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ABSTRACT

In decision and risk analysis, probabilistic modelling of uncertainties provides essen-
tial information for decision-makers. As uncertainties are typically not isolated and
simplifying assumptions (such as independence) are often not justifiable, methods
that model their dependence are being developed. A common challenge is that rele-
vant historical data for specifying and quantifying a model are lacking. In this case,
the dependence information should be elicited from experts. Guidance for eliciting
dependence is sparse whereas particularly little research addresses the structuring
of experts’ knowledge about dependence relationships prior to a quantitative elicita-
tion. However, such preparation is crucial for developing confidence in the resulting
judgements, mitigating biases and ensuring transparency, especially when assessing
tail dependence. Therefore, we introduce a qualitative risk analysis method based
on our definition of conditional scenarios that structures experts’ knowledge about
(tail) dependence prior to its assessment. In an illustrative example, we show how
to elicit conditional scenarios that support the assessment of a quantitative model
for the complex risks of the UK higher education sector.
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1. Introduction

Probabilistic modelling of uncertainties is of key importance for many decisions as
well as in risk analysis problems. It supports decision-makers in understanding better
the inherent uncertainties of a model and the decision(s) based on it. The common
simplifying assumption of independence between uncertainties is, however, often not
reasonable. Therefore, a robust analysis needs to account for the possible (often unex-
pected) effects that dependence relationships might cause. Despite advances in math-
ematical modelling of dependence, its elicitation is still much under development. Yet,
whenever facing a lack of relevant historical data, having experts to assess the required
dependence information is the only appropriate option for model quantification with-
out introducing unjustified modelling assumptions.

While extensive guidance is available on formal processes for eliciting univariate un-
certainties (Cooke, 1991; Dias et al., 2018; EFSA, 2014; Hanea et al., 2017; O’Hagan
et al., 2006; Quigley et al., 2018), this is not the situation for the multivariate case.
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Overviews on eliciting dependence for probabilistic modelling are given in Werner et
al. (2017) and Werner et al. (2018a).

One of the most neglected parts of research in formal elicitation processes for multi-
variate uncertainty is that of structuring experts’ knowledge about a joint distribution
prior to its quantitative assessment. Nevertheless, this is essential for ensuring con-
fidence in the elicitation, supporting transparency and reproducibility of the expert
judgement study as well as mitigating experts’ potential cognitive fallacies.

The few methods which specifically structure knowledge about joint distributions,
are part of hybrid approaches to dependence modelling that specify qualitative re-
lationships first (usually graphically), before assessing them probabilistically. These
approaches comprise Knowledge Maps (Howard, 1989), Event and Fault Trees (Bed-
ford and Cooke, 2001), Influence Diagrams (Howard and Matheson, 2005; Shachter,
1988) and Bayesian Belief Networks (Pearl, 1988). While these methods enjoy pop-
ularity in the decision and risk analysis literature due to their convenient graphical
representation, they are not suitable in various modelling contexts which might be of
interest. For example, they do not address potential tail dependencies as these models
in themselves do not capture main characteristics of systems where extreme value dis-
tributions emerge, such as underlying vicious cycles (or reinforcing loops). Moreover,
due to their hybrid nature, these models often require a large number of assessments
for quantifying the underlying joint distribution.

In order to address knowledge structuring for joint distributions in a more flexible
manner and also to separate the structuring process from the quantitative assessment,
in particular for models which incorporate tail dependencies, we present a new struc-
turing method in this paper which is based on conditional scenarios (as defined later).
In doing so, we are in line with the arguments in favour of “sense-making” through
qualitative scenarios when modelling uncertainty (French, 2015), whereas such a rep-
resentation of a simplified part of reality has also been termed “small world” (Savage,
1954).

As far as we are aware this is the first method to specifically structure scenarios of
(extreme) conditional distributions for use prior to experts’ (tail) dependence assess-
ments. There is a wide literature on scenarios and problem structuring, but for our
purpose of supporting a dependence elicitation we build on findings and approaches
from various research areas of decision and risk analysis. These include:

e Probabilistic Risk Analysis (PRA) (Bedford and Cooke, 2001): Fault and Event
Tree Analysis (Ericson, 2015; Vesely et al., 1981), Root Cause Analysis (Wilson,
1993), Structured Expert Judgement (Bedford and Cooke, 2001), Multivariate
Uncertainty Modelling (Bedford and Cooke, 2001), Bow-Tie Modelling (Ale et
al., 2006)

together with research in Risk Perception (Renn, 1992)

e Problem Structuring (PSM or “soft OR”) (Franco, 2006; Mingers and Rosenhead,
2004; Rosenhead, 2006): Cognitive Mapping (Ackermann and Eden, 2006) in
particular as used for mapping systemic risks(Ackermann et al., 2014), Causal
Loop Diagrams (Morecroft, 2010)

e Scenario Planning (SP) (Bradfield et al., 2005): Intuitive Logics (Van der Heij-
den, 2011)

A more detailed list is provided in Section 4.
The remainder of this paper is as follows. First (in Section 2), we define the variables of



interest for a quantitative dependence elicitation before we present a way to elicit them
for a common model that can capture tail dependence. This shows the assessments
that experts are required to make. In Section 3, we propose our definition of condi-
tional scenarios and derive the main desiderata for a method that supports experts in
structuring their knowledge on joint distributions through scenarios. Next (in Section
4), we discuss the applicability of existing problem structuring, scenario planning and
qualitative risk analysis methods for our purpose and by that outline the features we
require for our method. We introduce our method in Section 5. After that we then
present an illustrative example in Section 6 which shows how the method was applied
to structure and model tail dependencies in the UK higher education sector. Finally,
we conclude the paper in Section 7 with a reflective discussion on the method’s current
shortcomings and potential future enhancements.

2. Quantitative elicitation of dependence

Before proposing a definition for conditional scenarios and presenting our method, in
this section we briefly discuss the quantitative assessment part of an elicitation process.
This illustrates the quantitative judgements experts are asked to make and for which
the method proposed in this paper aims to support them.

2.1. Tail dependence models and variables of interest for elicitation

Typically, the variables of interest in dependence elicitation (i.e. the elicited quanti-
ties) serve as inputs to some multivariate model. The form in which the information
is elicited, e.g. through a conditional probability or a correlation coefficient, is cho-
sen by an analyst who manages the elicitation process. Together with the underlying
scenarios (the experts’ rationales) that determine a specific assessment, the value of
an elicited quantity constitutes the knowledge (and type of information) we want to
obtain from experts.

While Werner et al. (2017) discuss the prevalence of dependence in different modelling
contexts in decision and risk analysis and its influence of how to model and assess it, a
common mathematical representation of dependence is a collection of random variables
describing measurable risk characteristics (McNeil et al., 2015), such as the number
of lives lost, monetary losses and so forth. Formally (in the bivariate case), these ran-
dom variables are denoted by X and Y, Fxy : R2 — [0, 1]. For dependence, we are
interested in the distribution of the random vector described by the joint probability
distribution Fxy(z,y) = P(X < 2z,Y < y). Assuming probabilistic independence
greatly simplifies the modelling process as we simply use the product of the marginal
distributions to determine the multivariate distribution. However, whenever this as-
sumption is not sensible, it follows that Fxy(z,y) # Fx(z)F,(y). In this case, we
need a dependence model that approximates the unknown distribution by capturing
the most important features of the dependence relationship. For instance in the later
case-study application, we are concerned that the dependence structure in the central
part of a model might not be representative of the structure in the tails. Therefore,
we include tail dependence, i.e. the strength of association in the tails of the joint
distribution, if applicable. Neglecting this aspect of a random variables can lead to
distorted model output and hence poor decision making. For example, MacKenzie and
Spears (2014) discuss common (false) modelling assumptions in financial mathematics
and their impact by reflecting on the famous Wired article about “the formula that



killed Wall Street” (Salmon, 2009).

Tail dependence can be modelled with a copula. For an introduction and discussion
on the topic, see Joe (2014). Recall, we can decompose any multivariate distribution
function into its univariate margins and a copula. This can be reversed in order to
construct new multivariate distribution functions with a given copula, so that a con-
venient modelling feature is the separate treatment of the marginal distributions and
the dependence relationship. Various common parametric copulas can be grouped into
classes. For instance, Flliptical copulas are radially symmetric, i.e. their upper and
lower tail dependence is the same, whereas Archimedean copulas do not show this
symmetry. This is an important modelling property as for the former, large losses al-
ways occur together with large gains which in many situations might not be a realistic
dependence characteristic. For example, Crook and Moreira (2011) show how copulas
can be used to appropriately model asymmetric dependence of joint high default rates
in a credit card portfolio.

Formally, lower tail dependence (which is of interest in our illustrative case-study) for
the distribution functions F'x and Fy of random variables X and Y is defined as:

AL(Y]X) = lim P(Y < Fy ' (u)|X < Fy' ()

when a limit Ay € [0,1] exists. Whenever A\;, > 0, X and Y are dependent in the
lower tail whereas whenever A\; = 0 they are tail independent. In other words, in the
tail dependent case one is more likely to observe low values for Y given low values
for X. From that, we can distinguish various copula types through their lower tail
dependence coefficient lim,_,o <% (see Joe (2014) for its derivation) of which we

u
make use in the elicitation as shown in the next section.

2.2. Tail dependence elicitation for parametric copulas

While an elicitation can be structured in various ways, we briefly present a method
that allows for the explicit consideration of tail dependencies. Furthermore the formal
definitions of tail dependence highlight the need for a structuring process that can
help with elicitation.

The process below is a pragmatic solution to eliciting dependence information for
choosing a copula that represents an experts belief. More specifically, it allows for
distinguishing common parametric forms. Together with other elicitation methods
it is discussed in Werner et al. (2017) in more detail while Werner et al. (2018b)
propose a more flexible elicitation method which allows for considering non-parametric
forms and which is also compatible with the scenario mapping method presented
in this paper. Note, the below is only a brief description focussing on the actual
elicitation, neglecting elements of pre- and post-elicitation, such as training experts
and aggregating judgements:

(1) The marginal distributions are specified either through historical data or an
expert judgement method for univariate quantities, e.g. Cooke (1991); Quigley
et al. (2018) or O’Hagan et al. (2006).

(2) With (1) in place, we elicit various conditional exceedance probabilities’ in

1In the case-study of this paper we elicit conditional exceedance probabilities. Briefly, a conditional exceedance
probability is the probability of a variable exceeding (or equalling) a certain percentile given that the variable
we condition on also exceeds a certain percentile. The definition is the same for both variables being below a
certain percentile threshold.
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Figure 1. Schematic representation of eliciting the conditional 50% and 5% percentile.

the form of P(Y < u% percentile|X < u% percentile): For example, we
start with the conditional median in the form of P(Y < 50% percentile|X <
50% percentile) for the variables of interest X and Y. This can be framed
as: “Given that X is below your median for it, what is the probability that Y is
also below your median?” (see Figure 1 on the left).

We elicit another percentile, one that corresponds to the (lower) distribution
tail (e.g. the 5%), i.e. P(Y < 5% percentile|X < 5% percentile) which can
be framed as: “Given that X is below your 5% percentile for it, what is the
probability that Y is also below your 5% percentile?” (see Figure 1 on the right).

The u% percentiles correspond to the chosen severity levels of the risk
characteristics that are of interest in an elicitation and hence risk assessment.

With the assessments of (2) and (3) in place, we can compare an expert’s judge-
ments with different parametric copula forms. This is done by plotting the assess-
ments against the converging conditional exceedance probabilities for selected
parametric copulas simulated at the u% percentile. We will explain this in more
detail and show this with actual assessment results in the illustrative case-study
later.

With a first idea of which copula represents the expert’s information reasonably
well given a specific rank correlation, we can test the robustness of that choice,
e.g. by “feeding back” the probabilities for non-elicited percentiles and check an
expert’s agreement for it.

Alternatively, in (3) we might elicit the conditional median for various percentiles.
Thus, we elicit P(Y < 50% percentile|X < u% percentile), solely varying the u%
percentile for X. Both ways of eliciting dependence information allow for choosing a
copula that represents an expert’s input satisfactorily and both alternatives are in line
with our scenario mapping method.



3. Definition of conditional scenarios and derivation of desiderata for a
mapping method

In this section, we propose a definition for conditional scenarios which underpins our
method and through which experts express the underlying rationale for their quanti-
tative dependence assessment. This clarifies which information we obtain from experts
through our scenario mapping method. Further, this definition allows for deriving the
main desiderata for our method which have been used to guide its development by
identifying the suitability of existing methods in the literature with respect to each of
the desirable properties and combining these.

The term “scenario” is used differently within operational research, decision and risk
analysis and related fields. Apart from our purpose of structuring experts’ knowledge
as preparation for a quantitative uncertainty assessment and a better understanding of
risk, other purposes, for which scenarios are formulated, include forecasting (Bunn and
Salo, 1993), strategic planning (Van der Heijden, 2011), multi-criteria decision making
(Stewart et al., 2013), various other applications in decision analysis, e.g. decision tree
modelling (Chelst and Bodily, 2000; French and Rios Insua, 2000; Raiffa, 2002), and
also defining risk itself (Kaplan, 1997; Kaplan and Garrick, 1981).

As one of the pioneers, Kahn and Wiener (1967) are credited in establishing scenario
thinking as a structured approach to understanding uncertainties and risks better.
They regard a scenario as “a hypothetical sequence of events constructed for the pur-
pose of focussing attention on causal processes and decision points”. This is similar
to Eden and Ackermann (1999) who describe scenarios as “hypothetical sequences
of events constructed as causal chains of argumentation for the purpose of focussing
attention on alternative futures”.

3.1. Definition of conditional scenarios

For our purpose of defining conditional scenarios, which are later used in a struc-
turing method, first recall the commonly accepted definition of risk as the triplet
R =< s;,pi,x; >, in which s; denotes the i*" scenario, x; its consequence and p;
the probability (Kaplan and Garrick, 1981). We base our definition of conditional
scenarios on this by further refining the scenario part.

However, before doing this, note that the quantitative assessments presented in this
paper and introduced in Section 2 are on multivariate consequences (x,y) and our
core interest is in assessing the dependencies between these variables. Instead of
considering complete scenarios, as in the definition of risk given above, we will need
to consider the concept of a conditional scenario which is, formally speaking, the set
of those scenarios that satisfy specified conditions. We are particularly interested in
those conditional scenarios which are defined by having specific (given) values for one
or both of our consequence measures. We wish to develop assessments of probabilities
(and provide rationales) by using these conditional scenarios. For example, if we
look at the conditional scenarios where there is no specification of variable y but the
variable x < 2’ for some particular value z’, then the overall probability assessment for
these conditional scenarios would be equal to the probability that variable z < 2/, that
is, (when assessing over the full range of values for z’) we are assessing the marginal
distribution for the uncertainty of x. Of course, the assessments of probability have
to be coherent (that is, they are consistent with the laws of probability), and we
achieve this using the approach developed in (Werner et al., 2018b), which guides us



to make a sequence of assessments (relating in particular to tail events) which will be
coherent.

The novelty here is to use conditional scenarios as an approach which enables experts
to provide rationales for their judgements and to share those rationales with other
experts. The conditional scenarios provide a way to structure experts’ mental models,
and in this way they can generate for themselves scenarios that lead, for example,
to extreme events for one consequence measure and then explore through such
conditional scenarios how likely extreme outcomes for the other consequence measure
are.

It is important to note that we are using scenarios in a constructive, inductive,
way to help the experts understand and provide rationales for how extreme events
(as measured by the consequence variables) might occur. Hence our terminology is
chosen to help with this process rather than to formally define a full mathematically
complete structure. Indeed, the scenarios do not need to be developed further than is
needed to gain sufficient understanding for the probability assessments of the events
in question.

We introduce some notation as follows. The consequences are assumed to be future
consequences within a system which is evolving through time. Hence we work with
experts to identify current and future states of the system or critical events, which
result in consequence values near those of interest. That is, these are plausible scenarios
for the values under discussion. It is convenient to introduce notation for the current
state of the system cg together with key future states c1, ..., c; that follow in sequence
at key points in the future 1 to k.

It is also convenient for experts to consider possible early trigger conditions
(co1,---,c0) that could drive the system in different ways in the future. The 1 to
k future states are described in terms of, possibly multiple, enabling conditions, vec-
tors of the system’s vulnerabilities and resilience for each future state, denoted as
(c11s---,¢1,m) t0 (Ck1,- .., Cro) for m enabling conditions in the 1% future state and
o in the k.

Figure 2 shows the components of several scenarios schematically. Trigger condi-
tions, enabling conditions and the consequence are represented by dark blue rectan-
gles, light blue circles and a red rectangle accordingly. The bold arrows show the path
of a single scenario whereas every path leading from a trigger condition to the con-
sequence represents another scenario. The reader is also referred to section 6 for an
example developed by an expert in a case.

Our scenario definition does not entail any past events, but in practical applications
the experts may find it useful to consider them, either because they help to understand
future developments or because they may not be fully known, and indeed the experts
may specify trigger conditions which are not fully observable.

We address how facilitators can support experts to include trigger conditions even
if they are only partially observable in Section 5.

As enabling conditions are the states of a system’s variables that are affected by
the presence of a trigger condition, they represent the system’s vulnerabilities and
resilience as stated above. In line with Haimes (2006), vulnerabilities are “the inherent
states of the system (e.g., physical, technical, organizational and cultural) that can
be subjected to a natural hazard or be exploited to adversely affect (cause harm
or damage to) that system”. Resilience refers to the “ability of the system states
to withstand a major disruption within acceptable degradation parameters and to
recover within an acceptable cost and time” (Haimes, 2006). Regarding the time



Figure 2. Basic components of our scenario definition.



Figure 3. Representation of conditional scenario for consequence (y|z).

frame, the last enabling condition at time k is closest to the consequence (z,y).

An important consideration for enabling conditions is the causal field. This is discussed
in more detail in Werner et al. (2018a). It is the presumed background of necessary
conditions that need to be in place together with enabling conditions to allow for a
trigger condition to lead to the scenario’s consequence while these are not regarded
as causing the consequence themselves. When identifying enabling conditions it is
important to distinguish the presumed background from these as shown later.
Methodologically and philosophically, the terminology we use is related to a holistic,
system-based understanding of risk discussed in Haimes (2009).

Further, risk perception research (Renn, 1992) identifies similar event types for which
initiating hazard events result in secondary effects that affect more people than
the ones affected by the original hazard event. As example Renn (1992) mentions
economic impacts together with social and political pressures.

The adopted naming convention of our definition stems partly from linguistic
expressions of causal relationships, such as cause, enable, prevent (Sloman et al.,
2009).

Finally we return to the notion of a conditional scenario, which as we noted above
is the set of all scenarios which lead to the specified consequences. We are particularly
interested in assessing conditional tail probabilities of the form y < 3/ for some fixed
y' out of the set of scenarios for which x < 2’ for some fixed z’.

Figure 3 illustrates the way we approach scenarios for conditional events.

Our structured approach enables experts to create a rationale for their conditional
probability assessment, illustrated in the scenario mapping method later. It first con-
siders the scenarios which relate to < 2/. Once their trigger conditions have been
identified through a backwards logic structuring, these same trigger conditions are
used to start the conditional scenarios (relating to y). The enabling conditions can



be changed to understand how well the trigger conditions lead to y being below (or
above) some fixed 3. By exploring both sets of scenarios, experts are then well placed
to assess a conditional probability.

Following the introduction of our scenario components that will be used to describe
dependence within a system in our mapping method (section 5), it is worth noting that
in scenario analysis processes more generally, identifying the factors that are relevant
for explaining a system’s behaviour together with their interactions and their impact
on its future evolvement are the main steps in the scenario development phase when
deriving a system’s model and in scenario generation (Tosoni et al., 2018).

A main challenge in scenario generation relates to the completeness and comprehen-
siveness of the selected scenarios sets (Tosoni et al., 2019, 2018). The first refers to
including any factors that might impact a system whereas the latter is the more prag-
matic idea of only including factors that significantly impact a system. Several types
of uncertainties, aleatory and epistemic ones, influence one’s approach to addressing
comprehensiveness. For us, in particular the uncertainties on a system’s structure,
scope and evolution are of interest.

With regards to the parameterisation of these uncertainties, in some literature (Tosoni
et al., 2019, 2018) a distinction is made between pluralistic and probabilistic scenario
generation. The pluralistic approach asks for few scenarios, usually from experts, which
represent their different assumptions on scenarios’ future behaviour. In contrast, the
probabilistic approach scenario are treated as subsets from large random samples. Re-
call that we use scenarios qualitatively (prior to a quantitative assessment) and are
therefore more in line with the first, the pluralistic approach and regard them as rep-
resentative futures.

For addressing the comprehensiveness of the future behaviour of our scenarios, we
apply the more general definition proposed by Tosoni et al. (2018), which in a nuclear
safety context advises to focus on only those future scenarios in which corresponding
performance targets are violated. Similarly, however in the context of a probability
rather than a risk assessment, we aim to cover all these scenarios which affect the
future consequence x < 2’ being below a certain severity level as required in the
assessment. This corresponds to our desideratum (section 3.2) of relevance and in par-
ticular in tail dependent systems avoids the inclusion of scenarios that are not regarded
in a later assessment.

For addressing the comprehensiveness of the identified trigger and enabling conditions,
we base our mapping method on debiasing techniques and the option to share scenar-
ios without seeking consensus as shown in section 5 and the case-study discussion in
6.3. As such, experts derive partial scenarios that are detailed enough to give them
comfort in assessing a joint tail probability. The sharing element of our process allows
then for a judgement for whether one’s scenario is detailed enough.

In this paper, we focus on bivariate dependence as this is already cognitively complex
for experts to assess. Therefore, our variables of interest are denoted as X and Y. Nev-
ertheless, similarly to the bivariate case for which we structure conditional scenarios
in accordance with the elicitation of P(Y < u% percentile|X < u% percentile), our
method can be extended to structure conditional scenarios of larger conditioning sets,
such as P(Y < u% percentile| X1 < u% percentile, Xo < u% percentile, ..., X, <
u% percentile).
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3.2. Destiderata for a conditional scenario mapping method

From our scenario definition above, we identify three main desiderata which a method
structuring conditional scenarios for (tail) dependence assessment should possess.
First, a method should support experts to only map scenarios that are of relevance.
That is, experts should only map scenarios which result in the consequences z < '
and y < ¢/ that are specified, i.e. being above/below the u% percentile for ' and 3. A
method, which elicits scenarios of which only few or even none are relevant or which
explore other scenarios, is not suitable.

As second desideratum, a method should identify the systemic impact of threats.
For instance, in risk analysis, consequences (or failures) can be attributed only very
rarely to a single cause. Rather chains of events combine and interact to produce the
outcome. This is reflected in our scenario definition in the possibility to have more
than one trigger condition and enabling condition. A method should therefore support
experts in identifying and capturing systemic interactions of various trigger conditions
and enabling conditions in an intuitive and transparent way.

Third, a method should allow for capturing inter-systemic dependence, i.e. it should
support experts in understanding the difference between unconditional and conditional
scenarios. For that, our method needs to be able to incorporate the idea of a (sub-
)system boundary together with a link between both (sub-)systems.

4. Applicability and features of existing methods in the related literature

With respect to the desiderata, we reviewed the literature on potentially applicable
techniques and methods, mainly from the areas of Problem Structuring (“soft OR”),
PRA and Scenario Planning. This helped to identify features from existing methods
that we can use for our purposes. Thus, we examined how existing methods perform in
terms of three different properties, (1) understanding impact and severities in an an-
ticipatory way, (2) modelling the dynamic complexity of an underlying system and (3)
capturing how common causes propagate through different (sub-)systems by defining
their boundaries and links. The first property relates to the desideratum of identify-
ing only relevant scenarios. The other two properties relate to the second and third
desiderata of understanding and capturing the (complex) intra- and inter-systemic
impact of trigger conditions. The second property focusses on the interaction of the
scenario components of trigger conditions and enabling conditions within an individual
scenario whereas the third property’s focus is on determining the impact of trigger con-
ditions across dependent scenarios. Table 1 provides an overview on several methods’
applicability with respect to the three properties which is further detailed below.

Anticipatory severities. Applicable methods for the first property identify events
that lead to a specific level of severity. This is done through backwards logic. It differs
from forward logic approaches by not considering the possible development of scenar-
ios from a fixed starting point (such as a threat in the current state of the world)
but instead determining the threats that need to happen in a certain environment (or
under certain conditions) for given outcomes to happen (at a specific point in future).
In the SP literature, the terms forecasting and backcasting have been introduced for
that, whereas Ducot and Lubben (1980) and Bishop et al. (2007) distinguish between
exploratory and anticipatory scenarios. Wright and Goodwin (2009) propose back-
wards logic to enhance traditional SP methods, such as Intuitive Logics (Van der
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Table 1. Features of existing structuring methods.

Technique models / captures...

Technique Reference anticipatory  dynamic  inter-system
severities complexity propagation

Fault Tree Analysis Vesely et al. (1981) v X X
Event Tree Analysis Ericson (2015) X X X
2{1 FMEA Stamatis (2003) v X X
~ HAZOP Crawley and Tyler (2015) X X X
A Root Cause Analysis Wilson (1993) v X X
Influence Diagrams Howard and Matheson (2005) X v X
Causal Loop Diagrams Morecroft (2010) X v X
<, Soft System Methodology Checkland and Poulter (2010) X v X
& Causal/Cognitive Mapping Ackermann and Eden (2006) X v X
A Knowledge Maps Howard (1989) X v X
Critical System Heuristics (Ulrich, 2003) X X v
Intuitive Logics Van der Heijden (2011) X v X
Backward-Logic SP Wright and Goodwin (2009) v X X
&, Horizon Mission Methodology — Anderson (1993) v X X
9 Impact of Future Technologies Bishop et al. (2007) v X X

@ Probabilistic Risk Analysis; ® Problem Structuring; ¢ Scenario Planning

Heijden, 2011), as a way to focus particularly on rare events. Their method is mo-
tivated by crisis management approaches which aim at preparing organizations for
high-impact /low-probability catastrophes.

Another SP method applying backwards logic is the Horizon Mission method (HM)
(Anderson, 1993). HM originated within NASA to support engineers’ decision making
about future research and development (R&D) pathways as before their scenarios of-
ten led to recommending incremental rather than breakthrough research. In the HM
method, engineers first envision a horizon mission (infeasible given today’s technol-
ogy) and then identify the new capabilities needed to achieve it. The Impact of Future
Technologies method serves a similar R&D purpose at IBM (Bishop et al., 2007).
Similar to these SP methods, in PRA in particular Fault Tree and Root Cause analysis
methods (Bedford and Cooke, 2001) investigate and assess specific future risks and
severities. In PRA however, scenarios are captured by event sequences rather than
narratives which are common for SP approaches.

Dynamic complexity. Regarding the second property, we observe from Table 1 that
most PRA and SP methods do not allow for modelling dynamic complexities within
a system. For instance, Paté-Cornell (2012) emphasises the need for traditional PRA
methods, which often model engineered systems, to apply more holistic forms of anal-
ysis in order to address the challenge of more complex risks and their developments.
Similarly, White (1995) examines the deficiencies of PRA methods with regards to
systems thinking while Ackermann et al. (2014) and Ackermann et al. (2007) high-
light the need for a holistic and systemic approach to risk analysis to account for “risk
systemicity”. It refers to the idea that “the effect of two risks might be more than the
sum of the two individual effects” (Williams et al., 1997).

While there is no agreement on the definition of a dynamic and complex system (see
Ladyman et al. (2013) for a discussion), a commonly mentioned characteristic is non-
linearity due to reinforcing (or vicious) feedback loops. Their identification is hence
crucial when analysing a complex system. Various methods, summarised under the um-
brella of systems thinking in PSMs/ “soft OR” do this to try understanding a system
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holistically rather than through its separate parts. Common methods that identify
feedback loops by graphical representation of influences are Causal Loop Diagrams
(Morecroft, 2010) and Cognitive Maps (Ackermann and Eden, 2006; Poplawska et al.,
2017). Both methods allow for a participatory approach to modelling complex prob-
lems (Cunha and Morais, 2016) and have been used in mixed-method approaches for
analysing structures of systems (Lowe et al., 2016).

Inter-system propagation. Related to understanding dynamic and complex sys-
tems is the assessment of common cause propagation through distinct (sub-)systems.
This is the third property and it is not clear how most methods distinguish between
(what is perceived /defined as) different (sub-)systems (see Table 1). It draws on a fun-
damental aspect of systems thinking in PSM, the idea of a system boundary (Church-
man, 1970). For PSMs, identifying what lies inside a system and hence which factors
are included in a model requires experience and judgement. This is why a modelling
process is usually iterative and circular rather than linear (Morecroft, 2010). Once
a first model version is constructed, experts might refine the model by re-assessing
which factors to include (or exclude) based on a reflective understanding. Emphasis-
ing the importance of the circular modelling process and the judgemental nature of a
model boundary is in agreement with Midgley (1992) who discusses the definition of
a system’s boundary from the viewpoint of Critical System Heuristics (Ulrich, 2003).
This is a framework for participatory and reflective practice on boundary judgements
which requires to consider critically what a system includes and to examine it from
multiple perspectives through a checklist/question-based approach. More generally,
this is related to the issue of infinite regress when modelling (French, 1995), for which
Phillips (1984) introduced the term of a requisite model that results from a circular
and interactive modelling process.

In order to better understand the link between distinct (sub-)systems, i.e. capture
how trigger conditions propagate through them, a bow-tie approach is applicable. In
PRA, models with a bow-tie structure are used to assess how a hazard is caused by
threats and at the same time is the cause of consequences (Ale et al., 2006). While this
can be applied within a single system, it can be extended for hazards across different
(sub-)systems.

5. Our method for mapping conditional scenarios

After having examined the applicability of existing methods for our desiderata and by
that identified the main features of existing methods that comply with our desider-
ata, we now introduce our method which synthesizes specific elements of some of the
methods discussed in Section 4 for our purpose of mapping conditional scenarios for
(tail) dependence elicitation.

5.1. Overview of the conditional scenario mapping process

For mapping conditional scenarios, we propose an iterative process which is facilitated
with each expert individually. The resulting scenarios are shared only in the final step
of knowledge sharing. Figure 4 provides an overview of the overall mapping process
and its individual parts.

In the first step, the facilitator ensures the expert’s familiarity with the task and set-
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up. The facilitator introduces and explains the different steps of the mapping process
together with the tasks needed at each of them. Further, common expert judgement
formalities, such as confidentiality of personal information and the usage of the assess-
ment and scenario mapping results, are clarified.

In the second step, the expert is introduced to the first variable of interest, X, that
of the unconditional distribution. This usually involves clarifying the marginal distri-
bution either specified by data or a previous elicitation. In both cases it is important
the expert is in agreement with X’s distribution. Then, we (as facilitator) introduce
the expert to the consequence of the unconditional scenario, x;, which states that the
unconditional distribution is above or below a certain percentile, and ensure that the
expert is clear with its interpretation. Further, we clarify and emphasise the specified
time frame in which scenarios can lie. Note, we regard our method more suitable for
shorter rather than longer time frames, especially whenever the focus is on tail depen-
dencies which might be not recognisable for events too far into the future.

In step three, the expert is given time to brainstorm and note down the different rea-
sons of why the variable of interest can lie above or below the specified percentile. We
use the word “reason” here as this part of the process is unstructured and an expert
might express these reasons in any form. For example, they might mention specific key
words or give a narrative. In both cases, the facilitator should take notes if the expert
does not do so herself. Note, this step employs backward logic by reasoning from a
specific consequence to potential causes.

Fourth, the facilitator classifies (in agreement with the expert) the reasons, identified
in the previous step, into being either enabling conditions or trigger conditions. Verbal
conventions used for the classification and distinguishing the two event types are:

Trigger conditions. Remember, a trigger condition is a plausible initiator of a sce-
nario contained in the current state of the world and it may or may not be (fully)
observable. For clarification we might add words like “start”, “outbreak”, “attack”,
“eruption”, “shock” and so on. For example, “disease outbreak”, “terrorist attack”,
“yolcanic eruption” or “oil price shock”.

For observable trigger conditions, it is possible to neglect any preceding events as we
condition on the them knowingly. However, for trigger conditions that are only partly
observable, we need to include immediate preceding events (which led to the trigger
condition) for ensuring a richer set of scenarios. For instance, suppose that an expert
identified “oil price shock” as a trigger condition. In this case, the facilitator might
have to clarify whether this is due to geo-political risks involving OPEC countries
or due to a change in usage of alternative energy sources, as for both versions, very
different scenarios can unfold in the future.

Another remark on correctly identifying a trigger condition is that experts cannot
position it into the future. If this occurs, it is important that the facilitator supports
the expert in re-considering why such an event will happen in future (as a response to
another event) in order to identify its corresponding trigger condition in the current
state of the world.

Lastly, note that some trigger conditions (such as the previous examples) are happen-
ing in a short time. Other trigger conditions are characterised by a longer development
of an event. For these, it might be helpful to insert words like “development”, e.g. “de-
velopment of (long lasting) rain showers” as a trigger condition for a certain flood
severity rather than “rain start”.
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Enabling conditions. Complementary to trigger conditions, an expert should also
identify enabling conditions. Remember, these follow from the trigger conditions and
capture evolving trends/changes in a system based on the conditions and responses
that need to be in place for a trigger condition to reach the scenario’s consequence.
For that they might be labelled as “higher” /“lower” for classification and clarification,
e.g. “lower economic growth”, “higher risk of infection” or “higher migration”.

The categorisation into trigger conditions and enabling conditions is essential for map-
ping conditional scenarios from the current unconditional ones as shown in the follow-
ing steps.

In the fifth step of the process, experts determine the links between trigger conditions
and enabling conditions in order to map out the path to the final enabling conse-
quence entailing the specified consequence. This part makes use of cognitive mapping
and causal loop diagram methods as we can identify feedback loops and the overall
interconnectivity of the events. Links are set according to an expert’s belief while
we omit the assignment of polarities as these are already captured in the labelling
of enabling conditions. Further, this step serves as a robustness test for the enabling
conditions as experts might change their labelling based on the links. Testing robust-
ness in graphical models is commonly embedded in the modelling process (Lane, 2000;
Montibeller and Belton, 2006). This part can be supported by mapping software to
allow for a direct visualisation of the unfolding scenarios. Once an expert is satisfied
with the resulting set of unconditional scenarios, the final picture can be captured.
Next (in step siz), the expert maps how (and if at all) the trigger conditions that
are relevant for the unconditional distribution propagate in the conditional one. For
that, we simply import the previous trigger conditions into the conditional scenario
space of Y| X. Then, an expert identifies the necessary enabling conditions and links
(in forward logic) from the imported trigger conditions with respect to the specified
aspect and time frame for the conditional scenario.

Now, an expert has a thorough understanding of how both variables of interest are
affected by the same trigger conditions and can proceed with the quantitative assess-
ment in the form introduced earlier.

Finally, the last step of the process allows for (anonymously) sharing experts’ scenar-
ios and letting them change the quantitative assessments based on the other experts’
scenarios if desired.

By first facilitating the scenario mapping sessions with experts individually, before
providing each expert with the scenarios of other experts, this process shows similari-
ties with elicitation processes, such as Delphi (Rowe and Wright, 2001). A difference
is however that we do not seek consensus. Rather, our process builds on findings that
the accuracy of individual assessments improves upon receiving the reasoning and
rationales other expert’s judgements (Wintle et al., 2013; Yaniv and Choshen-Hillel,
2012). An expert judgement process for univariate quantities which encourages a sec-
ond round of assessments after individual assessments have been shared and discussed
with other experts is the IDEA protocol (Hanea et al., 2017, 2018). We similarly aim
for assessment improvements by sharing each expert’s scenario maps among all experts
and then offering to adjust assessments.

The overall process of mapping scenarios is repeated for all percentiles of interest.
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6. Illustrative case-study: Assessing dependence for risk management in
the UK Higher Education sector

The higher education (HE) sector in the United Kingdom (UK) has been frequently
of interest for applying operational research techniques, mainly for problems of perfor-
mance measurement and resource allocation (DeWitte and Lépez-Torres, 2017; Johnes,
2015; Mayston, 2003). In the context of the latter, it is crucial to analyse risk in this
sector. However, little experience is available for that. This is the case, even though
the general management of HE in the UK has been extensively studied and is well-
understood (HEFCE, 2001, 2005).

As factors that might pose a risk to an HE institution, HEFCE (2005) outlines variable
tuition fees, increasing competition and changing students’ expectations, an increased
exposure to and reliance on overseas markets, large investments in infrastructures to
facilitate institutional expansion as well as potential loss of market share due to new
technologies. Further, Altbach and Knight (2007) view tuition fee income as a main
driver for internationalisation whereas some uncertainties affecting its development
are political realities together with national security concerns, such as changing visa
requirements in the face of international terrorism, government policies influencing the
cost of studies, the potential expansion of domestic capacity for sending countries to
meet education demands, the increasing importance of English as lingua franca, the
alignment and accreditation of degrees and the future impact of e-learning offerings.

In order to better understand such complex uncertainties, our scenario mapping
method has been applied in a dependence assessment as part of a risk analysis that
supports decision-makers in charge of managing the postgraduate taught course port-
folio at the authors’ home institution. The dependencies assessed and mapped are
between the tuition fee income of the established MSc Business Analysis and Consult-
ing (BAC) course and the newly introduced MSc Data Science course within the next
four years.

6.1. Background: elicitation of marginal distributions

Before presenting the dependence elicitation together with the application of our sce-
nario mapping method, we briefly outline how the marginal distributions for that have
been elicited. This was necessary as these are predictions, hence no other data exist.
The full elicitation protocol with both elicitations and each expert’s scenarios can be
found in Werner (2017).

In the elicitation, in total five experts, who are in charge of managing postgraduate
taught courses and implementing the new course, MSc Data Science, participated. The
variables of interest are defined as the generated income from each course through tu-
ition fees in 2020/21. For the marginal distributions, we used a common method for
eliciting univariate distributions, the Classical method (Cooke, 1991; Quigley et al.,
2018). For that, experts quantify their uncertainty for the variables of interest and
calibration variables (also known as seed questions). For the latter, the true values are
known to the facilitator but unknown to the experts. They allow for combining the ex-
perts’ assessments after being validated against empirical data. Experts are treated as
statistical hypotheses and combined as to maximise the statistical accuracy and infor-
mativeness of the combined assessment (for details see the above references). In total,
we elicited ten calibration questions on the financial performance of the (existing) MSc
BAC, the student population in this courses as well as the university student popu-
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Figure 5. Exemplary calibration question.

lation and the expected future employment data for data scientists. Figure 5 shows
exemplary the assessment for one of the calibration questions:

“What was the percentage of oversea students for the MSc BAC in 2015/16%”

The experts’ assessments (blue) and weighted combinations (red) are shown to-
gether with the true value which is given by the vertical line. The “DM Global” is the
combined assessment according to the Classical method and the “DM Equal” is the
equal-weighting combination, in which every expert receives the same weighting.
From the calibration questions, a main outcome is that the combinations with the
Classical method and the equal-weighting combinations had similar mean values while
the former has been consistently more informative, i.e. the 5% and 95% percentiles
were closer to the mean and the overall distribution less spread out. This is also shown
in the combination of the target questions, variables of interest (target questions):

(1) “For the academic year 2020/2021, i.e. in 4 years from now, what will be the
generated income from the MSc Business Analysis and Consulting?”

(2) “For the academic year 2020/2021, i.e. in 4 years from now, what is the gener-
ated income form the MSc Data Science (reminder: this course start from next
year onwards)?”

The corresponding resulting distributions are shown in Figure 6.

6.2. Dependence elicitation and conditional scenario mapping

After having assessed the marginal distributions assessed, we then mapped the con-
ditional scenarios for the variables of interest with each expert before eliciting their
dependence through the following target questions?:

2The experts were given as well the corresponding monetary values for the specific percentiles by the facilitator.

18



TO1: Income Distribution - MSc BAC 2020/21

DM Global
DM Equal
Expert 5
Expert 4
Expert 3
Expert 2

Expert 1

929000

887000

254000

1600000

1700000

Qzg”

Qs= -

- Qg

T
500000

T
1000000

T
1500000

Qutcome: Quantiles

TO2: Income Distribution - MSc Data Science 2020/21

T
2000000

DM Global
DM Equali3
Expert 5
Expert 4
Expert 3
Expert 2

Expert 1

923000
402000

655000
000 - + +

1600000

2210000

Qsp”

Qs

Qgs™

0 500000

T T
1000000

Figure 6. Assessment results for

T
1500000

T T
2000000 2500000

QOutcome: Quantiles

variables of interest of marginal distributions.

19

T
3000000



(1) “Given that the generated income of the MSc BAC is below its median in the
academic year 2020/21, what is the probability that the MSc Data Science is also
below its median?”

(2) “Given that the generated income of the MSc BAC is below its 5% percentile in
the academic year 2020/21, what is the probability that the MSc Data Science is
also below its 5% percentile?”

We facilitated the mapping of the unconditional and conditional scenarios for being

below the median first (with the process of Section 5), then repeated the same process
for being lower than the 5% percentile. Figures 7 and 8 show the unconditional and
conditional scenarios for the former (50% percentile) of one of the experts that were
elaborated within approximately 20 minutes.
As we can see, for the 50% percentile the expert believes that most trigger conditions
of the unconditional scenarios will affect the conditional distribution similarly. This
is due to most trigger conditions being on changes affecting HE in UK (and even
globally) as a whole. A slight difference is the future demand of MSc Data Science
graduates (in particular) due to a more important data science market. As such, the
expert considers MSc BAC students to be less attractive in an (then) established
data science job market in which certain technical abilities (added from elicitation
protocol: such as programming and more profound statistical, mathematical modelling
and OR knowledge) are desired by employers. This is on the other hand not a trigger
condition for the conditional scenarios as the MSc Data Science offers these skill. For
the 5% percentile, this expert considers the trigger conditions, which are part of the
unconditional scenarios, to have the same impact on the conditional distribution. In
other words, once the income generated from tuition fees by the MSc BAC is below a
certain threshold, the scenarios must be relevant on a more global level, so that the
MSc Data Science will be affected similarly. Most experts’ scenarios and assessments
consider such a potential tail dependence to be present in the course portfolio as they
view the risk of being below the 5% percentile as a result of events that affect the
UK HE sector more broadly rather than the different courses individually. Due to
such similar beliefs, no expert changed her/his assessment after reviewing the other
experts’ scenarios in the last round of the process (Figure 4).

As a result, when aggregating the experts’ assessments, both, the equal weighting
combination as well as the performance-based one (based on the statistical accuracy
of experts for the marginal distributions), indicate the fit of a tail dependent copula.
Figure 9 shows how both combinations fit well with a Clayton and Survival Joe copula
of rank correlation of 0.55). In contrast, tail independent copulas, such as the Gaussian
one, do not fit well, even when altering the rank correlation values. As mentioned in
Section 2 this is has been a pragmatic way of eliciting dependence and distinguish
between some main parametric copulas.

6.3. Discussion of our scenario mapping method in the case-study

Before concluding the overall paper, we briefly reflect on the scenario mapping
method’s application in the illustrative case-study. While this discussion is based on
only one case-study and hence the below points are not necessarily generalisable, they
at least indicate how the method has performed when used with experts in a real world
risk analysis context.

In the introduction, we outlined that structuring experts’ judgement prior to a quan-
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Figure 9. Fitting parametric copula forms to combined assessments (rank correlation=0.55).

titative assessment allows for (1) increasing confidence in the quantitative assessment,
(2) mitigating potential cognitive fallacies and (3) supporting transparency together
with reproducibility of the expert judgement study.

With respect to (1), increasing confidence for the later quantitative assessment, the
experts’ feedback shows that they regard our method as helpful for obtaining a bet-
ter understanding of the dependence relationships and hence have more confidence to
assess dependence quantitatively after using it. This is attributed to the possibility of
expressing their thinking in natural language whereas the classification into the differ-
ent event types is regarded as intuitive. Further, the decomposition of the dependence
relationships, which allows for seeing how the trigger conditions that are elaborated in
backwards logic (for the unconditional distribution) are relevant when thinking about
the conditional distribution, is appreciated by the experts as a structured way to think
about complex scenarios by regarding the influencing factors of dependence relation-
ships separately.

With regards to (2), the mitigation of biases, the case-study results indicate that
two main cognitive fallacies for dependence assessment can be mitigated through our
method. For an overview on the prevalent heuristics and biases in dependence assess-
ment, see Werner et al. (2018a). Further, it is indicated that our method accounts for
findings from the area of descriptive decision making research on assessing probabili-
ties of extreme (low-probability) events.

When eliciting dependence in conditional form, a common fallacy is the confusion of
the inverse (Dawes, 1988; Hastie and Dawes, 2001). A conditional probability, such as
P(Y|X), is confused with P(XY"). One explanation states that this fallacy is related
to the better known representativeness heuristic (Kahneman and Frederick, 2002) as
people assess how similar or representative characteristics of X are for Y (rather than
the conditional probability). Another explanation refers to an incorrect perception of
a causal relationship between X and Y, for instance due to a reversed temporal or-
der of X and Y (Bechlivanidis and Lagnado, 2013; Einhorn and Hogarth, 1986). Our
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method decomposes both variables of interest and by doing so, it challenges the repre-
sentativeness heuristic through alternative scenarios and clarifies the perceived causal
and temporal orders. Several experts fed back that our method helped to consider
alternative scenarios and that the order of the conditional variables is clarified.

In other cases, people confuse conditional and joint probabilities (Einhorn and Hogarth,
1986). Most explanations attribute this confusion to linguistic ambiguities introduced
by describing conditional dependence relationships through “given that” or “if” (Ein-
horn and Hogarth, 1986). Based on anecdotal evidence, our method helped one of the
experts to clarify the meaning of “given that” (i.e. that we elicit conditional proba-
bilities in this case-study) when thinking out loud about the probability of a “perfect
storm” and it being a joint probability relationship. As such, the expert first thought
about the probability of a “perfect storm” event happening as being extremely small
before realising that she is assessing a conditional probability which was then assessed
higher after reflecting on her scenario map.

When eliciting tail dependencies (i.e. joint extreme events), there is indication that
the mapping of unconditional scenarios with the backwards logic allows for mitigating
some main potential cognitive fallacies. While the advantages of applying backwards
logic are also discussed in Wright and Goodwin (2009), our experts confirmed that
this way of reasoning helped them to consider the necessary scenarios for the extreme
final, enabling conditions entailing the consequence.

In this context, a first fallacy is frame blindness, i.e. forecasting the wrong event. With
backwards logic, experts elaborate scenarios by starting from the consequence, so that
they will not explore scenarios that are not relevant.

Another challenge is that low probability events (in the tail of a distribution) by def-
inition lack a reference class for similar events. Therefore, we cannot assess whether
experts have well-calibrated assessments or are (for example) frequently overconfident.
Nevertheless, by seeing which experts’ scenarios are coherent and plausible we can un-
derstand better with which assessment experts might struggle and further experts can
explore how final enabling condition entailing the specified consequence can (or can-
not) be reached from the current state of the world and if not discard them. In that
way, the idea of coherent and plausible scenarios provided our experts with a guidance
for structuring the importance of future events which are necessary for an extreme
scenario’s consequence to occur.

For (3), ensuring transparency of the quantitative assessment results, we found the
graphical representation of the experts’ rationales as crucial. Experts’ scenario maps
can be associated with later assessments which makes the outcome of the elicitation
more transparent for anyone not involved in it. As such, the quantitative assessments
of this elicitation study can be easily compared with the corresponding scenario maps.

7. Conclusions

In this paper, we have proposed a scenario mapping method for structuring experts’
knowledge about dependence relationships prior to a quantitative assessment. This is
important due to the high cognitive complexity that experts face when assessing joint
distributions. The aim is to offer a flexible method that can be used together with var-
ious dependence models, including ones for tail dependencies. Structured approaches
for supporting experts in expressing their rationale have already been recommended
for eliciting univariate uncertainty (Cooke and Goossens, 2004, 1999). For multivariate
uncertainty however, no methods were available before the one proposed in this paper
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according to the authors’ knowledge. As shown in Section 4, various methods proposed
for similar purposes, such as scenario planning and qualitative risk assessment, can-
not be used for structuring conditional scenarios (prior to dependence assessments)
as they do not consider dependent scenarios/events or extreme events. Nevertheless,
some of their elements have been integrated in our method. While we already discussed
achievements of the method in Section 6.3 when reflecting on the case-study, in this
conclusion we focus on the method’s current limitations and future research.

In this regard, a first remark is that more applications in case-studies are desirable
in order to gather more insight on the suitability of our scenario mapping method’s
in other real world contexts. This will show in particular whether other experts (and
more specifically experts with different backgrounds/practitioners in different indus-
tries) regard it as supportive and whether the previous findings (from Section 6) can
be confirmed and even generalized after many more applications. Further, more ap-
plications in case-studies allow for a better understanding of the trade-off between
intuitiveness and detail of the resulting scenario maps. For example Haimes (2009), on
whom our scenario definition is partly based, also discusses the importance of consid-
ering resilience in a system-based definition of risk. While resilience can be included
in the current method, in future it might be of interest to explicitly incorporate events
that make a system resilient, e.g. as a particular type of enabling conditions. This can
then either be considered by experts as another, additional event type within their
own conditional scenarios or different experts could assess resilience in that way for
scenarios which are not their own - in that way taking the position of a devils-advocate.
Further developing the method with the objective of becoming more intuitive and of-
fering more detailed scenarios can be achieved by adding more scenario components
or at least do more research on alternative components.

In addition to other event types/components and modified roles of the experts, an-
other way of enhancing our method worth exploring in future applications is by more
research on a suitable time frame. We mentioned previously that we consider this
method as being more suitable for shorter time periods. However, for which time frame
the method becomes unreliable is not well-explored. This research question might be
combined with the one on alternative scenario component types by introducing com-
ponents which are explicit for specific time steps into the future.

Lastly, additional research is of interest on the method’s performance for extreme
conditional scenarios, i.e. tail dependencies. While supporting experts in better un-
derstanding tail dependencies has been one of the main motivations for developing our
method, some might argue that such extreme (joint) events cannot be mapped nor
assessed sensibly. Similar to the difficulty of calibrating experts’ performance on low-
probability quantitative judgements, the corresponding scenario maps are also difficult
to validate. In particular, one can argue about the plausibility of scenarios when they
are on extreme events. Therefore, Wright and Goodwin (2009), the only scenario plan-
ning method focussing on extreme events, argues that an extreme scenario is plausible
if it can be reached from the current state of the world. Similarly, it is essential for the
future development of our method to include steps that challenge scenarios’ plausibil-
ity in the feedback round when sharing the maps with the other experts. Currently
experts have only used this part of the process for adjusting one’s own assessments
if desired. In that context, it is also important to further develop the method in line
with new findings of descriptive research on assessing probabilities of extreme events
as discussed in the previous section. This includes future research on complimentary
ways to ensuring plausible scenarios.

Considering the above points in more case-study research supports the future devel-
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opment of the method as an important step for dependence modelling.
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