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Abstract

We develop a distributional decomposition approach for exactly simulating two types of

Gamma-drivenOrnstein–Uhlenbeck (OU) processes with time-varyingmarginal distributions:

the Gamma-OU process and the OU-Gamma process. The former has finite-activity jumps,

and its marginal distribution is asymptotically Gamma; the latter has infinite-activity jumps

that are driven by a Gamma process. We prove that the transition distributions of the two pro-

cesses at any given time can be exactly decomposed into simple elements: at any given time,

the former is equal in distribution to the sum of one deterministic trend and one compound

Poisson random variable (r.v.); the latter is equal in distribution to the sum of one determin-

istic trend, one compound Poisson r.v., and one Gamma r.v.. The results immediately lead to

very efficient algorithms for their exact simulations without numerical inversion. Extensive

numerical experiments are reported to demonstrate the accuracy and efficiency of our algo-

rithms.
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1 Introduction

The classical Gaussian Ornstein–Uhlenbeck (OU) process was first introduced by Uhlenbeck and

Ornstein (1930) in physics, and later became popular in finance, economics and many other fields.

For example, Vasicek (1977) adopted the OU process to describe the evolution of interest rates.

This seminal work in finance was followed by a variety of extensions, with one very important

example being the family of non-Gaussian OU processes, see Barndorff-Nielsen (1997, 1998),

Barndorff-Nielsen et al. (1998), and Barndorff-Nielsen and Shephard (2001b, 2002). The idea is

to replace the original Brownian motion in the OU process by a general Lévy process. The result-

ing stochastic process retains the property of mean-reverting dynamics, and also possesses some

stylised features such as jumps and skewness, which often form the essential components of real

financial data.

Naturally, one candidate Lévy process for replacing Brownian motion in the OU process is a

Gamma process. Gamma process1 is simple and highly mathematically tractable, which has been

used as a very popular representative for Lévy processes in the literature, see Barndorff-Nielsen

and Shephard (2001a,b, 2003a), Schoutens (2003), Cont and Tankov (2004), Kyprianou (2006) and

Schoutens and Cariboni (2010). This type of OU process driven by a Gamma process is named as

the OU-Gamma (OU-Γ) process in Barndorff-Nielsen and Shephard (2003a). The OU-Γ process

has been used to model stochastic volatilities (Barndorff-Nielsen and Shephard, 2003a; Brockwell

et al., 2007; Granelli and Veraart, 2016), human mortality rates, actuarial valuations (Hainaut and

Devolder, 2008) and instantaneous short rates of interest (Norberg, 2004; Eberlein et al., 2013).

A closely related counterpart is the so-called Gamma-OU (Γ-OU) process2, which is linked to a

Gamma variate in a very different way. It is an OU process who has a Gamma marginal distribu-

tion. Barndorff-Nielsen and Shephard (2001b, 2002, 2003a,b) used the Γ-OU process to model the

stochastic volatility of stock prices, see also Roberts et al. (2004), Jongbloed et al. (2005), Griffin

and Steel (2006), Creal (2008) and Frühwirth-Schnatter and Sögner (2009). Moreover, Nicolato

and Venardos (2003) further applied the Γ-OU stochastic volatility model to pricing European op-

tions. Schoutens and Cariboni (2010) and Bianchi and Fabozzi (2015) adopted the Γ-OU process

as a stochastic intensity process for modelling credit default risk and pricing credit default swaps

(CDSs). Cartea et al. (2015, p.220) used it for modelling the stochastic mean-reverting volume rate

of trading, see also Cartea and Jaimungal (2016).

1It is fundamentally built upon a Gamma distribution. As an important alternative to the normal distribution, the
Gamma distribution is widely used as the building block for a variety of useful stochastic processes, such as the Gamma
process and variance Gamma process, see Madan and Seneta (1990) and Madan et al. (1998).

2The abbreviation "Γ-OU" is borrowed from Barndorff-Nielsen and Shephard (2003a).
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As concluded by Barndorff-Nielsen (1997), the Γ-OU and OU-Γ processes are very tractable

models that could facilitate many potential applications. Despite the similar names, they are very

different pure-jump processes. The former has finite-activity jumps (i.e., finite jumps over any finite

time horizon), whereas the latter has infinite-activity jumps (i.e., infinite jumps over any finite time

horizon). Using our simulation algorithms developed later in this paper, their key difference can be

clearly observed in the plots of several sample paths in Figure 1, where the parameters are set such

that they all have the same initial levels and expected levels at any time. Finite-activity jumps can

be very useful for capturing large and infrequent shocks, whereas infinite-activity jumps are better

suited to small and frequent shocks. In real financial data, both types may exist. Recently, Aït-

Sahalia and Jacod (2009, 2011) found that high-frequency stock price data present infinite-activity

jumps. Ornthanalai (2014) also provided evidence for infinite-activity jumps in index options and

returns from 1996 to 2009, and suggested that infinite-activity jumps, instead of the Brownian in-

crements, should be the default modelling choice in asset pricing models.

In this paper, our focus is on the development of exact simulation algorithms for the two types

of Gamma-driven OU processes with time-varying marginal distributions. The exact simulation

scheme has the primary advantage of generating the sample paths according to the process law

exactly without bias (Broadie and Kaya, 2006; Chen and Huang, 2013). We design efficient al-

gorithms mainly based on the principle of exact distributional decomposition. Without using any

numerical inverse transform, we discover a strategy whereby the Γ-OU and OU-Γ processes can

be directly decomposed into several basic elements: the former has one deterministic trend and

one compound Poisson random variable (r.v.), whereas the latter has one deterministic trend, one

compound Poisson r.v., and one Gamma r.v. Each element can be simulated directly or using exist-

ing packages (such as the Gamma variate generator). We conduct extensive numerical experiments

and demonstrate the accuracy and efficiency of our algorithms. In particular, for the Γ-OU pro-

cess, there exists a straightforward alternative exact scheme, i.e., a path-dependent approach that

is trivially based on its definition as a shot-noise process (2.2). We carry out a numerical compar-

ison with our new decomposition scheme. Note that this simple path-dependent approach is not

applicable for the OU-Γ process because of its infinite activity. Recently, Zhang and Zhang (2008,

2009), Zhang (2011) and Kawai and Masuda (2011a,b, 2012) developed simulation algorithms

for Gamma-driven OU processes with stationary marginal distributions rather than time-varying

marginal distributions. The mythologies for their algorithm designs are mainly based on the well

known Lévy-Khintchine representation for infinitely divisible distributions such as Gamma distri-

bution and tempered stable (TS) distribution. Apparently it is applicable, as the marginal distribu-

tions of their processes are simply time-invariant and infinitely divisible distributions under the key
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t
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, α=β=0.5

OU−Γ Process Y
t
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t
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Figure 1: Simulated sample paths of one finite-activity Γ-OU processXt (Algorithm 3.1) and three infinite-
activity OU-Γ processes Yt (Algorithm 4.1) in the period t ∈ [0, 10], with the same initial
level X0 = Y0 and expected level E[Xt | X0] = E[Yt | Y0] based on the parameters
(δ, ρ; θ;X0) = (0.5, 1.0; 1.0; 10.0), (δ, %;α, β;Y0) = (0.5, 1.0; 0.5, 0.5; 10.0), (δ, %;α, β;Y0) =
(0.5, 1.0; 2.0, 2.0; 10.0), and (δ, %;α, β;Y0) = (0.5, 1.0; 10.0, 10.0; 10.0), respectively.
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assumption of stationarity for their processes due to the change of time. However, in will become

clear later that Lévy-Khintchine representation is not applicable to our processes whose marginal

distributions are time-varying and more importantly are not necessarily infinitely divisible. In fact,

our approach is different and it is mainly based on the exact distributional decomposition approach,

which has also been adopted recently by Dassios and Zhao (2013, 2017), Dassios et al. (2018) and

Qu et al. (2019) for exactly sampling some popular point processes and random variables.

The remainder of this paper is organised as follows: Section 2 offers the preliminaries including

formal mathematical definitions and introductions for OU-Gamma (OU-Γ) process and Γ-OU pro-

cess, respectively. Section 3 and Section 4 present some theoretical results for Laplace transforms

and the exact simulation algorithms for the Γ-OU and OU-Γ processes, respectively. In Section

5, we describe extensive numerical experiments and demonstrate the accuracy and efficiency of

our algorithms. In particular, for the Γ-OU case, a numerical comparison between the traditional

path-dependent scheme and our newly developed scheme is provided. Section 6 concludes this

paper and suggests some possible extensions as topics for further research.

2 Preliminaries

The OU-Gamma (OU-Γ) process Y = {Yt, t ≥ 0} is a positive stochastic process on the positive

half-line R+ following the stochastic differential equation

dYt = −δYtdt+ %dZt, t ≥ 0, (2.1)

where

• δ > 0 is the mean-reverting (or exponential decay) rate;

• % > 0 is a positive constant;

• Zt is a Gamma process with shape parameter α > 0 and rate parameter β > 0, i.e., Z1 ∼

Γ(α, β).

Given the the initial level Y0 > 0, it is alternatively defined by

Yt = Y0e
−δt + %

tZ
0

e−δ(t−s)dZs, t ≥ 0.

Here, Zt is generally called the background driving Lévy process (BDLP) (Barndorff-Nielsen and

Shephard, 2001b, 2002). If Zt is replaced by a standard Brownian motion, then Yt becomes the

5



ordinary Gaussian OU process (Uhlenbeck and Ornstein, 1930).

The Gamma-OU (Γ-OU) process X = {Xt, t ≥ 0} is a positive stochastic process on the

positive half-line R+ following the stochastic differential equation

dXt = −δXtdt+ dZt, t ≥ 0, (2.2)

where Zt is a compound Poisson process of rate ρ > 0, and the jump sizes follows an exponential

distribution with rate parameter θ > 0.

Given the initial level X0 > 0, it is alternatively defined by

Xt = X0e
−δt +

X
0≤Ti<t

Zie
−δ(t−Ti), t ≥ 0,

where

• {Zi}i=1,2,... is a sequence of independent, identically distributed (i.i.d.) jump sizes, each of

which follows an exponential distribution with rate parameter θ, i.e., Zi ∼ Exp(θ) for any i;

• {Ti}i=1,2,... are the arrival times of a standard Poisson process Nt with constant rate ρ.

Note that, the initial values X0 and Y0 can be either deterministic or random. This key dif-

ference between the two processes Xt and Yt above is that, the Γ-OU process has finite-activity

jumps (i.e., finite jumps over any finite time horizon), as the Lévy density of a Gamma process has

an infinite integral, and the process has infinitely many jumps over any time interval, whereas the

OU-Γ process has infinite-activity jumps (i.e., infinite jumps over any finite time horizon), as it can

essentially be considered as a Poisson shot-noise processwith exponentially distributed jump sizes

as pointed out by Barndorff-Nielsen and Shephard (2001b, p.175), Roberts et al. (2004) and Griffin

and Steel (2006). It can be clearly observed in the simulated sample paths in Figure 1, where the

parameters are set such that they all have the same initial levels and expected levels at any time,

i.e., X0 = Y0 and E[Xt | X0] = E[Yt | Y0].

Note that, our processes belong to the original Lévy-driven OU processes, which have also

been considered byWolfe (1982), Sato andYamazato (1984), Barndorff-Nielsen (1998), Barndorff-

Nielsen et al. (1998), Jongbloed et al. (2005), Masuda and Yoshida (2005), Brockwell et al. (2007)

andMai (2014), and have also been applied in finance by Barndorff-Nielsen and Shephard (2003a),

Norberg (2004), Hainaut and Devolder (2008), Eberlein et al. (2013) and Granelli and Veraart

(2016). They are different from the modified (time-changed) Lévy-driven OU processes used in
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Zhang and Zhang (2008, 2009), Zhang (2011), Kawai and Masuda (2011a,b, 2012) and Bianchi

et al. (2017), where there is an unusual time change in the BDLP, i.e.,

dYt = −δYtdt+ %dZδt, t ≥ 0. (2.3)

In fact, our Lévy-driven OU processes are directly constructed upon the original BDLP Zt rather

than the time-changed BDLP Zδt in (2.3). The differences between these two types can also be

found in Barndorff-Nielsen (1998); Barndorff-Nielsen and Shephard (2003a) and Schoutens (2003,

p.48). Their key difference is that, the marginal distributions of time-changed Lévy-driven OU

processes as defined by Barndorff-Nielsen and Shephard (2001b, p.168) are very restrictive, which

are invariant (time-homogenous) and have to specifically follow stationary laws. However, the

initial values of our processes,X0 and Y0, are muchmore flexible, which can be either deterministic

or random, so the marginal distributions are time-varying in general.

3 Exact Simulation of Gamma-OU Process

Let us start by looking at the simpler of the two Gamma-driven OU processes, i.e., the Γ-OU

process Xt as defined by (2.2). It can be exactly simulated via the distributional decomposition

approach, which can be identified from the following conditional Laplace transform3.

Theorem 3.1. The Laplace transform of Xt+τ conditional on Xt is given by

E
�
e−vXt+τ | Xt

�
= e−vwXt × exp

�
−ρ
δ

∞Z
0

�
1− e−vs

� 1
wZ
1

θue−θus
1

u
duds

�
, v ∈ R+,

(3.1)

where τ > 0 is any fixed-length time interval and w := e−δτ .

Proof. Based on the Laplace transform of the Poisson shot-noise process provided in Corollary

2.4 of Dassios and Jang (2003, p.79), we have

E
�
e−vXt+τ | Xt

�
= e−vwXt exp

�
−ρ

t+τZ
t

�
1− ĥZi

�
ve−δ(t+τ−s)

��
ds

�
, (3.2)

where ĥZi(·) is the Laplace transform of jump sizes. The jump sizes are assumed to follow an
3When working with non-negative random variables, it is common for a lot of researchers to use Laplace transforms

rather than characteristic functions, see Bertoin (1998, Chapter III), Bertoin (1999), Sato (1999, Chapter 6) and Norberg
(2004). In fact, all of our calculations can be repeated using characteristic functions instead, and we avoid potential
complications with complex arguments.
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exponential distribution with rate θ > 0. Then, we have a simple Laplace transform

ĥZi(u) =
θ

θ + u
.

Rewriting the integral term in (3.2) as

t+τZ
t

�
1− ĥZi

�
ve−δ(t+τ−s)

� �
ds =

τZ
0

�
1− ĥZi

�
ve−δx

� �
dx

=
1

δ

vZ
vw

1− ĥZi(u)

u
du

=
1

δ

vZ
vw

1

u

∞Z
0

�
1− e−uy

�
θe−θydydu

=
1

δ

∞Z
0

(1− e−vs)
s

s
wZ
s

θe−θydyds

=
1

δ

∞Z
0

�
1− e−vs

� e−θs − e−θ sw
s

ds

=
1

δ

∞Z
0

�
1− e−vs

� θ
wZ
θ

e−sududs

=
1

δ

∞Z
0

�
1− e−vs

� 1
wZ
1

θue−sθu
1

u
duds,

the conditional Laplace transform of Xt can be expressed as (3.1).

The Laplace transform of Xt+τ conditional on Xt in Theorem 3.1 implies that Xt+τ has two

simple elements, one deterministic trend and one compound Poisson r.v. This result immediately

leads to an exact simulation algorithm.

Algorithm 3.1 (Exact Simulation of Γ-OU Process via Decomposition Approach). The distribu-

tion of Xt+τ conditional on Xt can be exactly decomposed as

Xt+τ | Xt
D
= e−δτXt| {z }

Deterministic trend

+
NX
k=1

Sk,| {z }
Finite jumps

τ ∈ R+, (3.3)

where

• N is a Poisson r.v. of rate ρτ ;
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•
¦
Sk
©
k=1,2,...

are i.i.d. r.v.s following a mixture of exponential distributions, i.e.,

Sk ∼ Exp
�
θeδτU

�
, U ∼ U [0, 1], ∀k = 1, 2, ... (3.4)

It is well known that there exists a simple alternative algorithm. This is a path-dependent

approach that is constructed directly based on the definition of the Γ-OU process as a Poisson

shot-noise process (2.2).

Algorithm 3.2 (Exact Simulation of Γ-OU Process via Path-dependent Approach). Given the ith

jump arrival time Ti and the associated level XTi , we can exactly simulate the next arrival time

Ti+1 and the associated level XTi+1 by the following steps:

1. Generate an exponentially distributed r.v. τ∗i+1 ∼ Exp(ρ) as the (i+1)th inter-arrival time;

2. Record the next jump arrival time Ti+1 = Ti + τ∗i+1;

3. Record the next pre-jump level XT−i+1
= XTie

−δτ∗i+1;

4. Generate an exponentially distributed r.v. Zi+1 ∼ Exp(θ) as the (i+ 1)th jump size;

5. Record the next level XTi+1 = XT−i+1
+ Zi+1.

An obvious advantage of our decomposition approach (Algorithm 3.1) over the traditional path-

dependent approach (Algorithm 3.2) is that it can generate the distribution directly at the target

terminal t + τ without drawing complete skeletons of the underlying paths from the initial time t

to the terminal t+ τ . This key methodological difference between the two approaches is illustrated

in Figure 2, where the simulation starts at time 0. Later, in Section 5, we will perform a detailed

numerical comparison.

Another advantage of our decomposition approach is that it can be further extended to develop

an exact simulation algorithm for the OU-Γ process, to which the path-dependent approach is not

applicable.

4 Exact Simulation of OU-Gamma Process

Let us first derive the conditional Laplace transform of the OU-Γ process.

Theorem 4.1. The Laplace transform of Yt+τ conditional on Yt can be expressed as

E
�
e−vYt+τ | Yt

�
9
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Figure 2: Illustration of the path-dependent approach of Algorithm 3.2 and the decomposition approach of
Algorithm 3.1 for simulating the distribution ofXτ given the initial levelX0 at time 0.

= e−vwYt × exp

�
−α%
δ

lnw

∞Z
0

�
1− e−vs

�
s−1e−

β
w
sds

�

× exp

�
−α%
δ

∞Z
0

�
1− e−vs

� 1
wZ
1

βe−βus lnududs

�
, v ∈ R+. (4.1)

Proof. The OU-Γ process Yt in (2.1) is driven by a Gamma process Zt with Laplace exponent

Φ(v) = α ln

�
1 +

v

β

�
, v ∈ R+, (4.2)

and Lévy measure

ν(ds) = αs−1e−βsds, s ≥ 0. (4.3)

It can be considered as the limit of a compound Poisson process (Madan and Seneta, 1990), i.e.,

Zt = lim
ε↓0

MtX
i=1

Zεi ,

where

• Mt is a standard Poisson process of rate 1
ε , ε > 0;

• {Zεi }i=1,2... are i.i.d. jump sizes with density

dHZεi
(y) =

βαε

Γ (αε)
yαε−1e−βydy,
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where Γ(·) is the gamma function, i.e., Γ(u) :=

∞Z
0

su−1e−sds.

This implies that the OU-Γ process Yt is the limit of a Poisson shot-noise process with Gamma-

distributed jump sizes, i.e., Yt = lim
ε↓0

Y ε
t , where

Y ε
t = e−δtY0 + %

X
0≤T ∗i <t

e−δ(t−T
∗
i )Zεi , (4.4)

and {T ∗i }i=1,2,... is the sequence of event arrival times of the Poisson process Mt. In fact, Y ε
t

is a Markov process. By the piecewise-deterministic Markov processes theory (Davis, 1984), the

generator of (Y ε
t , t) acting on any function f(y, t) within its domain Ω(Aε) is given by

Aεf(y, t) =
∂f

∂t
− δy∂f

∂y
+
%

ε

24 ∞Z
0

f(y + z, t)dHZεi
(z)− f(y, t)

35 .
Using themartingale approach4, we can easily find a suitable martingale by settingAεf(y, t) = 0,

and then obtain

E
�
e−vY

ε
t+τ | Y ε

t

�
= e−vwY

ε
t exp

�
−%

t+τZ
t

1− ĥZεi
�
ve−δ(t+τ−s)

�
ε

ds

�
,

where

ĥZεi (u) =

∞Z
0

e−uzdHZεi
(z) =

�
1 +

u

β

�−εα
.

Furthermore, by the dominated convergence theorem, we have

E
�
e−vYt+τ | Yt

�
= lim

ε↓0
E
�
e−vY

ε
t+τ | Y ε

t

�
= e−vwYt exp

�
−%

t+τZ
t

lim
ε↓0

1−
�
1 + v

β e
−δ(t+τ−s)

�−εα
ε

ds

�

= e−vwYt exp

�
−%

t+τZ
t

lim
ε↓0

1− exp
�
−εα ln

�
1 + v

β e
−δ(t+τ−s)

��
ε

ds

�

= e−vwYt exp

�
−α%

t+τZ
t

ln

�
1 +

v

β
e−δ(t+τ−s)

�
ds

�
. (4.5)

According to (4.3) and (4.5), we can further rewrite the conditional Laplace transform as

E
�
e−vYt+τ | Yt

�
= e−vwYt exp

�
−%
δ

vZ
vw

α

u
ln

�
1 +

u

β

�
du

�
4For details of the martingale approach, see Dassios and Embrechts (1989), Dassios and Jang (2003), and Dassios

and Zhao (2011).
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= e−vwYt exp

�
−%
δ

vZ
vw

1

u

∞Z
0

�
1− e−uy

�
αy−1e−βydydu

�
, (4.6)

where

vZ
vw

1

u

∞Z
0

�
1− e−uy

�
αy−1e−βydydu

=

∞Z
0

1− e−vs

s

s
wZ
s

αy−1e−βydyds

=

∞Z
0

1− e−vs

s

s
wZ
s

αy−1e−β
s
w dyds+

∞Z
0

1− e−vs

s

s
wZ
s

αy−1
�
e−βy − e−β

s
w

�
dyds. (4.7)

Note that, both of the terms in (4.7) are positive, because e−βy ≥ e−β
s
w for any y ∈

�
s, sw

�
.

1. The first term of (4.7) can be expressed as the Laplace exponent of a Gamma r.v., i.e.,

∞Z
0

1− e−vs

s

s
wZ
s

αy−1e−β
s
w dyds = α ln

�
1

w

� ∞Z
0

�
1− e−vs

�
s−1e−

β
w
sds. (4.8)

2. The inner integral of the second term of (4.7) can be rewritten as

1

s

s
wZ
s

αy−1
�
e−βy − e−β

s
w

�
dy

= α

1
wZ
1

1

x

e−βsx − e−β
s
w

s
dx

= α

1
wZ
1

x−1

1
wZ
x

βe−βsududx

= α

1
wZ
1

βe−βsu lnudu. (4.9)

Finally, we can obtain the conditional Laplace transform (4.1) based on the integral representations

of (4.8) and (4.9).

The distribution of Yt+τ conditional on Yt can be exactly decomposed into three basic compo-

nents: one deterministic trend, one Gamma r.v., and one compound Poisson r.v.

Algorithm 4.1 (Exact Simulation of OU-Γ Process). The distribution of Yt+τ conditional on Yt
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can be exactly decomposed as

Yt+τ | Yt
D
= e−δτYt| {z }

Deterministic trend

+ Γ̃|{z}
Infinite jumps

+
ÑX
k=1

Sk,| {z }
Finite jumps

τ ∈ R+, (4.10)

where

• Γ̃ is a Gamma r.v. of

Γ̃ ∼ Γ
�
α%τ, βeδτ

�
; (4.11)

• Ñ is a Poisson r.v. of rate 1
2α%δτ

2;

•
¦
Sk
©
k=1,2,...

are i.i.d. r.v.s. following a mixture of exponential distributions, i.e.,

Sk ∼ Exp
�
βeδτ

√
U
�
, U ∼ U [0, 1], ∀k = 1, 2, .... (4.12)

Proof. The three components of (4.10) correspond to the three terms of the conditional Laplace

transform (4.1), respectively:

1. The first term of (4.1) is the Laplace transform of e−δτYt.

2. The second term of (4.1) is the Laplace transform of a Gamma r.v., Γ̃, and the corresponding

Lévy measure is specified by

ν(ds) =
α%

δ
ln
�

1

w

�
s−1e−

β
w
sds.

3. The Laplace exponent of the third term in (4.1) can be rewritten as

α%

δ

∞Z
0

�
1− e−vs

� 1
wZ
1

βe−βus lnududs =
α%

2δ
ln2w

∞Z
0

�
1− e−vs

� 1
wZ
1

βue−βusfV (u)duds,

(4.13)

where

fV (u) =
2

ln2w

lnu

u
, u ∈

�
1,

1

w

�
,

is the density function of r.v. V . This clearly indicates that (4.13) is the Laplace exponent of

a compound Poisson r.v. whose rate parameter is α%2δ ln2w and jump sizes are exponentially

distributed with rate βV . Here, V is a well-defined r.v. that can be exactly simulated via an

explicit inverse transform, as the cumulative distribution function (CDF) of V , i.e.,

FV (u) =

�
lnu

lnw

�2

, u ∈
�
1,

1

w

�
,
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can be inverted explicitly as

F−1V (x) = w−
√
x, x ∈ [0, 1].

For the decomposition specified by (4.10), the compound Poisson r.v.
ÑX
k=1

Sk can only produce

a finite number of (large) jumps. In contrast with the decomposition in (3.3) for the Γ-OU process,

the extra term of the Gamma r.v. Γ̃ in (4.10) clearly explains why the OU-Γ process has infinite-

activity jumps for any time interval. That is, within any time interval τ > 0, there always exists a

Gamma r.v. Γ̃ that produces an infinite number of (small) positive jumps.

5 Simulation Studies

In this section, we illustrate the performance and effectiveness of our algorithms through extensive

numerical experiments. The simulations were conducted on a desktop computer with an Intel

Core i7-6700 CPU @3.40 GHz, 24.00 GB RAM, and Windows 10 Professional 64-bit operating

system. The algorithms were coded and performed in MatLab (R2012a), and the computation

time was measured by the elapsed CPU time in seconds. The numerical validation and tests for

our algorithms are based on the true means (5.1) and (5.2) for the Γ-OU and OU-Γ processes,

respectively. The associated errors with respect to the true values are reported by three standard

measures:

1. Error = estimated value− true value;

2. Relative error (error %) = estimated value − true value
true value ;

3. Root mean square error RMSE =
È
bias2 + SE2, where SE is the standard error of the

simulation output, and the bias is the difference between the expectation of the estimator

and the associated true (theoretical) value; for the exact simulation algorithm, the bias is

conventionally set to zero.

The theoretical means at any given time T > 0 for the two processes are as follows:

• For the Γ-OU process Xt,

E [XT | X0] = e−δTX0 +
ρ

δ

�
1− e−δT

� 1

θ
; (5.1)
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• For the OU-Γ process Yt,

E [YT | Y0] = e−δTY0 +
%

δ

�
1− e−δT

� α
β
. (5.2)

In the numerical implementations, the parameters were set as follows:

• (δ, ρ; θ;X0) = (0.5, 1.0; 1.0; 10.0) for the Γ-OU process Xt;

• (δ, %;α, β;Y0) = (0.5, 1.0; 2.0, 2.0; 10.0) for the OU-Γ process Yt.

The means of (5.1) and (5.2) in simple analytic forms are used to numerically validate our al-

gorithms. In fact, mean provides us the most convenient way to test and verify newly-developed

algorithms, as the true value of mean can be easily derived in a simple analytic form as above.

Of course, other higher moments or some values of probabilities also can be used for testing as

long as they have analytic forms so we have already known the true values exactly. For example,

the conditional Laplace transforms E
�
e−vXt+τ | Xt

�
and E

�
e−vYt+τ | Yt

�
that we have derived in

Theorem 3.1 and Theorem 4.1 could be used for testing as well. However, it would be better for us

to further derive their forms more analytically, otherwise, we would have to discretize and truncate

the infinite integrals in the Laplace transforms, which would introduce estimation errors. Basically,

the means can be tested by a sufficient number of different parameter choices, the aim of testing and

verifying our algorithms numerically can be achieved very similarly based on the simple mean and

more complicated moments, so we choose means for simplicity and it also avoid additional estima-

tion errors. Our tests and validations based on the means have been carried out based a vast number

of various different parameter sets, and the results based on other parameter sets show very simi-

lar levels of accuracy and efficiency. To save space, we select representative examples in this paper.

The parameters here are selected for the purpose of validating our simulation algorithms only,

and they are not estimated or calibrated from empirical work. In practical pricing applications, the

parameters under the risk-neutral probability measure would be calibrated from market prices or

rates as in Schoutens and Cariboni (2010) and Bianchi and Fabozzi (2015). In risk management ap-

plications, the parameters the natural probability measure would be estimated from historical time

series as in Mai (2014). Large banks risk management systems use pricing functions to compute

the value of derivatives portfolios: these systems usually consider both risk-neutral and historical

information. Additionally, portfolio allocation strategies may consider risk-neutral and historical

"data", see Bianchi and Tassinari (2018). Risk neutral and historical information are the two dif-

ferent faces of the same coin.
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Table 1: Comparison between the true means (5.1) and the associated simulation results using Algorithm 3.2
vs. Algorithm 3.1 for theΓ-OU process based on the parameters (δ, ρ; θ;X0) = (0.5, 1.0; 1.0; 10.0)
for time intervals τ = 0.5, 1, respectively, with the associated plots provided in Figure 3.

Interval τ Paths True Simulation Error Error % RMSE Time Simulation Error Error % RMSE Time
Algo. 3.2 Algo. 3.1

τ = 0.5 10,000 8.2304 8.2525 0.0221 0.27% 0.0091 0.97 8.2222 -0.0082 -0.10% 0.0087 0.38
40,000 8.2304 8.2398 0.0094 0.11% 0.0045 3.64 8.2291 -0.0013 -0.02% 0.0044 1.39
160,000 8.2304 8.2329 0.0025 0.03% 0.0022 14.33 8.2288 -0.0016 -0.02% 0.0022 5.50
640,000 8.2304 8.2314 0.0010 0.01% 0.0011 59.48 8.2306 0.0002 0.00% 0.0011 21.92
2,560,000 8.2304 8.2301 -0.0003 0.00% 0.0006 224.03 8.2304 0.0000 0.00% 0.0006 88.48

Algo. 3.2 Algo. 3.1
τ = 1 10,000 6.8522 6.8621 0.0099 0.14% 0.0111 0.91 6.8418 -0.0104 -0.15% 0.0114 0.38

40,000 6.8522 6.8559 0.0037 0.05% 0.0056 3.61 6.8543 0.0021 0.03% 0.0057 1.59
160,000 6.8522 6.8535 0.0012 0.02% 0.0028 14.11 6.8536 0.0014 0.02% 0.0028 5.91
640,000 6.8522 6.8504 -0.0019 -0.03% 0.0014 55.88 6.8515 -0.0007 -0.01% 0.0014 23.19
2,560,000 6.8522 6.8521 -0.0001 0.00% 0.0007 240.42 6.8522 -0.0000 0.00% 0.0007 92.81

For the Γ-OU case, we first conducted a numerical comparison between our decomposition

scheme (Algorithm 3.1) and the traditional path-dependent scheme (Algorithm 3.2) for time inter-

vals τ = 0.5, 1. The detailed numerical results are reported in Table 3, where we can see that,

for a slightly large number of paths, both algorithms are extremely accurate (in terms of error, er-

ror%, and RMSE) by comparing the simulation-estimated means with the associated true values

provided by (5.1). Moreover, the associated plots for the convergence analysis of RMSE vs. CPU

time are presented in Figure 3, where we can clearly observe that our new scheme outperforms the

traditional approach.

To simulate the Γ-OU and OU-Γ processes using our decomposition scheme, we can also split

the target time period [0, T ] into nτ := T/τ smaller pieces and generate the sample paths in a

piecewise manner5. Here, nτ is the total number of equally-spaced discretized time steps. The

four sample paths in Figure 1 were plotted using nτ = 10, 000. We set different values of nτ to

investigate how Algorithm 3.1 and Algorithm 4.1 perform for T = 1, 2, 4, 10 and nτ = 1, 2, 4, 10,

respectively. The associated numerical results are reported in Table 2 and Table 3, and plots of

their convergence are presented in Figure 4 and Figure 5, respectively, for the Γ-OU and OU-Γ

processes. From the two figures, we can observe an interesting pattern: the case nτ = 1 is usu-

ally the best performer when the sample path is relatively short. However, when the sample path

becomes longer, this is not always the optimal discretization. For instance, nτ = 2 is the best

performer for T = 10 in Figure 4.

The numerical results reported here show that the simulations are very fast and the associated

errors (measured in terms of error, error%, and RMSE) are small. Overall, it is evident that our

newly developed decomposition approach can achieve high accuracy as well as efficiency.
5Our algorithms are also applicable to any irregularly spaced intervals.
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Table 2: Comparison between the true means (5.1) and the associated simulation results using Algorithm
3.1 for the Γ-OU process based on the parameters (δ, ρ; θ;X0) = (0.5, 1.0; 1.0; 10.0) for T =
1, 2, 4, 10 and nτ = 1, 2, 4, 10, respectively, with the associated plots provided in Figure 4.

Period T Paths True Simulation Error Error % RMSE Time Simulation Error Error % RMSE Time
nτ = 1 nτ = 2

T = 1 10,000 6.8522 6.8418 -0.0104 -0.15% 0.0114 0.38 6.8276 -0.0247 -0.36% 0.0109 0.67
40,000 6.8522 6.8543 0.0021 0.03% 0.0057 1.59 6.8507 -0.0015 -0.02% 0.0056 2.77
160,000 6.8522 6.8536 0.0014 0.02% 0.0028 5.91 6.8520 -0.0003 0.00% 0.0028 10.89
640,000 6.8522 6.8515 -0.0007 -0.01% 0.0014 23.19 6.8510 -0.0013 -0.02% 0.0014 42.28
2,560,000 6.8522 6.8522 -0.0000 0.00% 0.0007 92.81 6.8516 -0.0006 -0.01% 0.0007 168.63

nτ = 4 nτ = 10
T = 1 10,000 6.8522 6.8512 -0.0011 -0.02% 0.0113 1.36 6.8600 0.0078 0.11% 0.0112 3.27

40,000 6.8522 6.8532 0.0010 0.01% 0.0056 5.39 6.8549 0.0026 0.04% 0.0057 12.52
160,000 6.8522 6.8562 0.0040 0.06% 0.0028 21.41 6.8558 0.0036 0.05% 0.0028 50.13
640,000 6.8522 6.8505 -0.0017 -0.02% 0.0014 84.63 6.8523 0.0001 0.00% 0.0014 199.38
2,560,000 6.8522 6.8524 0.0002 0.00% 0.0007 338.53 6.8521 -0.0001 0.00% 0.0007 798.98

nτ = 1 nτ = 2
T = 2 10,000 4.9430 4.9463 0.0033 0.07% 0.0134 0.44 4.9224 -0.0207 -0.42% 0.0131 0.78

40,000 4.9430 4.9475 0.0045 0.09% 0.0069 1.63 4.9423 -0.0007 -0.01% 0.0066 2.81
160,000 4.9430 4.9395 -0.0036 -0.07% 0.0034 6.52 4.9412 -0.0018 -0.04% 0.0033 11.14
640,000 4.9430 4.9414 -0.0016 -0.03% 0.0017 26.47 4.9422 -0.0008 -0.02% 0.0017 44.33
2,560,000 4.9430 4.9433 0.0003 0.01% 0.0009 107.13 4.9442 0.0012 0.02% 0.0008 177.84

nτ = 4 nτ = 10
T = 2 10,000 4.9430 4.9315 -0.0116 -0.23% 0.0130 1.30 4.9402 -0.0028 -0.06% 0.0131 3.09

40,000 4.9430 4.9533 0.0103 0.21% 0.0066 5.28 4.9533 0.0103 0.21% 0.0066 12.16
160,000 4.9430 4.9421 -0.0010 -0.02% 0.0033 20.69 4.9402 -0.0029 -0.06% 0.0033 48.67
640,000 4.9430 4.9416 -0.0015 -0.03% 0.0016 83.19 4.9404 -0.0027 -0.05% 0.0016 196.84
2,560,000 4.9430 4.9433 0.0003 0.01% 0.0008 329.92 4.9424 -0.0006 -0.01% 0.0008 792.38

nτ = 1 nτ = 2
T = 4 10,000 3.0827 3.1051 0.0225 0.73% 0.0173 0.59 3.1056 0.0229 0.74% 0.0143 0.83

40,000 3.0827 3.0883 0.0056 0.18% 0.0085 2.16 3.0780 -0.0047 -0.15% 0.0073 3.08
160,000 3.0827 3.0846 0.0019 0.06% 0.0043 8.36 3.0796 -0.0031 -0.10% 0.0036 12.58
640,000 3.0827 3.0855 0.0028 0.09% 0.0021 30.08 3.0819 -0.0007 -0.02% 0.0018 49.94
2,560,000 3.0827 3.0833 0.0006 0.02% 0.0011 119.14 3.0826 -0.0001 0.00% 0.0009 198.17

nτ = 4 nτ = 10
T = 4 10,000 3.0827 3.1114 0.0287 0.93% 0.0143 1.48 3.0842 0.0015 0.05% 0.0139 3.19

40,000 3.0827 3.0790 -0.0037 -0.12% 0.0071 5.41 3.0863 0.0037 0.12% 0.0071 12.72
160,000 3.0827 3.0832 0.0005 0.02% 0.0035 21.64 3.0843 0.0016 0.05% 0.0035 51.70
640,000 3.0827 3.0821 -0.0005 -0.02% 0.0018 86.30 3.0853 0.0026 0.08% 0.0018 199.48
2,560,000 3.0827 3.0803 -0.0024 -0.08% 0.0009 345.45 3.0831 0.0004 0.01% 0.0009 795.36

nτ = 1 nτ = 2
T = 10 10,000 2.0539 2.0444 -0.0095 -0.46% 0.0284 0.75 2.0339 -0.0200 -0.97% 0.0190 1.05

40,000 2.0539 2.0542 0.0003 0.02% 0.0143 2.67 2.0646 0.0107 0.52% 0.0096 3.84
160,000 2.0539 2.0473 -0.0066 -0.32% 0.0071 10.69 2.0550 0.0011 0.05% 0.0048 15.44
640,000 2.0539 2.0552 0.0013 0.06% 0.0035 41.84 2.0556 0.0017 0.08% 0.0024 63.53
2,560,000 2.0539 2.0542 0.0003 0.01% 0.0018 168.27 2.0550 0.0011 0.05% 0.0012 255.75

nτ = 4 nτ = 10
T = 10 10,000 2.0539 2.0415 -0.0124 -0.60% 0.0151 1.66 2.0366 -0.0173 -0.84% 0.0140 3.50

40,000 2.0539 2.0538 -0.0001 -0.01% 0.0075 6.44 2.0446 -0.0093 -0.45% 0.0070 13.66
160,000 2.0539 2.0520 -0.0019 -0.09% 0.0038 25.45 2.0596 0.0056 0.28% 0.0036 55.66
640,000 2.0539 2.0554 0.0015 0.07% 0.0019 101.14 2.0548 0.0009 0.04% 0.0018 226.19
2,560,000 2.0539 2.0515 -0.0024 -0.12% 0.0009 407.13 2.0539 0.0000 0.00% 0.0009 902.73
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Table 3: Comparison between the true means (5.2) and the associated simulation results using Algorithm
4.1 for the OU-Γ process based on the parameters (δ, %;α, β;X0) = (0.5, 1.0; 2.0, 2.0; 10.0) for
T = 1, 2, 4, 10 and nτ = 1, 2, 4, 10, respectively, with the associated plots provided in Figure 5.

Period T Paths True Simulation Error Error % RMSE Time Simulation Error Error% RMSE Time
nτ = 1 nτ = 2

T = 1 10,000 6.8522 6.8471 -0.0051 -0.07% 0.0056 0.48 6.8538 0.0016 0.02% 0.0055 0.94
40,000 6.8522 6.8527 0.0005 0.01% 0.0028 1.80 6.8535 0.0012 0.02% 0.0028 3.53
160,000 6.8522 6.8500 -0.0022 -0.03% 0.0014 7.53 6.8518 -0.0004 -0.01% 0.0014 13.81
640,000 6.8522 6.8522 -0.0001 0.00% 0.0007 30.14 6.8517 -0.0006 -0.01% 0.0007 55.92
2,560,000 6.8522 6.8521 -0.0001 0.00% 0.0004 120.41 6.8521 -0.0001 0.00% 0.0004 223.25

nτ = 4 nτ = 10
T = 1 10,000 6.8522 6.8552 0.0029 0.04% 0.0057 1.80 6.8530 0.0007 0.01% 0.0056 4.09

40,000 6.8522 6.8521 -0.0001 0.00% 0.0028 6.75 6.8577 0.0055 0.08% 0.0028 16.39
160,000 6.8522 6.8527 0.0005 0.01% 0.0014 26.92 6.8514 -0.0008 -0.01% 0.0014 63.95
640,000 6.8522 6.8508 -0.0014 -0.02% 0.0007 108.23 6.8524 0.0002 0.00% 0.0007 256.14
2,560,000 6.8522 6.8525 0.0003 0.00% 0.0004 417.30 6.8523 0.0001 0.00% 0.0004 1,016.22

nτ = 1 nτ = 2
T = 2 10,000 4.9430 4.9457 0.0026 0.05% 0.0066 0.61 4.9458 0.0028 0.06% 0.0066 0.95

40,000 4.9430 4.9422 -0.0008 -0.02% 0.0034 2.16 4.9408 -0.0023 -0.05% 0.0033 3.50
160,000 4.9430 4.9424 -0.0007 -0.01% 0.0017 7.94 4.9426 -0.0005 -0.01% 0.0016 13.53
640,000 4.9430 4.9432 0.0001 0.00% 0.0008 31.44 4.9423 -0.0008 -0.02% 0.0008 54.81
2,560,000 4.9430 4.9433 0.0003 0.01% 0.0004 126.03 4.9431 0.0001 0.00% 0.0004 216.33

nτ = 4 nτ = 10
T = 2 10,000 4.9430 4.9498 0.0067 0.14% 0.0067 1.72 4.9424 -0.0007 -0.01% 0.0066 4.22

40,000 4.9430 4.9469 0.0038 0.08% 0.0033 6.52 4.9472 0.0042 0.08% 0.0033 16.03
160,000 4.9430 4.9439 0.0009 0.02% 0.0016 26.08 4.9459 0.0029 0.06% 0.0016 63.27
640,000 4.9430 4.9427 -0.0004 -0.01% 0.0008 104.27 4.9435 0.0005 0.01% 0.0008 253.89
2,560,000 4.9430 4.9432 0.0002 0.00% 0.0004 418.30 4.9428 -0.0002 0.00% 0.0004 1,013.73

nτ = 1 nτ = 2
T = 4 10,000 3.0827 3.0826 -0.0000 0.00% 0.0093 0.77 3.0942 0.0115 0.37% 0.0071 1.00

40,000 3.0827 3.0826 -0.0001 0.00% 0.0047 2.88 3.0835 0.0008 0.03% 0.0036 4.00
160,000 3.0827 3.0854 0.0027 0.09% 0.0024 11.38 3.0835 0.0008 0.03% 0.0018 15.81
640,000 3.0827 3.0812 -0.0015 -0.05% 0.0012 44.47 3.0823 -0.0004 -0.01% 0.0009 62.72
2,560,000 3.0827 3.0836 0.0010 0.03% 0.0006 175.28 3.0830 0.0003 0.01% 0.0004 249.16

nτ = 4 nτ = 10
T = 4 10,000 3.0827 3.0794 -0.0033 -0.11% 0.0070 1.95 3.0862 0.0035 0.11% 0.0071 4.17

40,000 3.0827 3.0813 -0.0014 -0.05% 0.0035 6.86 3.0831 0.0004 0.01% 0.0035 16.52
160,000 3.0827 3.0840 0.0013 0.04% 0.0018 26.81 3.0849 0.0022 0.07% 0.0018 64.23
640,000 3.0827 3.0819 -0.0008 -0.02% 0.0009 107.36 3.0822 -0.0005 -0.02% 0.0009 256.56
2,560,000 3.0827 3.0823 -0.0004 -0.01% 0.0004 432.86 3.0823 -0.0004 -0.01% 0.0004 1,040.16

nτ = 1 nτ = 2
T = 10 10,000 2.0539 2.0345 -0.0194 -0.94% 0.0303 1.34 2.0523 -0.0016 -0.08% 0.0121 1.72

40,000 2.0539 2.0554 0.0015 0.07% 0.0153 4.83 2.0480 -0.0059 -0.29% 0.0060 6.48
160,000 2.0539 2.0545 0.0006 0.03% 0.0076 19.14 2.0550 0.0010 0.05% 0.0030 25.58
640,000 2.0539 2.0561 0.0022 0.11% 0.0038 77.05 2.0545 0.0006 0.03% 0.0015 101.86
2,560,000 2.0539 2.0527 -0.0012 -0.06% 0.0019 305.59 2.0542 0.0003 0.01% 0.0008 412.20

nτ = 4 nτ = 10
T = 10 10,000 2.0539 2.0471 -0.0068 -0.33% 0.0073 2.08 2.0526 -0.0013 -0.07% 0.0070 4.25

40,000 2.0539 2.0512 -0.0027 -0.13% 0.0037 8.28 2.0556 0.0017 0.08% 0.0036 16.63
160,000 2.0539 2.0529 -0.0010 -0.05% 0.0019 32.70 2.0555 0.0016 0.08% 0.0018 66.47
640,000 2.0539 2.0542 0.0003 0.01% 0.0009 131.38 2.0536 -0.0003 -0.02% 0.0009 267.59
2,560,000 2.0539 2.0551 0.0012 0.06% 0.0005 523.14 2.0543 0.0004 0.02% 0.0004 1,061.34
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6 Concluding Remarks

In this paper, we have developed very efficient algorithms for the exact simulation of the Γ-OU and

OU-Γ processes based on our distributional decomposition approach. The algorithms are accurate,

efficient, and have been numerically verified, with the associated performance reported in detail.

To extend these models, adding an extra constant term µ as the mean-reverting (or lower bound)

parameter in the Gamma-driven OU process (2.1) or (2.2) is mathematically trivial; here, we have

simply set µ equal to zero to keep our paper concise. Recently, Bianchi and Fabozzi (2015) made

a convincing case that the use of Lévy-based OU processes that allow only for positive jumps is

obstructed by the path properties of these processes, which cannot appropriately replicate the be-

havior of observed CDS spreads quoted in the credit market. This drawback is mainly because they

only return to stability slowly, and our simulation scheme could be extended to construct models

with two or more drivers, with one of them having a fast decay rate. It is interesting to carry out

the empirical work furthermore by following this line. Moreover, generalizations to time-varying

parameters or dependent multivariate settings may also be possible, and in addition the associated

estimation problems would be important but challenging, and we propose these as topics for future

research.
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