the Financial Vulner-

ability (V ), which is the most influential area of financial management in the analysis,

and by the decrease of the Operating Risk (R), which represents the second most relevant

subset of parameters

9Note that Financial Vulnerability and Operating Efficiency are the antecedents of the (third-level interme-
diate variable) Financial Risk.
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• the better rating is curbed by the worsening of the Operating Efficiency (E), which is,

however, the least influential management area.

Table 7: First Order FCSIs and interactions of the subsets of parameters

First Order FCSIs

∆1
V f −0.1078

∆1
Ef −0.0535

∆1
Rf 0.0834

Interactions

∆V,Ef 0.0535
∆V,Rf −0.0798
∆E,Rf −0.0388
∆V,E,Rf 0.0388

Sum = ∆f −0.1042

Table 8: Ranking of the subsets of parameters

Subset
First Order

FCSI
Interaction

Total Order
FCSI

Normalized Total
Order FCSI

Rank

V Financial Vulnerability −0.1078 0.0242 −0.0836 80.25% 1
R Operating Risk 0.0834 −0.1533 −0.0700 67.13% 2
E Operating Efficiency −0.0535 0.1029 0.0494 −47.38% 3

Sum of contributions −0.0780 −0.0262 −0.1042 100.00%

Maximum effect of a variable. Another possible use of DRSM is the study of the maximum

effect of a variable or a subset of variables on the default risk. For example, consider the

parameter Fixed Charge Ratio (FCR), which represents a significant synthetic ratio of the firm’s

capacity to service the debt and, probably, the most informative index of financial stability.

We analyze the effects of the improvement in FCR, compared to the base-case year 0, while

all the residual parameters are fixed at their initial value in 0. Table 9 collects the levels of

default risk and credit rating corresponding to increasing values of FCR. The first line of the

table describes the base-case and reports the values of FCR, default risk and credit rating in

year 0; in the second line FCR is evaluated in 3, while all the residual parameters are equal to

their initial value; the following lines are obtained by increasing FCR by 0.06 starting from the

base case, with all the other variables evaluated in 0. From inspection of the table,

• other things equal, the improvement in FCR is able to decrease the default risk to a

minimum of 0.57142 and increase the rating to a maximum of BB, corresponding to a

30.19% risk reduction and a two-classes rating improvement

• values of FCR greater than 1.659 are uninfluential, so that a further improvement in

rating must be accomplished by improving some other input factors.

24



-0.0836

0.0494

-0.0700

-0.1000

-0.0800

-0.0600

-0.0400

-0.0200

 -

 0.0200

 0.0400

 0.0600

Financial Vulnerability (V) Operating Efficiency (E) Operating Risk (R)

Figure 5: Group Analysis: (Clean) Total Order FCSIs (∆T∗
Sk
f)

The relationship between the increase of FCR and the decrease in default risk is represented

in Figure 6. The relatively high impact of FCR on credit risk resulted from this analysis

(assuming other things equal) is not surprising if one considers that FCR is an important

measure of financial stability. While we have shown the impact of a single key driver, the

analysis may be extended to considering the maximum effect of a subset of the parameters.

This is accomplished by improving each variable belonging to the subset while all the parameters

outside the relevant subset are kept fixed at their initial value in 0. The analysis becomes less

trivial (because interaction effects among the group’s variables occur) but the DRSM easily

manages any such case and the change in risk may be exactly decomposed.

6 Concluding remarks

This paper introduces a credit rating model based on fuzzy logic and expert system, able to

replicate and attribute logical consistency to the evaluation process of default risk and credit

rating which is usually performed by human experts on the basis of available data. The expert

system uses available data (knowledge base) and an inferential engine to produce the output.

We consider a set of 18 economic and financial variables, both quantitative and qualitative.

The system determines the default risk and the rating class in various years through a modular

approach which aggregates the variables under a managerial and financial perspective.

We associate the rating system with the Finite Change Sensitivity Indices (Borgonovo 2010a,

2010b), a recent addition to the techniques of Sensitivity Analysis (SA) which aims at measuring
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Table 9: Maximum effect of FCR on default risk and rating

FCR Default risk Rating

(year 0) 0.279 0.8185 CCC
(year 3) 0.312 0.8185 CCC

0.339 0.8185 CCC
0.399 0.8185 CCC
0.459 0.8185 CCC
0.519 0.7784 CCC
0.579 0.75574 CCC
0.639 0.73256 B
0.699 0.73256 B
0.759 0.73256 B
0.819 0.73256 B
0.879 0.73256 B
0.939 0.73256 B
0.999 0.73256 B
1.059 0.73256 B
1.119 0.73256 B
1.179 0.72640 B
1.239 0.71428 B
1.299 0.71428 B
1.359 0.71428 B
1.419 0.71428 B
1.479 0.70386 B
1.539 0.67882 B
1.599 0.57834 BB
1.659 0.57142 BB

> 1.659 0.57142 BB
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Figure 6: Increase of FCR and decrease in default risk

the impact of the model inputs on the output change occurred passing from a base value

(e.g., the output value at a given date) to a realized value (the output value at a subsequent

date). We fine-tune FCSIs by eliminating some duplication effects and provide a clean, exact

decomposition of the output change.

We use the results for giving rise to the Default Risk Sensitivity Model (DRSM) which inves-

tigates the variation of the enterprise default risk under changes in the model inputs for ex post

analysis and for managerial decision-making. As for the former perspective, the DRSM allows

the decomposition of the historic change of default risk and identifies the most relevant param-

eters which generated the change; as for the latter perspective, it suggests suitable managerial

actions to be undertaken for improving the prospective rating and/or increasing the success of

complex financial operations that are to be taken. Overall, a sensitivity analysis module, such

as the one presented in this work, is a valuable tool to enhance the understanding of a complex

fuzzy-logic model by providing insights into how the inputs affect the outputs of such models,

thus strengthening the confidence of credit analysts in using such method in practice. From

this point of view, sensitivity analysis is also crucial in model testing/validation: Additional

simulation runs may be used for corroborating and, when necessary, calibrating the model.

Several categories of companies may benefit from the application of DRSM: Firms aiming at

controlling and/or reducing their credit risk profile, enterprises needing a dynamic and mindful

debt management, and public companies which are willing to inform the financial markets

about the firm’s present economic results and future prospects.

We have applied the DRSM to an Italian-controlled industrial company. We have identified
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the effects of parameters on the default risk and the rating change through time, then have

determined the aggregate effects of groups of variables (specifically, Financial Vulnerability,

Operating Efficiency, Operating Risk), have analyzed the impact of the ratio of the operating

cash flow to the debt amount as opposed to the impact of the other variables taken together,

and have calculated the maximum effect of a variable (FCR) on default risk.

Finally, it is worth noting that the sensitivity model is detached from the expert system:

They are reciprocally autonomous in that each of them may be used independently. In par-

ticular, the sensitivity model presented does not depend on the fuzzy expert system: It is

suitable for applications with any possible rating model and, therefore, any set of parameters

(symmetrically, the rating model may also be adopted in association with other SA tech-

niques). A potential scenario of future development is the combination of sensitivity analysis

with automatic machine-learning algorithms for rating firms, aiming at melting the high learn-

ing and generalization capabilities of adaptive, computational-based, data-driven system with

the promising feature of increasing the comprehensibility of complex models via the application

of sensitivity analysis. Future researches may also be conducted for formal testing/validation

of machine-learning approaches using data-driven schemes.
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Angilella, S., Mazzù, S. (2017). A credit risk model with an automatic override for innova-

tive small and medium-sized enterprises. Journal of the Operational Research Society, DOI:

10.1080/01605682.2017.1411313.

Bahrammirzaee, A. (2010). A comparative survey of artificial intelligence applications in fi-

nance: Artificial neural networks, expert system and hybrid intelligent systems. Neural Com-

puting & Applications, 19, 1165-1195.

Bai, C., Shi, B., Liu, F., Sarkis, J. (2019). Banking credit worthiness: Evaluating the complex

relationships. Omega, 83 (March), 26-38.

28



Bank for International Settlements (2011). Principles for the sound management of operational

risk, http://www.bis.org/publ/bcbs195.htm.

Bellman, R.E., Zadeh, L.A. (1970). Decision-Making in a Fuzzy Environment. Management

Science, 17(4), Application Series , B141-B164.

Bonsall IV, S.B., Holzman, E.R., Miller, B.P. (2017). Managerial Ability and Credit Risk

Assessment. Management Science, 63(5), 1425-1449.

Borgonovo, E. (2010a). A Methodology for Determining Interactions in Probabilistic Safety

Assessment Models by Varying One Parameter at a Time. Risk Analysis, 30(3), 385-399.

Borgonovo, E. (2010b). Sensitivity analysis with finite changes: An application to modified

EOQ models. European Journal of Operational Research, 200, 127-138.

Borgonovo, E., Gatti, S., Peccati, L. (2010). What drives value creation in investment projects?

An application of sensitivity analysis to project finance transactions. European Journal of

Operational Research, 205, 227-236 .

Borgonovo, E., Peccati, L. (2004). Sensitivity analysis in investment project evaluation. Inter-

national Journal of Production Economics, 90, 17–25.

Borgonovo, E., Peccati, L. (2006). Uncertainty and global sensitivity analysis in the evaluation

of investment projects. International Journal of Production Economics, 104 , 62-73 .

Borgonovo, E., Plischke, E. (2016). Sensitivity analysis: A review of recent advances. European

Journal of Operational Research, 248(3), 869-887.

Chapman, C.B., Ward, S.C., Cooper, D.F., Page, M.J. (1984). Credit Policy and Inventory

Control, Journal of the Operational Research Society, 35(12), 1055-1065.

Chen, C.C., Li, S.T. (2014). Credit rating with a monotonicity-constrained support vector

machine model. Expert Systems with Applications, 41, 7235-7247.

Chen, L.-H., Chiou, T.-W. (1999). A fuzzy credit-rating approach for commercial loans: A

Taiwan case. Omega, 27(4) (August), 407-419.

Cheng, M.Y., Wu, Y.W., Dan, L.T., Van Roy, A.F. (2013). Enhanced time-dependent evolu-

tionary fuzzy support vector machines inference model for cash flow prediction and estimate

at completion, International Journal of Information Technology & Decision Making, 12, 4,

679-710.

Dawood, N.N. (1996). A strategy of knowledge elicitation for developing an integrated bid-

29



ding/production management expert system for the precast industry. Advances in Engineering

Software, 25, 225-234.
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Appendix

This Appendix reports a legend of accounting and financial terminology, a list of primary

relations involving the main dimensions of the analysis, the description of the 18 model inputs,

and the structure of the intermediate variables of the rating system.

Legend

COGS = Cost of Goods Sold

D&A = Depreciation and Amortization Expenditures

EBIT = Earnings Before Interest and Taxes

EBITDA = Earnings Before Interest, Taxes, Depreciation and Amortization

FCR = Fixed Charge Ratio

FE = Financial Expenses

FFO = Funds from Operations

NI = Net Income

NOPAT = Net Operating Profit After Taxes

OCF = Operating Cash Flow

OWC = Operating Working Capital

PBT = Profit Before Taxes

R&D = Research and Development expenses

ROA = Return on Assets

SG&A = Selling, General and Administrative Expenses

T = Taxes

Primary relations

Gross Profit = Revenues − COGS

EBITDA = Gross Profit − SG&A

EBIT = EBITDA − D&A

NOPAT = EBIT·(1−tax rate)

PBT = EBIT − FE + Interest Income ± Extraordinary Items

NI = PBT − T

OCF = EBIT + D&A − investments + disposals − ∆OWC

Model inputs

The definition of the model inputs is reported in the following table:
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INPUT DESCRIPTION

1 Leverage Total Debt/(Total Debt + Equity Value)

2 Long-Term Leverage Long-Term Debt/(Long-Term Debt + Equity Value)

3 FFO-on-Debt (NOPAT + D&A + other noncash items)/Total Debt

4 Interest Coverage 1 (EBITDA − R&D)/ Financial Expenses

5 Interest Coverage 2 (EBIT − R&D)/ Financial Expenses

6 OCF-to-Debt OCF/Total Debt

7 Fixed Charge Ratio (FCR) (EBITDA − R&D)/(Debt Service + Taxes + Capital Expenditures)

8 Debt Service Coverage OCF/Debt Service

9 OWC Intensity qualitative

10 Financial Cycle qualitative

11 EBITDA on Sales (Adjusted) (EBITDA − R&D)/Revenues

12 ROA (Adjusted) (EBIT − R&D)/Total Assets

13 Customer Concentration qualitative

14 Product Positioninig qualitative

15 Industry Prospects qualitative

16 EBITDA Standard Deviation Standard deviation of EBITDA (last five years)

17 Operating Leverage Fixed Costs/Total Costs

18 Industrial Coverage Gross Profit/Capital Expenditure

Notes

1. R&D are deducted from EBIT and EBITDA only if they are capitalized.

2. Total assets in ROA is net of minority participations.

3. Industry prospects is related to the market risk.

4. OWC intensity is the average amount of accounts receivable as opposed to the accounts payable.

5. Product positioning is an indicator of the product quality as perceived by the customers.

6. Customer concentration refers to the percentage of revenues of the 4 most important buyers

(the higher the concentration, the higher the risk). Depending on the sector and on the case at hand,

an index of geographic concentration may also be used in place or along with this metric.

7. Financial cycle is the lapse of time between when cash is paid to suppliers and cash is received from customers.

Intermediate variables

Figure 7 represents the sequence of the intermediate variables of the rating system until reaching

the model output Default Risk (see also Figure 1).
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(Risk of) Capital Structure

Interest Coverage

Debt Coverage

WC Management

Profitability

Strategic Risk

Specific Risk

Financial Vulnerability

Operating Efficiency

Operating Risk

Financial Risk

Operating Risk

Model output

(4-th level)
Default Risk

Intermediate variables

(1-st level)

Intermediate variables

(2-nd level)

Intermediate variables

(3-rd level)

Figure 7: Intermediate variables
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