
ARTICLE TEMPLATE

An inventory model for nonperishable items with warehouse mode

selection and partial backlogging under trapezoidal-type demand

Chunming Xua,*, Daozhi Zhaob, Jie Minc and Jiaqin Haob

a College of Science, Tianjin University of Technology, Tianjin, P. R. China;
b College of Management and Economics, Tianjin University, Tianjin, P. R. China;
c School of Mathematics and physics, Anhui Jianzhu University, Hefei, P. R. China

ARTICLE HISTORY

Compiled December 15, 2019

ABSTRACT
Considering a nonperishable product which may be stored either in an own ware-
house or in both the own and the rented warehouse, this paper deals with the
ordering decisions under a generalized trapezoidal-type demand rate in an inven-
tory system. Shortages are allowed and the unsatisfied demand is assumed to be
partially backlogged. Furthermore, the existence and uniqueness of the optimal so-
lution to each warehouse mode is proved and used in an easy-to-use algorithm, and
a decision-making theorem for measuring whether to adopt a rented warehouse is
developed. Finally, numerical examples and a case study are presented to illustrate
the feasibility and efficiency of the proposed model and algorithm. The results show
that, the storage capacity of the own warehouse and the unit rental cost have re-
markable impact on determining whether to use the rented warehouse. When both
the unit rental cost and the unit opportunity cost are higher in the external market,
the profitability of the inventory system mainly relies on the storage capacity of the
own warehouse. Meanwhile, the optimal profit performance is sensitive to the selling
price and the purchasing cost, and the optimal rented warehouse’s ordering quantity
is sensitive to the order cycle length. But overall, the proposed model is basically
robust.

KEYWORDS
Inventory; warehouse mode selection; trapezoidal-type demand; time-varying;
two-warehouse; partial backlogging

1. Introduction

In traditional deterministic inventory replenishment issues, the market demand for
items is generally considered to be either increasing or decreasing over time. However,
the demand for items may not always continue to keep in a certain state within the
inventory cycle in practice, since global business competition and new information
technology advances have dramatically shortened the lifespan of products in today’s
market environment. It was observed by Micheal, Rochford, & Wotruba (2013) and
Cheng & Wang (2009) that in some industries such as apparel, electronics and food, the
demand for seasonal or fashion products increases with time initially when potential
consumers are attracted by the style and quality, then holds steady when this product
type is accepted in the market, and finally decreases with time. Later, it was also
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found by Lin (2013) and Glock & Grosse (2015) that the vast majority of products in
their life cycle basically follow this kind of time-varying demand characteristic, which
is referred to the trapezoidal-type demand pattern. The trapezoidal-type time-varying
demand is more general, since it can capture some common demand patterns such
as increasing demand, constant demand, decreasing demand and ramp-type demand.
Thus, inventory models with the trapezoidal-type time-varying demand have attracted
much attention from academica in recent years (Cheng, Zhang, & Wang, 2011; Lin,
2013; N. Shah, Shah, & Patel, 2015; N. Singh, Vaish, & Singh, 2010; Uthayakumar &
Rameswari, 2012).

It is assumed that the inventory system has a full storage space in the aforemen-
tioned researches adopting the trapezoidal-type demand. However, the retailer’s ware-
house for holding items has only a limited capacity in reality, due to some restrictions
such as capital, land investment and labor input. Usually, in order to take full advan-
tage of attractive price discounts provided on bulk purchasing of the product or in
anticipation of growth in the customer’s demand over time, retailers have incentives
to order more. Under a limited warehouse capacity, they often face two different ware-
house modes: the single warehouse mode and the two-warehouse mode. While they
may only use their own warehouse to keep items in the single warehouse mode, retail-
ers in the two-warehouse mode may employ an extra warehouse to hold the surplus
items over the capacity of their own warehouse (Hartley, 1976; Yang, 2004; Lee &
Hsu, 2009). As observed in China, with the rapid development of the third party stor-
age industries, this renting trade becomes a common phenomenon in today’s business
practice (Alibaba, 2014). However, the above two modes often make the retailers place
in a dilemma position. On one hand, the single warehouse mode can save operation
costs of the inventory system, but it may lead to the risk of shortage and eventually
lose potential customers (Abad, 1996; Verhoef & Sloot, 2010; Ghosh, 2011). On the
other hand, although the two-warehouse mode may avoid some shortages, it may not
be profitable for them to employ another warehouse, since the higher rent incurred
by employing warehouse will affect the performance of the inventory system (Hartley,
1976). As far as we know, there is no research about inventory models that focused on
the warehouse mode selection issues with the trapezoidal-type demand from academia
until now. This paper aims to address this gap in the field of inventory researches on
the trapezoidal-type demand by exploring the following questions:

1. Facing the trapezoidal-type demand products, how do the retailers make trade-
offs between the single warehouse mode and the two-warehouse mode?

2. What’s more, if the two-warehouse mode is adopted and shortages are also al-
lowed, how many orders should be allocated to the rented warehouse?

3. What are the impacts of some key inventory characteristics such as the holding
cost of the own warehouse, the own warehouse’s capacity, and the holding cost of the
rented warehouse on the performance of the inventory system?

To answer these questions, in a fixed inventory cycle, this paper will focus on a
new inventory model with warehouse mode selection for nonperishable items under
a general trapezoidal-type demand, in which shortages are allowed and unsatisfied
demands are assumed to be partially backlogged during the stock-out period. The
analysis aims to gain the optimal replenishment policy and the warehouse mode. This
paper will also examine the effects of trapezoidal-type demand, warehouse mode and
shortages on the downstream retailer’s optimal solution, and reveal how to balance the
relations between the shortages and the rented orders when some exogenous inventory
parameters vary.

The contribution of this paper mainly includes the following three aspects. First,
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theoretically, this study makes the first attempt to incorporate the warehouse mod-
e selection into inventory issues with trapezoidal-type time-varying demand, and an
inventory decision model is developed for measuring whether or not to adopt a rent-
ed warehouse in the inventory system. Second, the existence and uniqueness of the
optimal solutions to the proposed models are proved, and then the corresponding
easy-to-use algorithms are presented for searching the optimal solutions. Third, the
utilization of a generalized time-varying demand rate and warehouse mode selection
makes the application scope of the models broader. For example, by setting the relevant
model parameters, the proposed models can be applied to some particular inventory
circumstances such as linear demand, exponential demand, ramp-type demand, single
warehouse, two-warehouse, no storage limit, no shortage, full backlogging, and so on.

The remainder of this paper is organized as follows. The related literature is re-
viewed in Section 2. In Section 3, the model descriptions, assumptions, and notations
used throughout this study are listed. Section 4 explores inventory issues under two
different warehouse modes, and then provides the optimal replenishment policies and
gives the corresponding algorithm for each warehouse mode. In section 5, some numer-
ical examples and sensitivity analysis are presented to illustrate the proposed model.
Section 6 summarizes our conclusions and discusses future directions. All proofs are
presented in the online appendix.

2. Literature review

To highlight our contribution, we mainly review the following three streams of in-
ventory literature relevant to this article: (1) trapezoidal-type demand in inventory
research, (2) inventory system with shortages consideration, and (3) two-warehouse
inventory research.

2.1. Trapezoidal-type demand in inventory research

In today’s time-based business competition, the demand for products may be time-
varying rather than only constant. Concerning inventory research on time-varying
demand, the study on linear time-varying demand is pioneered by Donaldson (1977).
Subsequent time-varying demand types include power demand (San-José, Sicilia, &
Alcaide-López-de-Pablo, 2018), exponential demand (Datta & Pal, 1988), quadratic
demand (Sarkar, Ghosh, & Chaudhuri, 2012), ramp type demand (Skouri, Konstan-
taras, Papachristos, & Ganas, 2009), and trapezoidal-type demand (Micheal et al.,
2013). Among them, trapezoidal-type time-varying demand can fully describe the de-
mand trajectory of all-life-cycle products in the retail market (Cheng & Wang, 2009).
As a result, in recent years, many researchers have devoted considerable attention to
the inventory replenishment policies for items with the trapezoidal-type demand rate.
For example, Panda, Senapati, & Basu (2008) firstly developed an inventory model
in a finite time horizon, in which the demand rate for a perishable season product
is assumed to follow a time-dependent function, and an optimal order policy is de-
rived by minimizing the total inventory system cost in the entire inventory cycle.
Thereafter, under the assumption that all the replenishment cycles are limited to be
of a fixed length, Cheng & Wang (2009) generalized the work of Hill (1995) to an
inventory system with the trapezoidal-type demand rate, which is a piecewise linear
function of time, and then they discussed an inventory replenishment policy. N. Singh,
et al. (2010) also analyzed an EOQ model by considering that the trapezoidal-type
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demand rate is a piecewise linear time-varying function. However, they mainly focused
on the effects of the random deterioration rate and trade credit policy on the inventory
performance. Furthermore, under the manufacturing inventory environment, an eco-
nomic production quantity (EPQ) model for trapezoidal-type demand with defective
items was established by Uthayakumar & Rameswari (2012), who studied the effects
of production rate and reliability on the imperfect manufacturing inventory system.
Very recently, considering that the supplier offers two different choices such as price
discount and credit period, N. Shah et al. (2015) investigated an integrated supplier-
buyer inventory issue with price-sensitive demand, in which a joint average profit is
maximized to gain the optimal procurement quantity, procurement price, and number
of transfers from the upstream supplier. Under the condition of the time-varying dete-
rioration rate and partial backlogging, Wu, Skouri, Teng, & Hu (2016) investigated two
inventory systems beginning with and without shortages by adopting the theory of the
net present value, in which the total profit is maximized to gain the optimal inventory
order policies. The aforementioned researches have incorporated the trapezoidal-type
demand into inventory issues, and they discussed the effect of this demand-type on the
inventory performance in own warehouse frame as well. However, most of them failed
to investigate the effect of the rented warehouse on inventory replenishment policies
and did not consider warehouse mode selection under trapezoidal-type demand.

2.2. Inventory system with the shortages consideration

The shortages consideration in the inventory research is another stream that makes
a significant impact on the performance of the inventory system. In the past three
decades, many literatures published in the journal have investigated inventory issues
with shortages during the finite planning horizon. For instance, some classical issues
of inventory shortages start with an instantaneous replenishment and finish with a
zero inventory (Teng, Chern, & Yang, 1997; Yang, Teng, & Chern, 2001; Dye & Teng,
2006). The previous literatures on inventory shortages also start with an instantaneous
replenishment but end with shortages (Zhou, Lau, & Yang, 2003; Dye, 2007; Abad,
2008). More recently, the inventory issues with shortages have been further extended
to the supply chain environment ( Roy, Sana, & Chaudhuri, 2012, 2018; Eduardo &
Sana, 2014; Sana, 2016; Li, Liu, Teng, & Tsao, 2019).

However, most of them often assumed that the shortages are either completely lost
or completely backlogged during the stock-out period. But in reality, some loyal po-
tential customers are willing to wait for these shortages if the wait time is longer,
others become more impatient and go elsewhere. In the all-units discount retail con-
text, Taleizadeh & Pentico (2014) studied a model with a constant partial backlogging
rate. Later, using the vendor-managed inventory policy, Taleizadeh (2017) explored t-
wo models for evaporating chemical raw materials in the supply chain frame. Abad
(2001) also investigated the pricing and lot-sizing inventory problem for perishable
items with a general partial backlogging rate. Dye (2007) developed a determinis-
tic inventory model under a time-dependent backlogging rate. More recently, some
related literatures focused on this inventory type (Ghosh, 2011; Salehi, Taleizadeh,
& Tavakkoli-Moghaddam, 2016; Taleizadeh, Khanbaglo, & Eduardo, 2016; Lashgari,
Taleizadeh, & Sadjadi, 2017; Xu, Bisi, & Dada, 2017; Taleizadeh (2018); Khan, Shaikh,
Panda, Konstantaras, & Taleizadeh, 2019). However, none of them investigated the
two-warehouse inventory scenario for non-perishable items with the trapezoidal-type
time-varying demand.
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2.3. Two-warehouse inventory research

On the warehouse mode selection, the first concern behind the efficient inventory re-
plenishment is the trade-off between the storage space of the own warehouse and the
order quantity when the rental cost is included in the performance of the inventory
system. In general, as upstream suppliers provide seasonal products or attractive price
discounts for bulk purchase, the downstream retailers may buy more items than can
be stored in their own warehouse (OW), and then they often choose a rented ware-
house (RW) for storing the surplus items over the capacity of the OW (Goswami &
Chaudhuri, 1992; Zhou & Yang, 2005). However, RW can offer a higher service level
as compared to OW, and thus the unit cost of holding items in the RW is much higher
than that in the OW (Hartley, 1976). For economic reasons, the goods of RW are pro-
vided firstly, and the goods stored in OW will be consumed until exhausting all in RW.
In recent years, many studies have been done in the field of the two-warehouse invento-
ry. For example, Hartley (1976) firstly discussed an inventory issue in a two-warehouse
framework. Based on a deterministic two-warehouse environment, Sarma (1987) also
studied an inventory replenishment issue with the deteriorating item. Considering the
finite replenishment rate, Pakkala & Achary (1992) analyzed the effect of the deteriora-
tion factor in their model on the optimal two-warehouse replenishment strategy. Taking
into account the linear time-varying demand, Goswami & Chaudhuri (1992) formu-
lated an EOQ model with backlogging under two-warehouse. Later, Bhunia & Maiti
(1998) also considered a two-warehouse inventory model for deteriorating items with
linear increasing demand. Yang (2004) further presented an inventory model where
each order cycle starts with shortages and ends with surplus goods, and discussed an
optimal replenishment policy with constant demand by incorporating inflation. Zhou
& Yang (2005) developed a two-warehouse inventory model with inventory-dependent
demand rate, and focused on investigating whether to employ RW. Using the theory of
the net present value in finance, a deterministic two-warehouse issue for deteriorating
items with complete shortages was investigated by Hsieh, Dye, & Ouyang (2008). Lee
& Hsu (2009) established a general two-warehouse model with a finite replenishment
rate and time-dependent demands in a finite planning horizon. More recently, Jaggi,
Khanna, & Verma (2011) considered a two-warehouse model for deteriorating items
and focused merely on the impacts of the time value of money and inflation on the
optimal inventory replenishment policy. Based on the ramp-type time-varying demand
rate, Agrawal, Banerjee, & Papachristos (2013) also investigated a two-warehouse sys-
tem problem with partial backlogging and deteriorating items. Sett, Sarkar, & Goswa-
mi (2012) studied a two-warehouse model with the quadratically increasing demand
and time-varying deterioration rate. Using the particle swarm optimisation, Bhunia,
Shaikh, & Gupta (2015) studied a deterministic problem with inflation and deteriora-
tion in a two-warehouse inventory system. Under the permissible delay in payments,
Chakraborty, Jana, & Roy (2018) explored a two-warehouse scenario with the ramp
time-varying demand rate and three-parameter Weibull distribution deterioration.

The inventory models with a warehouse mode in existing studies have been sum-
marised in Table 1. Similar to this research, Cheng et al. (2011) developed an inventory
model with partial backlogging, where the trapezoidal-type demand rate is defined as
a general time-varying function. However, it is assumed that OW’s storage space is
unlimited, only a single warehouse is considered, and warehouse mode selection is not
investigated. Agrawal & Banerjee (2011) also examined a two-warehouse issue with
ramp-type demand, where the partial backlogging is assumed to be a constant dur-
ing the stock-out period. Different from the above researches, considering the partial
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backlogging rate depends on the customer’s waiting time, this paper makes the first
attempt to integrate the warehouse mode selection into inventory ordering decisions
with a general trapezoidal-type demand rate. Furthermore, we prove the existence and
uniqueness of the optimal solutions to the two different warehouse modes. Through
numerical examples and sensitivity analysis, we explore the effects of the exogenous
inventory parameters on the system performance. Finally, a real inventory case is
presented to illustrate the applicability of the model.

3. Model descriptions

In this study, in order to formulate an inventory model for the trapezoidal-type demand
with warehouse mode selection, the inventory problem descriptions, assumptions and
notations are listed as follows.

• Inventory problem descriptions
we consider a continuous review inventory system running in finite planning

period T . Inventory replenishment is instantaneous, and lead time is zero. The
items ordered are nonperishable in the inventory. OW’s capacity is limited. The
retailers are able to forecast future customer demand and make ordering deci-
sions either via the single warehouse mode or the two-warehouse mode. Once
the inventory system starts, the items from stock are depleted due to customer
demand until the net inventory level is zero. Shortages are allowed. Consider-
ing some customers are unwilling to wait backlogged order during the stock-out
period, the unsatisfied demand will only be backlogged partially in the next
replenishment. Thus, to describe this phenomenon, the backlogging rate is de-
scribed as λ(τ) = e−δτ , where δ > 0, and τ is the unsatisfied customer’s waiting
time during the stock-out period. That is, the backlogging rate is a decreasing
function of the waiting time, which implies that, the more cumulative unsatisfied
customers in the waiting line, the more the amount of lost sales. This backlogging
rate function has been widely adopted in the literature (Abad, 1996).
• Assumptions

(1) Demand assumption: The demand rate (also known as Trapezoidal-
type demand) is a piecewise time-dependent function, which can be
described as

D(t) =

 a(t), 0 ≤ t ≤ µ,
d0, µ ≤ t ≤ γ,
b(t), γ ≤ t ≤ T,

where a(t) is a positive, differentiable, and increasing function of time
t ∈ [0, µ], b(t) is a positive, differentiable, and decreasing function of
time t ∈ [γ, T ], and d0 is a constant(i.e., d0 = a(µ) = b(γ)) in the in-
terval [µ, γ]. Since the above mentioned demand rate captures common
demand patterns by varying some relevant parameters, it can be also
considered as a generalized trapezoidal-type demand rate. For exam-
ple, when µ = γ = T , the demand D(t) becomes Increasing demand;
when µ = γ = 0, it reduces to Decreasing demand; when µ 6= γ,
µ = 0, and γ = T , it is Constant demand; when µ < γ = T , it
reduces to Ramp-type demand, and so on.
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(2) Assumptions related to the two-warehouse mode: The unit holding cost
in RW is greater than that in OW. The goods in RW are depleted firstly,
and the goods stored in OW will be consumed until exhausting all in
RW.

(3) In addition, the transporting time and the cost of transporting goods
from RW to OW are ignored. And meanwhile, to avoid some trivial
cases, it is assumed that the following relationship is satisfied: δτ < 1.

The following fundamental notations are used throughout the study.

• Model parameters

A the fixed cost per order;
C the purchasing cost per unit item;
p the selling price per unit item (i.e., p > C);
h the holding cost per unit item per unit time in OW;
H the holding cost per unit item per unit time in RW, and H > h;
B the backlogging cost per unit item per unit time during the shortage period;
L the opportunity cost per unit item due to lost sales;
T the fixed length of the order cycle;
W the maximal limited capacity of OW;
S1i the total quantity of lost sales for case i in the single inventory mode, where

i = 1, 2, 3;
S2j the total quantity of lost sales for case j in the two-warehouse mode, where

j = 1, 2, . . . , 5;
Ir(t) the inventory level in RW at time t;
Io(t) the inventory level in OW at time t;

• Decision variables

t1 the time point at which the inventory level of OW reaches 0 in the single
warehouse mode;

t0 the time point at which the inventory level of RW reaches 0 in the two-
warehouse mode;

T1 the time point at which the inventory level of OW reaches 0 in the two-
warehouse mode;

Q the total ordering quantity per cycle in the entire inventory system;
Qo the maximal inventory level of OW in the entire inventory system;
Qr the maximal inventory level of RW in the entire inventory system;
QB the maximal shortages in the entire inventory system;
Qo1i the maximal inventory level of OW for case i in the single warehouse mode,

where i = 1, 2, 3;
Qo2j the maximal inventory level of OW for case j in the two-warehouse mode,

where j = 1, 2, . . . , 5;
Qrj the maximal inventory level of RW for case j in the two-warehouse mode,

where j = 1, 2, . . . , 5;
QB1i the maximal shortages for case i in the single warehouse mode, where

i = 1, 2, 3;
QB2j the maximal shortages for case j in the two-warehouse mode, where j =

1, 2, . . . , 5.

• Other variables
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Π(·) the average net profit operator in the entire inventory system;
Π1(·) the average net profit operator in the single warehouse mode;
Π2(·) the average net profit operator in the two-warehouse mode.

This retail system with the above inventory characteristics could be observed in
reality. For instance, we often see some seasonal or new products displayed either in
a limited shelf space or in a rented warehouse, and this product type usually has a
short life cycle. When potential consumers are attracted by its style and quality, the
demand increases with time initially; but once the type of product is accepted, the
demand keeps steady, and finally it decreases with time till it is replaced by another
new product. This indicates that the customer demand feature can be described by the
trapezoidal time-varying function. When shortages happen, some impatient customers
will not wait for goods if there is a longer waiting line. In fact, this retail system
can be described in essential by the inventory model with the above assumptions.
Thus, inventory managers need to decide the lot size ordered in a finite planning
period in order to enhance competitiveness, and if the two-warehouse mode is adopted,
they further need to decide the maximal inventory level of RW. Therefore, facing a
trapezoidal-type product, this study will help inventory decision-makers decide how
to order and whether to adopt a two-warehouse mode.

4. Model and model analysis

In this section, we will consider the following warehouse modes based on the above
model descriptions: 1) the single warehouse mode; 2) the two-warehouse mode. To
be specific, in the single warehouse mode, we will investigate three inventory cases
based on possible values of µ, γ, t1, and T ; while in the two-warehouse mode, we will
investigate five inventory cases based on possible values of µ, γ, t0, T1, and T .1 The
decision-making problem that we need to solve is to measure whether or not to rent
warehouse. The warehouse modes are summarized as follows:

• Single warehouse mode.

∗ case 1: 0 ≤ t1 ≤ µ;
∗ case 2: µ ≤ t1 ≤ γ;
∗ case 3: γ ≤ t1 ≤ T .

• Two-warehouse mode.

∗ case 1: µ < γ ≤ t0 < T1 ≤ T ;
∗ case 2: µ ≤ t0 ≤ γ ≤ T1 ≤ T ;
∗ case 3: t0 ≤ µ < γ ≤ T1 ≤ T ;
∗ case 4: t0 ≤ µ ≤ T1 ≤ γ ≤ T ;
∗ case 5: t0 < T1 ≤ µ < γ ≤ T .

4.1. Single warehouse mode

In this subsection, we mainly consider that the initial ordering quantity does not
exceed the capacity of OW (i.e. Qo ≤ W ), i.e., there is only an OW in the inventory
system. Therefore, the inventory level of OW at any time t ∈ [0, T ] goes like this:

At the beginning of the replenishment cycle, Qo units enter the inventory system,
the current inventory level Io(t) reaches its maximum at time t = 0. Due to the effect
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of the trapezoidal-type demand, the inventory level in OW is depleted gradually in
the interval [0, t1], and it achieves zero at time t = t1. Shortages occur in the interval
[t1, T ], and the unsatisfied customer’s demand is partial backlogged at the rate of
λ(τ) = e−δ(T−t). Hence, the inventory level Io(t) at any time t ∈ [0, T ] in the OW can
be described by the following differential equations:

dIo(t)

dt
= −D(t), 0 ≤ t ≤ t1 (1)

and

dIo(t)

dt
= −e−δ(T−t)D(t), t1 ≤ t ≤ T. (2)

Based on the possible values of µ, γ, t1, and T , the following three different situations
are considered.

4.1.1. Case with 0 ≤ t1 ≤ µ

[Position of Figure 1]

As shown in Figure 1, the relationship 0 ≤ t1 ≤ µ can also be described in detail
as 0 ≤ t1 ≤ µ < γ < T . It can be observed from Figure 1 that the inventory level in
OW decreases due to the effect of the increasing demand a(t) in the interval [0, t1],
and hence, the behavior of the inventory in [0, t1] can be described by

dIo(t)

dt
= −a(t), 0 ≤ t ≤ t1. (3)

Solving Eq.(3) with the boundary condition Io(t1) = 0, we get

Io(t) =

∫ t1

t
a(x)dx, 0 ≤ t ≤ t1. (4)

In the interval [t1, T ], the depletion of inventory level happens due to the customer
demand backlogged. Thus, the behavior of the inventory in [t1, T ] can be described,
respectively, by

dIo(t)

dt
= −e−δ(T−t)a(t), t1 ≤ t ≤ µ, (5)

dIo(t)

dt
= −e−δ(T−t)d0, µ ≤ t ≤ γ, (6)

and

dIo(t)

dt
= −e−δ(T−t)b(t), γ ≤ t ≤ T. (7)

Solving Eqs.(5), (6) and (7) with the boundary conditions of Io(t1) = 0, Io(µ
−) =

Io(µ
+) and Io(γ

−) = Io(γ
+), we have
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Io(t) =

∫ t1

t
e−δ(T−x)a(x)dx, t1 ≤ t ≤ µ, (8)

Io(t) =

∫ µ

t
e−δ(T−x)d0dx−

∫ µ

t1

e−δ(T−x)a(x)dx, µ ≤ t ≤ γ, (9)

and

Io(t) =

∫ γ

t
e−δ(T−x)b(x)dx−

∫ γ

µ
e−δ(T−x)d0dx−

∫ µ

t1

e−δ(T−x)a(x)dx, γ ≤ t ≤ T, (10)

respectively.
From Eqs.(4) and (10), the ordering quantity per cycle can be computed as

Q11 = Qo11 +QB11 = Io(0)− Io(T ) =

∫ t1

0
a(x)dx+

∫ T

γ
e−δ(T−x)b(x)dx

+

∫ γ

µ
e−δ(T−x)d0dx+

∫ µ

t1

e−δ(T−x)a(x)dx. (11)

The total quantity of lost sales due to shortages in the interval [t1, T ] can be expressed
as

S11 =
∫ µ
t1

(1− e−δ(T−x))a(x)dx+
∫ γ
µ (1− e−δ(T−x))d0dx

+
∫ T
γ (1− e−δ(T−x))b(x)dx.

(12)

The related cost and revenue of the inventory system per cycle can be expressed as:
(a) The sales revenue per cycle: pQ11;
(b) The fixed set up cost per cycle: A;
(c) The purchasing cost per cycle: CQ11;

(d) The holding cost per cycle: h
∫ t1

0 Io(t)dt;

(e) The shortage cost per cycle: B
∫ T
t1
−Io(t)dt;

(f) The opportunity cost due to lost sales per cycle: LS11.
Therefore, the total profit per unit time under the condition 0 < t1 ≤ µ is deter-

mined by

Π11(t1) = 1
T {(p− C)Q11 −A− h

∫ t1
0 Io(t)dt−B

∫ T
t1
−Io(t)dt− LS11}

= 1
T {(p− C)[

∫ t1
0 a(x)dx+

∫ T
γ e−δ(T−x)b(x)dx]

+ (p− C)[
∫ γ
µ e
−δ(T−x)d0dx+

∫ µ
t1
e−δ(T−x)a(x)dx]

− A− h
∫ t1

0

∫ t1
t a(x)dxdt+B

∫ µ
t1

∫ t1
t a(x)dxdt

+ B
∫ γ
µ [
∫ µ
t e
−δ(T−x)d0dx−

∫ µ
t1
e−δ(T−x)a(x)dx]dt

+ B
∫ T
γ [

∫ γ
t e
−δ(T−x)b(x)dx−

∫ γ
µ e
−δ(T−x)d0dx−

∫ µ
t1
e−δ(T−x)a(x)dx]dt

− L[
∫ µ
t1

(1− e−δ(T−x))a(x)dx+
∫ γ
µ (1− e−δ(T−x))d0dx]

+ L
∫ T
γ (1− e−δ(T−x))b(x)dx}.

(13)
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4.1.2. Cases with µ ≤ t1 ≤ γ and γ ≤ t1 ≤ T
Similar to case with 0 ≤ t1 ≤ µ, the total average profits for cases with µ ≤ t1 ≤ γ

and γ ≤ t1 ≤ T are obtained, respectively, by

Π12(t1) = 1
T {(p− C)Q12 −A− h

∫ t1
0 Io(t)dt−B

∫ T
t1
−Io(t)dt− LS12}

= 1
T {(p− C)[

∫ µ
0 a(x)dx+ d0(t1 − µ) +

∫ T
γ e−δ(T−x)b(x)dx+

∫ γ
t1
e−δ(T−x)d0dx]

− A− h
∫ µ

0 [
∫ µ
t a(x)dx+ d0(t1 − µ)]dt− h

∫ t1
µ [d0(t1 − t)]dt

+ B
∫ γ
t1

∫ t1
t e−δ(T−x)d0dxdt+B

∫ T
γ [

∫ γ
t e
−δ(T−x)b(x)dx−

∫ γ
t1
e−δ(T−x)d0dx]dt

− L[
∫ γ
t1

(1− e−δ(T−x))d0dx+
∫ T
γ (1− e−δ(T−x))b(x)dx]}

(14)
and

Π13(t1) = 1
T {(p− C)Q13 −A− h

∫ t1
0 Io(t)dt−B

∫ T
t1
−Io(t)dt− LS13}

= 1
T {(p− C)[

∫ µ
0 a(x)dx+ d0(γ − µ) +

∫ t1
γ b(x)dx+

∫ T
t1
e−δ(T−x)b(x)dx]−A

− h
∫ µ

0 [
∫ µ
t a(x)dx+ d0(γ − µ) +

∫ t1
γ b(x)dx]dt− h

∫ γ
µ [d0(γ − t) +

∫ t1
γ b(x)dx]dt

− h
∫ t1
γ

∫ t1
t b(x)dxdt+B

∫ T
t1

∫ t1
t e−δ(T−x)b(x)dxdt− L

∫ T
t1

[1− e−δ(T−x)]b(x)dx}.
(15)

Detailed analyses of the above two scenarios are provided in the online appendix.
Based on the above analysis, the total profit per unit time Π1(t1) in the interval

[0, T ] under the single warehouse setting is

Π1(t1) =

 Π11(t1), 0 ≤ t1 ≤ µ;
Π12(t1), µ ≤ t1 ≤ γ;
Π13(t1), γ ≤ t1 ≤ T,

where Π11(t1), Π12(t1) and Π13(t1) can be obtained from Eqs. (13), (14) and (15),
respectively.

Therefore, the optimization problem addressed in the single warehouse mode is
given by

M1: max Π1(t1), s.t. Qo ≤W and 0 ≤ t1 ≤ T.
In the next section, our aim is to search for the optimal solution of M1. Combining

with the possible objective behaviors and constraint conditions, the M1 can also be
explored by separating it into three optimization subproblems as below:

M1-1: max Π11(t1), s.t. Qo11 ≤W and 0 ≤ t1 ≤ µ.
M1-2: max Π12(t1), s.t. Qo12 ≤W and µ ≤ t1 ≤ γ.
M1-3: max Π13(t1), s.t. Qo13 ≤W and γ ≤ t1 ≤ T.
In order to derive the optimal results for the above three models, we give the fol-

lowing theorems:

Theorem 4.1. For M1-i, i = 1, 2, 3, the first-order necessary condition for the
optimality of Π1i(t1) is equivalent to the condition that z(t1) = 0, where z(t1) =
(p− C + L)(1− e−δ(T−t1))− ht1 +Be−δ(T−t1)(T − t1).

Proof. Proof available in the online appendix.

Theorem 4.1 shows that, under no considering inventory capacity constraints, the
optimal solution of the single warehouse mode does not depend on the fixed set up cost
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and the form of the trapezoidal-type demand. This finding is consistent with Cheng
& Wang (2009), Cheng et al. (2011), Lin (2013) and Wu et al. (2016).

Proposition 4.2. z(t1) is a strictly decreasing function with respect to t1.

Proof. Proof available in the online appendix.

Theorem 4.3. For M1-i, i = 1, 2, 3, let tubi1 and tlbi1 be the upper feasible value for ti1
and the lower feasible value for ti1 respectively, and we have

(1) if z(tlbi1 ) > 0 and z(tubi1 ) < 0, then there exists a unique value (ti1)∗ ∈ (tlbi1 , tubi1 ),
which is the optimal solution of M1-i;

(2) if z(tubi1 ) > 0, then there exists a unique value (ti1)∗ = tubi1 , which is the optimal
solution of M1-i;

(3) if z(tlbi1 ) < 0, then there exists a unique value (ti1)∗ = tlbi1 , which is the optimal
solution of M1-i.

Proof. Proof available in the online appendix.

Remark 1. Theorem 4.3 indicates that, for M1-i, the optimal value (ti1)∗ is judged

by the signs of z(tubi1 ) and z(tlbi1 ), and it may occur either at an interior point or at
boundary points of the feasible interval. Therefore, for the former, the interior value can
be given by solving the equation z(t1) = 0; for the latter, let Qo1i(t

i
w) = W , the bound-

ary values for case i can be easily determined as follows: tlb11 = 0, tub11 = min{t1w, µ},
tlb21 = µ, tub21 = min{t2w, γ}, t

lb3
1 = γ, and tub31 = min{t3w, T}. These show that, the

optimal solution to the single warehouse mode with a limited inventory capacity is
not only dependent on selling price, purchasing cost, holding cost, backlogging cost,
and opportunity cost due to lost sales, but also subjected to the maximal limited
capacity of OW and trapezoidal-type demand time point (i.e, µ and γ), which are
essentially different from existing models with a full storage space in OW under the
trapezoidal-type demand.

In the following theorem, we will give the optimal solution of M1.

Theorem 4.4. Let t∗1S be a unique value of t1 that is the optimal solution of M1, then
t∗1S can be represented as

t∗1S = arg max{Π11(t1∗1 ),Π12(t2∗1 ),Π13(t3∗1 )}.

Noting that, once t∗1S is determined in the single warehouse mode, the corresponding
optimal total average profit and order quantity are also obtained. From the previous
analysis, a solution procedure for the optimal policy of the single warehouse mode can
be summarised as the following algorithm.

Algorithm 4.1
Step1.1 Input all the parameters;
Step1.2 For case i, i = 1, 2, 3, compute tlbi1 and tubi1 ;

Step1.3 Judge the signs of z(tlbi1 ) and z(tubi1 ), and there are three possible cases as
follows:

Step1.3.1 If z(tlbi1 ) < 0, then ti∗1 = tlbi1 and go to Step1.4. Otherwise go to
Step1.3.2;

Step1.3.2 If z(tlbi1 ) > 0 and z(tubi1 ) < 0, use a linear search method to obtain ti∗1 ,
and then go to Step1.4. Otherwise go to Step1.3.3;

Step1.3.3 If z(tubi1 ) > 0, then ti∗1 = tubi1 and go to Step1.4;
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Step1.4 Let t∗1S=arg max{Π11(t1∗1 ),Π12(t2∗1 ),Π13(t3∗1 )}, output t∗1S and Π1(t∗1S), and
then get Qo and QB by the above corresponding formulas, stop.

4.2. Two-warehouse mode

Different from the single warehouse mode, at time t = 0, some unit items are kept in
the inventory system, where Qo = W units are stored in OW, and the rest Qr units
are kept in RW. The items of OW will be met after consuming all in RW. In the time
interval [0, t0], due to the effect of the demand, the inventory in RW gradually decreases
and achieves zero at time t = t0. While in [0, t0], the OW always maintains the maximal
inventory level (i.e., Qo = W ); In the next time interval [t0, T1], the inventory in OW
is depleted gradually and it vanishes at time t = T1; the customer demand in shortage
time interval [T1, T ] is partially backlogged at the rate of λ(τ) = e−δ(T−t), but the
total quantity of shortages backlogged is met by the next replenishment. Hence, the
two-warehouse inventory behavior at any time t ∈ [0, T ] can be described as follows:

In RW,

dIr(t)

dt
= −D(t), 0 ≤ t ≤ t0, (16)

with the boundary condition Ir(t0) = 0. In OW,

dIo(t)

dt
= −D(t), t0 ≤ t ≤ T1, (17)

and

dIo(t)

dt
= −e−δ(T−t)D(t), T1 ≤ t ≤ T, (18)

with the boundary condition Io(T1) = 0.
Based on the possible values of µ, γ, t0, T1 and T , the following five distinct cases

are considered.
Case 4.2.1. Case with µ < γ ≤ t0 < T1 ≤ T

[Position of Figure 2]

As shown in Figure 2, in RW, because of the increasing demand a(t) in [0, µ], the
constant demand d0 in [µ, γ], and the decreasing demand b(t) in [γ, t0], the current
inventory level Ir(t) gradually decreases and reduces to zero at t = t0. Then, from
Eq.(16), we have

dIr(t)

dt
= −a(t), 0 ≤ t ≤ µ, (19)

dIr(t)

dt
= −d0, µ ≤ t ≤ γ, (20)

and

dIr(t)

dt
= −b(t), γ ≤ t ≤ t0, (21)
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respectively. Using the boundary conditions Ir(µ
−) = Ir(µ

+), Ir(γ
−) = Ir(γ

+) and
Ir(t0) = 0, the solutions of Eqs.(19), (20) and (21) are

Ir(t) =

∫ µ

t
a(x)dx+ d0(γ − µ) +

∫ t0

γ
b(x)dx, 0 ≤ t ≤ µ, (22)

Ir(t) = d0(γ − t) +

∫ t0

γ
b(x)dx, µ ≤ t ≤ γ, (23)

and

Ir(t) =

∫ t0

t
b(x)dx, γ ≤ t ≤ t0, (24)

respectively.
In OW, due to the decreasing demand b(t) in [t0, T1] and the shortages in [T1, T ],

from Eqs.(17) and (18), we have

dIo(t)

dt
= −b(t), t0 ≤ t ≤ T1, (25)

and

dIo(t)

dt
= −e−δ(T−t)b(t), T1 ≤ t ≤ T, (26)

respectively. Using the boundary condition Io(T1) = 0, the solutions to Eqs.(25) and
(26) can be obtained, respectively, by

Io(t) =

∫ T1

t
b(x)dx, t0 ≤ t ≤ T1, (27)

and

Io(t) =

∫ T1

t
e−δ(T−x)b(x)dx, T1 ≤ t ≤ T. (28)

From Io(t0) = W , we easily get
∫ T1

t0
b(x)dx = W , which implies that T1 can be

expressed as a function of t0. Let G(x) =
∫
b(x)dx. Then t0 can be simplified as the

following relation:

t0 = G−1((G(T1)−W ) = t10(T1). (29)

Next, taking the first derivative of t10(T1), we have

dt10(T1)

dT1
=
b(T1)

b(t0)
> 0. (30)
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From Eqs.(22) and (28), we also attain the ordering quantity per cycle as

Q21 = Ir(0) +W − Io(T ) =

∫ µ

0
a(x)dx+ d0(µ− γ)

+

∫ t0

γ
b(x)dx+W +

∫ T

T1

e−δ(T−x)b(x)dx, (31)

and the total quantity of lost sales during the shortage period [T1, T ] as

S21 =

∫ T

T1

(1− e−δ(T−x))b(x)dx. (32)

Based on Eqs.(22), (23), (24), (27), (28), (31) and (32), the profit function per cycle
includes the following seven elements:

(a) The sales revenue per cycle: pQ21;
(b) The fixed set up cost per cycle: A;
(c) The purchasing cost per cycle: CQ21;

(d) The holding cost in RW per cycle: H
∫ t0

0 Ir(t)dt;

(e) The holding cost in OW per cycle: h
∫ T1

0 Io(t)dt;

(f) The shortage cost per cycle: B
∫ T
T1
−Io(t)dt;

(g) The opportunity cost due to lost sales per cycle: LS21.
Therefore, the total profit per unit time under the condition µ < γ ≤ t0 < T1 ≤ T

is given by

Π21(T1) = 1
T {(p− C)Q21 −A−H

∫ t0
0 Ir(t)dt− h

∫ T1

0 Io(t)dt−B
∫ T
T1
−Io(t)dt− LS21}

= 1
T {(p− C)[

∫ µ
0 a(x)dx+ d0(γ − µ) +

∫ t0
γ b(x)dx]

+ (p− C)[W +
∫ T
T1
e−δ(T−x)b(x)dx]

− A−H[
∫ µ

0

∫ µ
t a(x)dxdt+

∫ µ
0 d0(γ − µ)dt+

∫ µ
0

∫ t0
γ b(x)dxdt]

− H[
∫ γ
µ d0(γ − t)dt+

∫ γ
µ

∫ t0
γ b(x)dxdt+

∫ t0
γ

∫ t0
t b(x)dxdt]

− h[Wt0 +
∫ T1

t0

∫ T1

t b(x)dxdt] +B
∫ T
T1

∫ T1

t e−δ(T−x)b(x)dxdt

− L
∫ T
T1

(1− e−δ(T−x))b(x)dx}.
(33)

4.2.2. The other four cases
Similar to case with µ < γ ≤ t0 < T1 ≤ T , the total average profits for the cases

with µ ≤ t0 ≤ γ ≤ T1 ≤ T , t0 ≤ µ < γ ≤ T1 ≤ T , t0 ≤ µ ≤ T1 ≤ γ ≤ T and
t0 < T1 ≤ µ < γ ≤ T are obtained, respectively, by

Π22(T1) = 1
T {(p− C)Q22 −A−H

∫ t0
0 Ir(t)dt− h

∫ T1

0 Io(t)dt−B
∫ T
T1
−Io(t)dt− LS22}

= 1
T {(p− C)[

∫ µ
0 a(x)dx+ d0(t0 − µ) +W +

∫ T
T1
e−δ(T−x)b(x)dx]

− A−H[
∫ µ

0

∫ µ
t a(x)dxdt+

∫ µ
0 d0(t0 − µ)dt+

∫ t0
µ d0(t0 − t)dt]

− h[Wt0 +
∫ γ
t0
d0(γ − t)dt+

∫ γ
t0

∫ T1

γ b(x)dxdt+
∫ T1

γ

∫ T1

t b(x)dxdt]

+ B
∫ T
T1

∫ T1

t e−δ(T−x)b(x)dxdt− L
∫ T
T1

(1− e−δ(T−x))b(x)dx},
(34)
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Π23(T1) = 1
T {(p− C)Q23 −A−H

∫ t0
0 Ir(t)dt− h

∫ T1

0 Io(t)dt−B
∫ T
T1
−Io(t)dt− LS23}

= 1
T {(p− C)[

∫ t0
0 a(x)dx+W +

∫ T
T1
e−δ(T−x)b(x)dx]−A

− H
∫ t0

0

∫ t0
t a(x)dxdt− h[Wt0 +

∫ µ
t0

∫ µ
t a(x)dxdt+

∫ µ
t0

∫ γ
µ d0dxdt]

− h[
∫ µ
t0

∫ T1

γ b(x)dxdt+
∫ γ
µ

∫ γ
t d0dxdt+

∫ γ
µ

∫ T1

γ b(x)dxdt+
∫ T1

γ

∫ T1

t b(x)dxdt]

+ B
∫ T
T1

∫ T1

t e−δ(T−x)b(x)dxdt− L
∫ T
T1

(1− e−δ(T−x))b(x)dx},
(35)

Π24(T1) = 1
T {(p− C)Q24 −A−H

∫ t0
0 Ir(t)dt− h

∫ T1

0 Io(t)dt−B
∫ T
T1
−Io(t)dt− LS24}

= 1
T {(p− C)[

∫ t0
0 a(x)dx+W +

∫ T
γ e−δ(T−x)b(x)dx+

∫ γ
T1
e−δ(T−x)d0dx]−A

− H
∫ t0

0

∫ t0
t a(x)dxdt− h[Wt0 +

∫ µ
t0

∫ µ
t a(x)dxdt+

∫ µ
t0

∫ T1

µ d0dxdt]

− h
∫ T1

µ

∫ T1

t d0dxdt+B[
∫ γ
T1

∫ t1
t e−δ(T−x)d0dxdt+

∫ T
γ

∫ γ
t e
−δ(T−x)b(x)dxdt]

− B
∫ T
γ

∫ γ
T1
e−δ(T−x)d0dxdt− L[

∫ γ
T1

(1− e−δ(T−x))d0dx+
∫ T
γ (1− e−δ(T−x))b(x)dx]}

(36)
and

Π25(T1) = 1
T {(p− C)Q25 −A−H

∫ t0
0 Ir(t)dt− h

∫ T1

0 Io(t)dt−B
∫ T
T1
−Io(t)dt− LS25}

= 1
T {(p− C)[

∫ t0
0 a(x)dx+W +

∫ T
γ e−δ(T−x)b(x)dx+

∫ γ
µ e
−δ(T−x)d0dx]

+ (p− C)[
∫ µ
T1
e−δ(T−x)a(x)dx]−A−H[

∫ t0
0

∫ t0
t a(x)dxdt]

− h[Wt0 +
∫ T1

t0

∫ T1

t a(x)dxdt] +B[
∫ µ
T1

∫ T1

t e−δ(T−x)a(x)dxdt]

+ B[
∫ γ
µ

∫ µ
t e
−δ(T−x)d0dxdt−

∫ γ
µ

∫ µ
T1
e−δ(T−x)a(x)dxdt]

+ B[
∫ T
γ

∫ γ
t e
−δ(T−x)b(x)dxdt−

∫ T
γ

∫ γ
µ e
−δ(T−x)d0dxdt]

− B[
∫ T
γ

∫ µ
T1
e−δ(T−x)a(x)dxdt]− L[

∫ µ
T1

(1− e−δ(T−x))a(x)dx]

− L[
∫ γ
µ (1− e−δ(T−x))d0dx+

∫ T
γ (1− e−δ(T−x))b(x)dx]}.

(37)
Detailed analyses of the above four scenarios are provided in the online appendix.
Based on the above analysis, the total profit per unit time Π2(T1) in the interval

[0, T ] under the two-warehouse inventory mode can be summarized as

Π2(T1) =


Π21(T1), µ < γ ≤ t0 < T1 ≤ T ;
Π22(T1), µ ≤ t0 ≤ γ ≤ T1 ≤ T ;
Π23(T1), t0 ≤ µ < γ ≤ T1 ≤ T ;
Π24(T1), t0 ≤ µ ≤ T1 ≤ γ ≤ T ;
Π25(T1), t0 < T1 ≤ µ < γ ≤ T.

(38)

where Π21(T1), Π22(T1), Π23(T1), Π24(T1) and Π25(T1) can be obtained from (33),
(34), (35), (36) and (37), respectively.

Therefore, this optimization problem addressed under the two-warehouse mode is
simply described as

M2: max Π2(T1), s.t. Qo = W , Qr ≥ 0 and 0 ≤ T1 ≤ T.
In order to search for the optimal solution of M2, combining with the possible

objective behaviors and constraint conditions mentioned above, the M2 can also be
investigated by separating it into five optimization subproblems as follows:

M2-1: max Π21(T1), s.t. Qo21 = W , Qr1 ≥ 0, and µ < γ ≤ t0 < T1 ≤ T.
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M2-2: max Π22(T1), s.t. Qo22 = W , Qr2 ≥ 0, and µ ≤ t0 ≤ γ ≤ T1 ≤ T.
M2-3: max Π23(T1), s.t. Qo23 = W , Qr3 ≥ 0, and t0 ≤ µ < γ ≤ T1 ≤ T.
M2-4: max Π24(T1), s.t. Qo24 = W , Qr4 ≥ 0, and t0 ≤ µ ≤ T1 ≤ γ ≤ T.
M2-5: max Π25(T1), s.t. Qo25 = W , Qr5 ≥ 0, and t0 < T1 ≤ µ < γ ≤ T.
In what follows, our aim is to derive the optimal results under the two-warehouse

inventory mode, and we firstly give the following theorem.

Theorem 4.5. For case j, j = 1, 2, . . . , 5, the first-order necessary condition for the
optimality of Π2j(T1) is equivalent to the condition that Zj(T1) = 0, where Zj(T1) =

(p− C + L)(1− e−δ(T−T1))−Htj0(T1)− h(T1 − tj0(T1)) +Be−δ(T−T1)(T − T1).

Proof. Proof available in the online appendix.

Furthermore, the proposition can be gained as follow.

Proposition 4.6. For case j, j = 1, 2, . . . , 5, Zj(T1) is a strictly decreasing function
with respect to T1.

Proof. Proof available in the online appendix.

Combining with Proposition 4.6, the following theorem is obtained.

Theorem 4.7. For given case j, j = 1, 2, . . . , 5, let T
Ubj
1 and T

Lbj
1 be the upper feasible

value for T j1 and the lower feasible value for T j1 , and we have

(1) if Zj(T
Lbj
1 ) > 0 and Zj(T

Ubj
1 ) < 0, then there exists a unique value (T j1 )∗ ∈

(T
Lbj
1 , T

Ubj
1 ), which is the optimal solution of M2-j;

(2) if Zj(T
Ubj
1 ) > 0, then there exists a unique value (T j1 )∗ = T

Ubj
1 , which is the

optimal solution of M2-j;

(3) if Zj(T
Lbj
1 ) < 0, then there exists a unique value (T j1 )∗ = T

Lbj
1 , which is the

optimal solution of M2-j.

Proof. Proof available in the online appendix.

Remark 2. From Theorems 4.5 and 4.7, it is clear that, for case j, j = 1, 2, . . . , 5,
the optimal value (T j1 )∗ for maximizing Π2j(T1) is unique, and it is mainly affected
by some factors such as rented cost in RW, own warehouse capacity, trapezoidal-type
demand time point, and so on. The effects of these factors on the inventory performance
will be further discussed in the sensitivity analysis section.

In addition, from the technique of solving the model, for case j, j = 1, 2, . . . , 5, The-
orem 4.7 indicates that the optimal value (T j1 )∗ may happen either at an interior point
or at boundary points of the feasible interval. For the former, the interior optimal value
can be obtained by solving the equation Zj(T1) = 0; while for the latter, it is worth not-

ing that, the boundary values of T
Ubj
1 and T

Lbj
1 for each case j can play an important

role in the process of searching for the optimal solution. Thus, we attempt to further in-
vestigate their possible values by the following procedures. For example, in Case 4.2.1,
using the constraint conditions in M2-1, it is clear that the upper feasible value of T1

is T (i.e., TUb11 = T ). Also, from Eq.(29), we can further get T1 = G−1(G(t0) + W ),
and G(x) is a monotone increasing function (i.e., G′(x) = b(x) > 0). Thus, the lower

limit value of T1 occurs at t0 = γ, that is, TLb11 = G−1(G(γ) +W ). The other results
are shown in Table 2 by adopting the similar procedure in Case 4.2.1.

[Position of Table 2]
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Theorem 4.8. Let T ∗1T be a unique value of T1 that maximizes the total average profit
Π2(T1), then T ∗1T can be represented as

T ∗1T = arg max{Π21(T 1∗
1 ),Π22(T 2∗

1 ), . . . ,Π25(T 5∗
1 )}.

Based on the above arguments, a solution procedure for the optimal policies of the
two-warehouse inventory mode can be summarised as the following algorithm.

Algorithm 4.2
Step2.1 Input all the parameters;

Step2.2 For case j, j = 1, 2, . . . , 5, compute T
Lbj
1 and T

Ubj
1 ;

Step2.3 Judge the signs of Zj(T
Lbj
1 ) and Zj(T

Ubj
1 ), and there are three possible

cases as follows:
Step2.3.1 If Zj(T

Lbj
1 ) < 0, then T j∗1 = T

Lbj
1 and go to Step4. Otherwise go to

Step2.3.2;

Step2.3.2 If Zj(T
Lbj
1 ) > 0 and Zj(T

Ubj
1 ) < 0, use a linear search method to obtain

T j∗1 , and then go to Step2.4. Otherwise go to Step2.3.3;

Step2.3.3 If Zj(T
Ubj
1 ) > 0, then T j∗1 = T

Ubj
1 and go to Step2.4;

Step2.4 Let T ∗1T=arg max{Π21(T 1∗
1 ),Π22(T 2∗

1 ), . . . ,Π25(T 5∗
1 )}, output t∗1T and

Π2(t∗1T ), and then obtain t∗0, Qr and QB by the above corresponding formulas, stop.
Remark 3. Constructing the single warehouse mode and the two-warehouse mode

mentioned above, it can be also found that if t0 = 0, T1 = t1 and H = h, then
Π23(T1) reduces to the same as Π13(t1), Π24(T1) is equivalent to Π12(t1), and Π25(T1)
is simplified to the same as Π11(t1). In fact, the relationship between the above modes
is very clear from the perspective of management. This is because, when the marginal
holding cost in OW is equal to the unit external rental cost (i.e., H = h ), there is
no significant difference between the above two modes, which implies that, the two-
warehouse mode can be considered as the single warehouse mode with an unlimited
inventory storage space. However, when this marginal holding cost in RW is larger than
that in OW (i.e., H > h), the comparisons between the above two modes become more
complicated in operation performance. Therefore, it is critical for inventory managers
to make the final warehouse mode selection after weighing the above two modes.

In the next, combining with Theorems (4.3), (4.4), (4.7), and (4.8), we propose the
following theorem to guide whether to adopt the two-warehouse mode.

Theorem 4.9. Let Π(t∗1) = max{Π1(t∗1S),Π2(T ∗1T )}, and further let t∗1 be the optimal
time point that maximizes the total average profit in the entire inventory system, we
have

(1) if Π(t∗1) = Π1(t∗1S), then the single warehouse mode is adopted and t∗1 = t∗1S;
(2) if Π(t∗1) = Π2(T ∗1T ), then the two-warehouse mode is adopted and t∗1 = T ∗1T .

From the above discussions, a flowchart for searching the optimal behavior of Π(t1)
in the inventory system is summarized as in the online appendix.

Special case. Notice that, if we ignore some retail parameters such as the selling
price, the purchasing cost and fixed order cost, and a particular type of demand and
a constant partial backlogging rate are considered, namely, when p = 0, C = 0, A = 0,
µ < γ = T and e−δτ → B, the above model can be simplified to the model in Agrawal
& Banerjee (2011).
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5. Numerical examples and sensitivity analysis

5.1. Numerical examples

In order to illustrate the solution procedure numerically, the following examples are
presented. The algorithms are coded in Matlab R2013a for obtaining the optimal
solution to the proposed model.

[Position of Table 3]

Example 5.1. Consider the following parameter values: A = $50/order, C = $5, p =
$12, h = $1/unit/month, H = $1.5/unit/month, B = $2/unit/month, L = $3/unit,
T = 2 months, µ = 0.5 months, γ = 0.8 months, W = 50 units, δ = 0.01, the demand
a(t) = Memt and b(t) = Ne−nt, where M = 100, m = 0.1 and N = 200.

Based on the above assumption, d0 = a(µ) = b(γ), we have d0 = 100e0.05 and
n = (ln 2 − 0.05)/0.8. Under the single warehouse case, using Algorithm 4.1, we
firstly obtain Π1(t∗1S) = Π11(t1∗1 )=$438.9612 and t∗1S = t1∗1 = 0.4879 months, respec-
tively; using Algorithm 4.2, the computed results of the two-warehouse mode can
be obtained in Table 3. From Table 3, the optimal profit in the two-warehouse mode
is Π2(T ∗1T ) = Π22(T 2∗

1 ) = $487.1265 > $438.9612. Therefore, the two-warehouse mode
is adopted in the inventory system, the maximum total average profit of Π(t1) in the
inventory system is Π(t∗1) = Π2(T ∗1T ) = $487.1265, and the other optimal values are
t∗1 = T ∗1T = 1.2390 months, t∗0 = t2∗0 = 0.6943 months, Qr = Qr2 = 71.6982 units and
QB = QB22 = 41.8677 units.

Example 5.2. Consider H = $1.5/unit/month, W = 150 units and L = $3/unit,
the other parameter values are the same as those of Example 5.1. Using the similar
solution procedure, we also obtain Π1(t∗1S)=$494.1105 > Π2(T ∗1T ) = $487.1265. Thus,
the single warehouse mode is adopted in the inventory system, and the other optimal
values are t∗1 = t∗1S = 1.3521 months, Qo = 129.6789 units and QB = 33.9430 units.

In what follows, to get more comparisons, we will further discuss the effects of
the unit holding cost in RW, OW’s capacity and the unit opportunity cost on the
warehouse mode selection and profitability of the inventory system.

Example 5.3. In this example, we use the same data as those of Example 5.1 except
the three parameters: H, W and L , where the values of the parameters H, L and
W are assumed to be H ∈ {1.5, 3, 4.5}, W ∈ {50, 100, 150} and L ∈ {3, 4}. The
computational results obtained are shown in Table 4.

[Position of Table 4]

From Table 4, some interesting findings are listed as follows.
1. As the unit rented cost H increases, the optimal average profit Π(t∗1) and the

optimal Qr decrease, but the optimal QB increases. It can be found that the larger
the value of H, the more beneficial to the retailer the single warehouse mode will be.
For example, when W = 50, L = 3 and H ∈ {1.5, 3, 4.5}, Π(t∗1) and Qr will decrease,
and especially for Qr, it decreases from 71.6982 units to 0 unit. This shows that, if
the unit rent in RW is larger in the retail context, it will send a strong signal for
the retailer to cut down this cost. Facing this case, the retailer may reduce the rental
risk by ordering less or even giving up this rented behavior, and raising appropriate
shortages.
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2. As the unit opportunity cost L increases, the optimal Qr increases, but the
optimal average profit Π(t∗1) and the total QB decrease. But when L = 4 , W = 150
and H = 4.5, most of the total orders are stored in OW, and the quantity of shortages
is only a small proportion. It implies that, when the opportunity cost is larger in the
shortage period, excessive shortages will lead to more losses of profit on the sales.
Moreover, when both the unit opportunity cost and the unit rented cost are larger in
the external market, if OW has a full storage space, then only OW is adopted and
the level of the shortages is also relatively low. But if OW only has a very smaller
storage space (e.g., L ∈ {3, 4}, W = 50 and H = 4.5), then it can be observed that the
optimal order decisions have no changes except for the loss of profit. In fact, once this
situation occurs, it is very unfavorable to the retailer. Thus, it is recommended that
retailer should seek to cooperate with rental companies by the contractual mechanisms,
or raise the customers’ brand loyalty of the products by some market ways such as
advertisements and shopping experience, and so on.

3. As the OW’s capacity W increases, the optimal average profit Π(t∗1) increases,
but the optimal Qr and the optimal QB will decrease. In particular, when OW has
sufficient capacity, there will be no need for renting an extra warehouse. Interestingly,
when the unit opportunity cost is lower, then even if OW has a full storage space, it
is not completely occupied by the optimal Qo, but more shortages QB are allowed in
the inventory system (e.g., W = 150 and L = 3). This shows that, if the shortages are
operated properly, it can also improve the inventory efficiency. Therefore, it is critical
for the retailer to estimate the parameters such as W , H and L in the real world,
accurately.

5.2. Sensitivity analysis and managerial insights

In this subsection, to assess the robustness of the model as well as to obtain managerial
insights, we use the same parameter values as those in Example 5.1, and sensitivity
analyses are performed by changing one parameter at a time and keeping the others
unchanged. Under the two-warehouse environment, the computational results obtained
are given in Table 5.

[Position of Table 5]

From Table 5, we can observe the following phenomena.
1. The optimal total average profit Π(t∗1) will increase as one of parameters p,M, µ

and γ increases, while it will decrease as one of the parameters C,A, h,B, δ,N and T
increases. This means that the increment in p,M, µ or γ will bring a positive effect on
Π(t∗1), while the increment in C,A, h,B, δ,N or T will affect on Π(t∗1) negatively.

2. The optimal Qr increases as one of the parameters p,B, δ,M, µ, γ and T increases,
it decreases as one of the parameters C, h and N increases, whereas it keeps unchanged
as parameter A increases. It means that the increment in p,B, δ,M, µ, γ or T affect
on Qr positively, and the increment in C, h or N will bring a negative effect on Qr,
while the increment in A has no any impact on Qr.

3. The optimal total shortages QB increases as one of the parameters C, h,M, µ and
γ increases, it decreases as one of the parameters p,B, δ,N and T increases, whereas it
remains unchanged as parameter A increases. It means that the increment in C, h,M, µ
or γ will bring a positive effect on QB, the increment in p,B, δ,N or T will bring a
negative effect on QB, whereas the increment in A has no any impact on QB.
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4. The optimal total average profit is more sensitive to parameters p, C and M than
other parameters, the optimal rented order Qr is more sensitive to parameters M and
T than other parameters, and the optimal total shortages QB is more sensitive to
parameter M than other parameters(see the bold numbers in Table 5). However, it
can be concluded that the proposed inventory model is basically robust.2

From the sensitivity analyses, the following observations and management insights
can be obtained.

The above sensitivity analyses demonstrate that increasing the unit holding cost of
OW results in decreasing the total average profit of inventory system, but increasing
the total shortages. Thus, the inventory manager should make order adjustment by
adopting more shortages and less initial ordering quantity from the supplier. Moreover,
as the unit holding cost of OW increases, the ordering quantity in RW also decreases.
This finding implies that it is crucial for the inventory manager to choose a reliable
partner who offers a relatively lower rent during the storage period.

Further analyses reveal that increasing the unit shortage cost, will lead to decreasing
the total average profit of inventory system, but increasing the ordering quantity in
RW. Therefore, the results suggest that the inventory manager should try to avoid
more losses by adding more ordering quantity in RW. In addition, as the coefficient
of the customer’s waiting time increases, the total average profit of inventory system
decreases, but the ordering quantity in RW increases. The result implies that, when
the end customers are more sensitive to the waiting time during the storage period,
more shortages will result in more losses of profit. Therefore, in order to avoid this
situation, the inventory managers should focus on expanding the influence of products
by improving service quality in the sales or after-sale stage, so as to increase the
customers’ brand loyalty of the products during the shortage period.

From the sensitivity analyses, it can be also observed that, as the demand factor
parameter M increases in the product’s expansion period, the total average profit of
inventory system increases. Especially in this period, it is possible to raise the value
of the parameter M by the market means such as advertisements investment, multi-
channel selling, product promotion, and so on. Therefore, the inventory manager may
take the relevant cost-benefit analysis as a decision-making reference to judge whether
to increase the value of the parameter.

From the robustness of the model, considering the high sensitivity of total annual
profit to the selling price p, the purchasing cost C, demand parameters M and the
inventory cycle T , it is recommended that the inventory manager should pay partic-
ular attention to the values of those parameters when making the market demand
forecasting.

In addition, from the application of the model, this study provides a novel idea
for the inventory managers to capture inventory issues with the warehouse ware-
house mode selection in the real world. And meanwhile, this study incorporates the
trapezoidal-type demand into the inventory system, and the utilization of a gener-
alized time-varying factor makes the application scope of the models broader. Using
the model frame, it is convenient for the inventory manager to handle the problems
with particular inventory circumstances such as linear demand, exponential demand,
ramp-type demand, single warehouse, two-warehouse, no storage limit, no shortage,
full backordering, and so on.

21



5.3. A real inventory case

With more than 4684 stores including 11 overseas stores, Heilan Home (HLA) is one of
the well-known retail store chains in China’s garment and textile industries. Since its
establishment in 2002, HLA has been leading the Chinese fashion industry. As a matter
of fact, HLA’s booming development is attributed partly to its excellent management
ability, powerful brand, shopping experience and inventory control.

In order to illustrate the applicability of the model in practice, an inventory case
study was investigated at a local retail store of HLA in Tianjin. After coming in
contact with HLA’s store staffs and on-site visit, it is found that the main product
type in their store is menswear and the demand features of the menswear fit well into
the trapezoidal-type time distribution. Especially, most of the menswear products on
sale in their store are seasonal, and as the new products enter the retail store, the
demand for them increases with time initially when potential consumers are attracted
by the style, then holds steady once this style is accepted, and finally decreases with
time till the products retreat from the market. And meanwhile, we further knew from
talking with them that most of the products in their store are nonperishable and
have a relatively fixed sales cycle. Sometimes when the new type menswear is first
introduced to the market, the store managers employ a RW for holding more items in
anticipation of growth in customers’ demand over time. When the products ordered
are sold out, some loyal customers are willing to wait for products, but more impatient
customers will go elsewhere if the wait time is longer. Therefore, the proposed model
for nonperishable items with warehouse mode selection and partial backlogging under
the trapezoidal-type demand is applicable in their store.

The following data on retail inventory operations were collected from HLA staffs’
interviews. The HLA manager gave rough estimates for the customer demand data
and sales data. The customer demand rate at time t is approximated by the following
piecewise function

D(t) =

 130 + 7.5t, 0 ≤ t ≤ 2,
145, 2 ≤ t ≤ 7.5,
220− 10t, 7.5 ≤ t ≤ 15.

The backlogging rate with respect to the waiting time τ could be fitted by λ(τ) =
e−0.01τ , where τ > 0. The store’s maximum storage space W is 1300 units, the fixed
sales cycle T is about 15 weeks, the fixed cost per order A is about 500 Chinese
Yuan (CNY), and the holding cost in OW h is 3.5 CNY per unit item per unit time.
The manager purchases the items from the upstream partners with C = 30 CNY per
unit and sells to the end customer with p = 90 CNY per unit. If RW is adopted,
the holding cost in RW H is 6 CNY per unit item per unit time. Moreover, from the
accounting data, the backlogging cost and goodwill cost can be estimated roughly. The
backlogging cost B is 20 CNY per unit item per unit time and the opportunity cost
is L = 25 CNY per unit due to lost sales. Thus, facing this retail scenario, how does
the manager make the optimal replenishment strategies to control retail inventory in
HLA store?

Using the model and its solution procedures provided in this study, we have
Π1(t∗1S) = Π11(t3∗1 )=3613.9918 and Π2(T ∗1T ) = Π22(T 2∗

1 ) = 4701.9135 > 3613.9918.
Thus, it is a better choice for the HLA manager to adopt the two-warehouse mode,
and the maximum average profit is 4701.9135. The other optimal results can be gained
as follows: the optimal time point t∗1 = T 2∗

1 = 12.5173 weeks, the optimal total ordering
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quantity Q = 1876.1051 units, and the optimal ordering level of RW Qr = 374.1452
units. Moreover, the corresponding inventory observations are easily obtained by using
a similar approach in Section 5.2.

6. Conclusions and future research

Taking both a general trapezoidal-type demand and rented warehouse into considera-
tion, this paper explores an inventory model for nonperishable items with warehouse
mode selection in a fixed inventory cycle, in which the shortages are allowed and par-
tial backlogging rate is assumed to be dependent on customer’s waiting time. We prove
the existence and uniqueness of the optimal inventory replenishment strategy for each
of the warehouse modes, and present it in an easy-to-use algorithm. Furthermore, a
theorem is used to make a tradeoff between the two modes from the perspective of
maximizing the total average profit. Finally, numerical examples, sensitivity analysis
and a case study are used to illustrate the robustness and applicability of the model.

Main conclusions of this paper include:
(1) Following our investigation, it is found that the optimal solutions of the model

mainly depend on some key parameters such as the maximal limited capacity of OW,
the trapezoidal-type demand time point, and so on. But if the marginal holding cost
in OW is equal to the unit external rental cost, the optimal solutions of the model are
independent of any time-varying demand type. This finding is consistent with Cheng
& Wang (2009), Cheng et al. (2011), Lin (2013) and Wu et al. (2016), who investigated
inventory models with an unlimited storage capacity under the single warehouse mode.

(2) Following the analysis, it is observed that as the storage space of OW increases
or the unit rented cost increases, it will actually be economical for the retailers to keep
more items in OW, and meanwhile, these two parameters have a marked impact on
determining whether or not to use the rented warehouse. When the end customers are
unwilling to wait backlogged order, more shortages would actually lead to more losses
of profit. But increasing the ordering quantity in RW can reduce the losses due to lost
sales. Moreover, when RW is adopted, the optimal total average profit is more sensitive
to the unit selling price and the unit purchasing cost than other model parameters;
the optimal rented order is more sensitive to the order cycle length than other model
parameters, but overall, the proposed inventory model is basically robust. A case study
also shows that the inventory managers are able to control inventory with the help of
the model established in this study.

However, there are some limitations in this study. As mentioned in the previous
section, when both the opportunity cost due to lost sales and the unit rented cost
are larger in the external market and their own warehouse capacity is very small, the
retailers may avoid this predicament by cooperating with third-party rental companies.
This paper does not discuss the optimal inventory policy after third-party companies
cooperation. Thus, in the future study, it is hoped to further incorporate third-party
companies cooperation into this inventory issue under contractual mechanisms. In
addition, some more realistic inventory features such as deteriorating items, variable
inventory cycle, trade credit, quantity discount and environmental consideration, can
also be incorporated in the proposed model.
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Notes

1. In order to simplify the model, the case that the time points t0 and T1 fall in the
interval (µ, γ) at the same time is not considered, but by setting the relevant model
parameters, the proposed model may reduce to the particular case. Thus, we here omit
this case.
2. In order to investigate the impact of over or under estimation of the model param-
eters, we here adopt (Π′ − Π)/Π, (Qr

′ −Qr)/Qr and (QB
′ −QB)/QB as measures of

parameter’s sensitivity, where Π, Qr and QB denote the true values, and Π′, Qr
′

and
QB

′
denote estimated ones. As the bold numbers shown in Table 5, when p changes

from -33% to 33%, the varying range of Π is from 67% to -67%; when c changes from
-40% to 40%, the varying range of Π is from 34% to -34%; when M changes from -20%
to 20%, the varying ranges of Π, QB and Qr are from -25% to 28%, -34% to 35%, and
-38% to 47%; when T changes from -11% to 11%, the varying range of QB is from
-17% to 15%. Except for the previous parameters, the effects of other ones on the Π,
Qr and QB are not very significant.
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Online Appendix to accompany “An inventory model for nonperishable
items with warehouse mode selection and partial backlogging under

trapezoidal-type demand”

OA1 Single warehouse mode

1.1. Case with µ ≤ t1 ≤ γ

[Position of Figure 3]

In this case, as shown in Figure 3, the relationship µ ≤ t1 ≤ γ can also be described
in detail 0 < µ ≤ t1 ≤ γ < T , the inventory in OW is depleted due to the effects of
a(t) and d0, and hence, the changes of inventory level Io(t) in OW during the interval
[0, t1] can be described by the following equations:

dIo(t)

dt
= −a(t), 0 ≤ t ≤ µ (39)

and

dIo(t)

dt
= −d0, µ ≤ t ≤ t1. (40)

Solving Eqs.(39) and (40) with boundary conditions Io(µ
−) = Io(µ

+) and Io(t1) = 0,
we have

Io(t) =

∫ µ

t
a(x)dx+ d0(t1 − µ), 0 ≤ t ≤ µ (41)

and

Io(t) = d0(t1 − t), µ ≤ t ≤ t1, (42)

respectively.
In the interval [t1, T ], the customer demand is partial backlogged due to shortages.

The behavior of the inventory in [t1, T ] can be described by the following differential
equations:

dIo(t)

dt
= −e−δ(T−t)d0, t1 ≤ t ≤ γ (43)

and

dIo(t)

dt
= −e−δ(T−t)b(t), γ ≤ t ≤ T. (44)

Combining with the boundary conditions Io(t1) = 0 and Io(γ
−) = Io(γ

+), the solutions
of Eqs.(43) and (44) are

Io(t) =

∫ t1

t
e−δ(T−x)d0dx, t1 ≤ t ≤ γ (45)
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and

Io(t) =

∫ γ

t
e−δ(T−x)b(x)dx−

∫ γ

t1

e−δ(T−x)d0dx, γ ≤ t ≤ T, (46)

respectively.
From Eqs.(41) and (46), we gain the ordering quantity per cycle

Q12 = Qo12 +QB12 = Io(0)− Io(T ) =

∫ µ

0
a(x)dx+ d0(t1 − µ)

+

∫ T

γ
e−δ(T−x)b(x)dx+

∫ γ

t1

e−δ(T−x)d0dx. (47)

The total quantity of lost sales due to shortages as

S12 =

∫ γ

t1

(1− e−δ(T−x))d0dx+

∫ T

γ
(1− e−δ(T−x))b(x)dx. (48)

Therefore, the total profit per unit time under the condition µ ≤ t1 ≤ γ is determined
by

Π12(t1) = 1
T {(p− C)Q12 −A− h

∫ t1
0 Io(t)dt−B

∫ T
t1
−Io(t)dt− LS12}

= 1
T {(p− C)[

∫ µ
0 a(x)dx+ d0(t1 − µ) +

∫ T
γ e−δ(T−x)b(x)dx+

∫ γ
t1
e−δ(T−x)d0dx]

− A− h
∫ µ

0 [
∫ µ
t a(x)dx+ d0(t1 − µ)]dt− h

∫ t1
µ [d0(t1 − t)]dt

+ B
∫ γ
t1

∫ t1
t e−δ(T−x)d0dxdt+B

∫ T
γ [

∫ γ
t e
−δ(T−x)b(x)dx−

∫ γ
t1
e−δ(T−x)d0dx]dt

− L[
∫ γ
t1

(1− e−δ(T−x))d0dx+
∫ T
γ (1− e−δ(T−x))b(x)dx]}.

(49)

[Position of Figure 4]

1.2. Case with γ ≤ t1 ≤ T
Likewise, the condition γ ≤ t1 ≤ T can be rewritten in detail as 0 < µ < γ ≤ t1 ≤ T .

From Figure 4, the inventory in OW is depleted due to the effects of a(t), d0 and b(t).
Hence, the variation of the inventory level Io(t) with respect to time t in the interval
[0, t1] can be described by

dIo(t)

dt
= −a(t), 0 ≤ t ≤ µ, (50)

dIo(t)

dt
= −d0, µ ≤ t ≤ γ, (51)

and

dIo(t)

dt
= −b(t), γ ≤ t ≤ t1, (52)

respectively.
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Using the boundary conditions Io(µ
−) = Io(µ

+), Io(γ
−) = Io(γ

+), and Io(t1) = 0,
the solutions of Eqs.(50), (51) and (52) are given, respectively, by

Io(t) =

∫ µ

t
a(x)dx+ d0(γ − µ) +

∫ t1

γ
b(x)dx, 0 ≤ t ≤ µ, (53)

Io(t) = d0(γ − t) +

∫ t1

γ
b(x)dx, µ ≤ t ≤ γ, (54)

and

Io(t) =

∫ t1

t
b(x)dx, γ ≤ t ≤ t1. (55)

In the shortage interval [t1, T ], the customer demand is partial backlogged due
to shortages. Thus, the behavior of the inventory in [t1, T ] can be described by the
following differential equation:

dIo(t)

dt
= −e−δ(T−t)b(t), t1 ≤ t ≤ T. (56)

Using the boundary condition Io(t1) = 0, the solution to Eq.(56) is given by

Io(t) =

∫ t1

t
e−δ(T−x)b(x)dx, t1 ≤ t ≤ T. (57)

From Eqs.(53) and (57), we get the ordering quantity per cycle as

Q13 = Qo13 +QB13 = Io(0)− Io(T ) =

∫ µ

0
a(x)dx+ d0(γ − µ)

+

∫ t1

γ
b(x)dx+

∫ T

t1

e−δ(T−x)b(x)dx, (58)

and the total quantity of lost sales during the shortage period [t1, T ] as

S13 =

∫ T

t1

(1− e−δ(T−t))b(t)dt. (59)

Therefore, the total profit per unit time under the condition γ ≤ t1 ≤ T is determined
by

Π13(t1) = 1
T {(p− C)Q13 −A− h

∫ t1
0 Io(t)dt−B

∫ T
t1
−Io(t)dt− LS13}

= 1
T {(p− C)[

∫ µ
0 a(x)dx+ d0(γ − µ) +

∫ t1
γ b(x)dx+

∫ T
t1
e−δ(T−x)b(x)dx]−A

− h
∫ µ

0 [
∫ µ
t a(x)dx+ d0(γ − µ) +

∫ t1
γ b(x)dx]dt− h

∫ γ
µ [d0(γ − t) +

∫ t1
γ b(x)dx]dt

− h
∫ t1
γ

∫ t1
t b(x)dxdt+B

∫ T
t1

∫ t1
t e−δ(T−x)b(x)dxdt− L

∫ T
t1

[1− e−δ(T−x)]b(x)dx}.
(60)

OA2 Two-warehouse mode
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2.1. Case with µ ≤ t0 ≤ γ ≤ T1 ≤ T

[Position of Figure 5]

Similarly, as shown in Figure 5, in RW, the inventory level Ir(t) in [0, t0] with respect
to time t can be described by

dIr(t)

dt
= −a(t), 0 ≤ t ≤ µ, (61)

and

dIr(t)

dt
= −d0, µ ≤ t ≤ t0. (62)

Using the boundary conditions Ir(µ
−) = Ir(µ

+) and Ir(t0) = 0, the solutions of
Eqs.(61) and (62) can be given, respectively, by

Ir(t) =

∫ µ

t
a(x)dx+ d0(t0 − µ), 0 ≤ t ≤ µ, (63)

and

Ir(t) = d0(t0 − t), µ ≤ t ≤ t0. (64)

In OW, the instantaneous change of Io(t) in [t0, T ] with respect to time t can be
described, respectively, by

dIo(t)

dt
= −d0, t0 ≤ t ≤ γ, (65)

dIo(t)

dt
= −b(t), γ ≤ t ≤ T1, (66)

and

dIo(t)

dt
= −e−δ(T−t)b(t), T1 ≤ t ≤ T. (67)

Using the boundary conditions Io(γ
−) = Io(γ

+) and Io(T1) = 0, the solutions of
Eqs.(65), (66) and (67) can be given, respectively, by

Io(t) = d0(γ − t) +

∫ T1

γ
b(x)dx, t0 ≤ t ≤ γ, (68)

Io(t) =

∫ T1

t
b(x)dx, γ ≤ t ≤ T1, (69)
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and

Io(t) =

∫ T1

t
e−δ(T−x)b(x)dx, T1 ≤ t ≤ T. (70)

From Io(t0) = W , we easily get d0(γ − t0) +
∫ T1

γ b(x)dx = W . Similarly, t0 can be

simplified as

t0 = γ0 +
1

d0
(

∫ T1

γ
b(x)dx−W ) = t20(T1). (71)

Then, taking the first derivative of t20(T1), we have

dt20(T1)

dT1
=
b(T1)

d0
> 0. (72)

From Eqs.(63) and (70), we get the ordering quantity per cycle as

Q22 = Ir(0) +W − Io(T ) =

∫ µ

0
a(x)dx+ d0(t0 − µ) +W +

∫ T

T1

e−δ(T−x)b(x)dx. (73)

The total quantity of lost sales during the shortage period [T1, T ] as

S22 =

∫ T

T1

(1− e−δ(T−x))b(x)dx. (74)

Therefore, the total profit per unit time under the condition µ ≤ t0 ≤ γ ≤ T1 ≤ T is
determined by

Π22(T1) = 1
T {(p− C)Q22 −A−H

∫ t0
0 Ir(t)dt− h

∫ T1

0 Io(t)dt−B
∫ T
T1
−Io(t)dt− LS22}

= 1
T {(p− C)[

∫ µ
0 a(x)dx+ d0(t0 − µ) +W +

∫ T
T1
e−δ(T−x)b(x)dx]

− A−H[
∫ µ

0

∫ µ
t a(x)dxdt+

∫ µ
0 d0(t0 − µ)dt+

∫ t0
µ d0(t0 − t)dt]

− h[Wt0 +
∫ γ
t0
d0(γ − t)dt+

∫ γ
t0

∫ T1

γ b(x)dxdt+
∫ T1

γ

∫ T1

t b(x)dxdt]

+ B
∫ T
T1

∫ T1

t e−δ(T−x)b(x)dxdt− L
∫ T
T1

(1− e−δ(T−x))b(x)dx}.
(75)

2.2. Case with t0 ≤ µ < γ ≤ T1 ≤ T

[Position of Figure 6]

Similar to the above cases, as shown in Figure 6, in RW, the inventory level Ir(t)
with respect to time t can be described by

dIr(t)

dt
= −a(t), 0 ≤ t ≤ t0. (76)

Using the boundary condition Ir(t0) = 0, we have

Ir(t) =

∫ t0

t
a(x)dx, 0 ≤ t ≤ t0. (77)
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In OW, the changes of Io(t) in [t0, T ] with respect to time t can be given, respectively,
by

dIo(t)

dt
= −a(t), t0 ≤ t ≤ µ, (78)

dIo(t)

dt
= −d0, µ ≤ t ≤ γ, (79)

dIo(t)

dt
= −b(t), γ ≤ t ≤ T1, (80)

and

dIo(t)

dt
= −e−δ(T−t)b(t), T1 ≤ t ≤ T. (81)

Using the boundary conditions Io(µ
−) = Io(µ

+), Io(γ
−) = Io(γ

+) and Io(T1) = 0, the
solutions of Eqs.(78), (79), (80) and (81) are

Io(t) =

∫ µ

t
a(x)dx+ d0(γ − µ) +

∫ T1

γ
b(x)dx, t0 ≤ t ≤ µ, (82)

Io(t) = d0(γ − t) +

∫ T1

γ
b(x)dx, µ ≤ t ≤ γ, (83)

Io(t) =

∫ T1

t
b(x)dx, γ ≤ t ≤ T1, (84)

and

Io(t) =

∫ T1

t
e−δ(T−x)b(x)dx, T1 ≤ t ≤ T, (85)

respectively.

From Io(t0) = W , we can easily get
∫ µ
t0
a(x)dx + d0(γ − µ) +

∫ T1

γ b(x)dx = W . Let

F (x) =
∫
a(x)dx. Then t0 can also be simplified as the following relation:

t0 = F−1(F (µ)−W + d0(γ − µ) +

∫ T1

γ
b(x)dx) = t30(T1). (86)

Next, taking the first derivative of t30(T1), we have

dt30(T1)

dT1
=
b(T1)

a(t0)
> 0. (87)
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From Eqs.(77) and (85), we get the ordering quantity per cycle as

Q23 = Ir(0) +W − Io(T ) =

∫ t0

0
a(x)dx+W +

∫ T

T1

e−δ(T−x)b(x)dx. (88)

The total quantity of lost sales during the shortage period [T1, T ] as

S23 =

∫ T

T1

(1− e−δ(T−x))b(x)dx. (89)

Therefore, the total profit per unit time under the condition t0 ≤ µ < γ ≤ T1 ≤ T is
determined by

Π23(T1) = 1
T {(p− C)Q23 −A−H

∫ t0
0 Ir(t)dt− h

∫ T1

0 Io(t)dt−B
∫ T
T1
−Io(t)dt− LS23}

= 1
T {(p− C)[

∫ t0
0 a(x)dx+W +

∫ T
T1
e−δ(T−x)b(x)dx]−A

− H
∫ t0

0

∫ t0
t a(x)dxdt− h[Wt0 +

∫ µ
t0

∫ µ
t a(x)dxdt+

∫ µ
t0

∫ γ
µ d0dxdt]

− h[
∫ µ
t0

∫ T1

γ b(x)dxdt+
∫ γ
µ

∫ γ
t d0dxdt+

∫ γ
µ

∫ T1

γ b(x)dxdt+
∫ T1

γ

∫ T1

t b(x)dxdt]

+ B
∫ T
T1

∫ T1

t e−δ(T−x)b(x)dxdt− L
∫ T
T1

(1− e−δ(T−x))b(x)dx}.
(90)

2.3. Case with t0 ≤ µ ≤ T1 ≤ γ ≤ T

[Position of Figure 7]

Likewise, as shown in Figure 7, in RW, the inventory level Ir(t) in [0, t0] with respect
to time t can be described by

dIr(t)

dt
= −a(t), 0 ≤ t ≤ t0. (91)

Using the boundary condition Ir(t0) = 0, we have

Ir(t) =

∫ t0

t
a(x)dx, 0 ≤ t ≤ t0. (92)

In OW, the changes of Io(t) in [t0, T ] with respect to time t can be described by

dIo(t)

dt
= −a(t), t0 ≤ t ≤ µ, (93)

dIo(t)

dt
= −d0, µ ≤ t ≤ T1, (94)

dIo(t)

dt
= −e−δ(T−t)d0, T1 ≤ t ≤ γ, (95)
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and

dIo(t)

dt
= −e−δ(T−t)b(t), γ ≤ t ≤ T, (96)

respectively. Using the boundary conditions Io(µ
−) = Io(µ

+), Io(T1) = 0 and Io(γ
−) =

Io(γ
+), the solutions of Eqs.(93), (94), (95) and (96) can be given, respectively, by

Io(t) =

∫ µ

t
a(x)dx+ d0(T1 − µ), t0 ≤ t ≤ µ, (97)

Io(t) = d0(T1 − t), µ ≤ t ≤ T1, (98)

Io(t) =

∫ T1

t
e−δ(T−x)d0dx, T1 ≤ t ≤ γ, (99)

and

Io(t) =

∫ γ

t
e−δ(T−x)b(x)dx−

∫ γ

T1

e−δ(T−x)d0dx, γ ≤ t ≤ T. (100)

From Io(t0) = W , we can easily get
∫ µ
t0
a(x)dx+ d0(T1 − µ) = W . Similarly, t0 can

also be simplified as the following relation:

t0 = F−1(F (µ)−W + d0(T1 − µ)) = t40(T1), (101)

and furthermore, taking the first derivative of t40(T1), we have

dt40(T1)

dT1
=

d0

a(t0)
> 0. (102)

From Eqs.(92) and (100), we get the ordering quantity per cycle as

Q24 = Ir(0) +W − Io(T ) =

∫ t0

0
a(x)dx+W +

∫ T

γ
e−δ(T−x)b(x)dx

+

∫ γ

T1

e−δ(T−x)d0dx, (103)

and the total quantity of lost sales during the shortage period [T1, T ] as

S24 =

∫ γ

T1

(1− e−δ(T−x))d0dx+

∫ T

γ
(1− e−δ(T−x))b(x)dx. (104)

Therefore, the total profit per unit time under the condition t0 ≤ µ ≤ T1 ≤ γ ≤ T is
determined by
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Π24(T1) = 1
T {(p− C)Q24 −A−H

∫ t0
0 Ir(t)dt− h

∫ T1

0 Io(t)dt−B
∫ T
T1
−Io(t)dt− LS24}

= 1
T {(p− C)[

∫ t0
0 a(x)dx+W +

∫ T
γ e−δ(T−x)b(x)dx+

∫ γ
T1
e−δ(T−x)d0dx]−A

− H
∫ t0

0

∫ t0
t a(x)dxdt− h[Wt0 +

∫ µ
t0

∫ µ
t a(x)dxdt+

∫ µ
t0

∫ T1

µ d0dxdt]

− h
∫ T1

µ

∫ T1

t d0dxdt+B[
∫ γ
T1

∫ t1
t e−δ(T−x)d0dxdt+

∫ T
γ

∫ γ
t e
−δ(T−x)b(x)dxdt]

− B
∫ T
γ

∫ γ
T1
e−δ(T−x)d0dxdt− L[

∫ γ
T1

(1− e−δ(T−x))d0dx+
∫ T
γ (1− e−δ(T−x))b(x)dx]}.

(105)

[Position of Figure 8]

2.4. Case with t0 < T1 ≤ µ < γ ≤ T
As shown in Figure 8, in RW, the inventory level Ir(t) in [0, t0] with respect to time

t can be described by

dIr(t)

dt
= −a(t), 0 ≤ t ≤ t0. (106)

Using the boundary condition Ir(t0) = 0, we have

Ir(t) =

∫ t0

t
a(x)dx, 0 ≤ t ≤ t0. (107)

In OW, the changes of Io(t) in [t0, T ] with respect to time t can be given, respectively,
by

dIo(t)

dt
= −a(t), t0 ≤ t ≤ T1, (108)

dIo(t)

dt
= −e−δ(T−t)a(t), T1 ≤ t ≤ µ, (109)

dIo(t)

dt
= −e−δ(T−t)d0, µ ≤ t ≤ γ, (110)

and

dIo(t)

dt
= −e−δ(T−t)b(t), γ ≤ t ≤ T. (111)

Using the boundary conditions Io(T1) = 0, Io(µ
−) = Io(µ

+) and Io(γ
−) = Io(γ

+), the
solutions of Eqs.(108), (109), (110) and (111) are

Io(t) =

∫ T1

t
a(x)dx, t0 ≤ t ≤ T1, (112)

Io(t) =

∫ T1

t
e−δ(T−x)a(x)dx, T1 ≤ t ≤ µ, (113)
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Io(t) =

∫ µ

t
e−δ(T−x)d0dx−

∫ µ

T1

e−δ(T−x)a(x)dx, µ ≤ t ≤ γ, (114)

and

Io(t) =

∫ γ

t
e−δ(T−x)b(x)dx−

∫ γ

µ
e−δ(T−x)d0dx−

∫ µ

T1

e−δ(T−x)a(x)dx, γ ≤ t ≤ T, (115)

respectively.

From Io(t0) = W , we easily get
∫ T1

t0
a(x)dx = W . Similarly, t0 can also be simplified

as the following relation:

t0 = F−1(F (T1)−W ) = t50(T1). (116)

Then, taking the first derivative of t50(T1), we have

dt50(T1)

dT1
=
a(T1)

a(t0)
> 0. (117)

From Eqs.(107) and (115), we can get the ordering quantity per cycle as

Q25 = Io(0) +W − Io(T ) =

∫ t0

0
a(x)dx+W +

∫ T

γ
e−δ(T−x)b(x)dx∫ γ

µ
e−δ(T−x)d0dx+

∫ µ

T1

e−δ(T−x)a(x)dx, (118)

and the total quantity of lost sales during the shortage period [t1, T ] as

S25 =

∫ µ

T1

(1− e−δ(T−x))a(x)dx+

∫ γ

µ
(1− e−δ(T−x))d0dx+

∫ T

γ
(1− e−δ(T−x))b(x)dx.

(119)
Therefore, the total profit per unit time under the condition t0 < T1 ≤ µ < γ ≤ T is
determined by

Π25(T1) = 1
T {(p− C)Q25 −A−H

∫ t0
0 Ir(t)dt− h

∫ T1

0 Io(t)dt−B
∫ T
T1
−Io(t)dt− LS25}

= 1
T {(p− C)[

∫ t0
0 a(x)dx+W +

∫ T
γ e−δ(T−x)b(x)dx+

∫ γ
µ e
−δ(T−x)d0dx]

+ (p− C)[
∫ µ
T1
e−δ(T−x)a(x)dx]−A−H[

∫ t0
0

∫ t0
t a(x)dxdt]

− h[Wt0 +
∫ T1

t0

∫ T1

t a(x)dxdt] +B[
∫ µ
T1

∫ T1

t e−δ(T−x)a(x)dxdt]

+ B[
∫ γ
µ

∫ µ
t e
−δ(T−x)d0dxdt−

∫ γ
µ

∫ µ
T1
e−δ(T−x)a(x)dxdt]

+ B[
∫ T
γ

∫ γ
t e
−δ(T−x)b(x)dxdt−

∫ T
γ

∫ γ
µ e
−δ(T−x)d0dxdt]

− B[
∫ T
γ

∫ µ
T1
e−δ(T−x)a(x)dxdt]− L[

∫ µ
T1

(1− e−δ(T−x))a(x)dx]

− L[
∫ γ
µ (1− e−δ(T−x))d0dx+

∫ T
γ (1− e−δ(T−x))b(x)dx]}.

(120)
OA3 The proofs of theorem and proposition

3.1. Single warehouse mode
3.1.1. The proof of Theorem 4.1
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Proof. For case i, i = 1, 2, 3, taking the first-order differential of Π1i(t1) with respect
to t1, we have

dΠ11(t1)

dt1
=

1

T
a(t1)z(t1), (121)

dΠ12(t1)

dt1
=

1

T
d0z(t1), (122)

and

dΠ13(t1)

dt1
=

1

T
b(t1)z(t1), (123)

where z(t1) = (p− C + L)(1− e−δ(T−t1))− ht1 +Be−δ(T−t1)(T − t1).

The necessary condition for Π1i(t1) to be maximized is dΠ1i(t1)
dt1

= 0. Since a(t),
d0, and b(t) are positive for any t, it implies from Eqs.(121)-(123) that the necessary

condition dΠ1i(t1)
dt1

= 0 can be satisfied if z(t1) = 0, i = 1, 2, 3.

3.1.2. The proof of Proposition 4.2

Proof. Taking the first derivative of z(t1) with respect to t1, we attain that z′(t1) =
−δ(p − C + L)eδ(t1−T ) − h − B(1 − δ(T − t1))eδ(t1−T ). From the assumption before,
we easily get (p− C + L) > 0 and 1− δ(T − t1) > 0. Thus, we have z′(t1) < 0, which
implies that z(t1) is a strictly decreasing function with respect to t1.

3.1.3. The proof of Theorem 4.3

Proof. From the demand assumption, we have d0 = a(µ) = b(γ). Furthermore,
Eqs.(121)-(123) imply that

dΠ11(t1)

dt1
|t1→µ− =

dΠ12(t1)

dt1
|t1→µ+

and

dΠ12(t1)

dt1
|t1→γ− =

dΠ13(t1)

dt1
|t1→γ+ .

Thus, Π1(t1) is differentiable on [0, T ]. For case i, i = 1, 2, 3, combining the functional
behaviors of Π1(t1) with Eqs.(121)-(123), the first-order derivative of Π1i(t1) with
respect to t1 can also be summarized as follow:

dΠ1i(t1)

dt1
=

1

T
D(t1)z(t1), t1 ∈ [tlbi1 , tubi1 ]. (124)

Since D(t1) is positive in [0, T ], and from Proposition 4.2, z(t1) is a strictly decreasing

function with respect to t1, thus if z(tlbi1 ) > 0 and z(tubi1 ) < 0, then the Intermediate

Value Theorem implies that there exists a unique value ti∗1 ∈ (tlbi1 , tubi1 ) satisfying
z(t1) = 0. Furthermore, taking the second derivative of Π1i(t1) with respect to t1, we
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have d2Π1i(t1)
dt21

|t1=ti∗1
= 1

T z
′(ti∗1 )D(ti∗1 ) < 0. Thus, ti∗1 is the unique maximum solution of

Π1i(t1).

From Eq.(124), for any t1 ∈ [tlbi1 , tubi1 ], where i = 1, 2, 3, if z(tubi1 ) > 0, then dΠ1i(t1)
dt1

=
1
T z(t1)D(t1) > 1

T z(t
ubi
1 )D(t1) > 0, which indicates that Π1i(t1) is strictly increasing

on [tlbi1 , tubi1 ]. Thus, ti∗1 = tubi1 is the optimal solution of Π2i(t1).

Similarly, for any t1 ∈ [tlbi1 , tubi1 ], where i = 1, 2, 3, if z(tlbi1 ) < 0, then dΠ1i(t1)
dt1

=
1
T z(t1)D(t1) < 1

T z(t
lbi
1 )D(t1) < 0, which implies that Π1i(t1) is strictly decreasing on

[tlbi1 , tubi1 ]. Thus, ti∗1 = tlbii is the optimal solution of Π1i(t1).

3.2. Two-warehouse mode

3.2.1. The proof of Theorem 4.5

Proof. Combing with Eqs. (30), (72), (87), (102) and (117), for case j, j = 1, 2, . . . , 5,
the first-order differential of Π2j(T1) with respect to T1 can be written as follows:

dΠ21(T1)

dT1
=
∂Π21(T1)

∂T1
+
∂Π21(T1)

∂t0

dt10(T1)

dT1
=

1

T
Z1(T1)b(T1) = 0. (125)

dΠ22(T1)

dT1
=
∂Π22(T1)

∂T1
+
∂Π22(T1)

∂t0

dt20(T1)

dT1
=

1

T
Z2(T1)b(T1) = 0, (126)

dΠ23(T1)

dT1
=
∂Π23(T1)

∂T1
+
∂Π23(T1)

∂t0

dt30(T1)

dT1
=

1

T
Z3(T1)b(T1) = 0, (127)

dΠ24(T1)

dT1
=
∂Π24(T1)

∂T1
+
∂Π24(T1)

∂t0

dt40(T1)

dT1
=

1

T
Z4(T1)d0 = 0, (128)

and

dΠ25(t1)

dT1
=
∂Π25(T1)

∂T1
+
∂Π25(T1)

∂t0

dt50(T1)

dT1
=

1

T
Z5(T1)a(T1) = 0. (129)

Since a(T1), d0, and b(T1) are positive, for case j, it implies from Eqs.(125)-(129)

that the necessary condition dΠ2j(T1)
dT1

= 0 can be satisfied if Zj(T1) = 0, where j =
1, 2, . . . , 5.

3.2.2. The proof of Proposition 4.6

Proof. For case j, j = 1, 2, . . . , 5, taking the first derivative of Zj(T1) with respect to

T1, we get Z ′j(T1) = −δ(p−C+L)eδ(T1−T )−h−(H−h)dt
j
0(T1)
dT1
−B(1−δ(T−T1))eδ(T1−T ).

From Eqs. (30), (72), (87), (102) and (117), we have dtj0(T1)
dT1

> 0, and according to the
assumption before, we have p − C + L > 0, H > h, and 1 − δ(T − T1) > 0. Thus,
we gain Z ′j(T1) < 0, which implies that Zj(T1) is a strictly decreasing function with
respect to T1.
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3.2.3. The proof of Theorem 4.7

Proof. Similarly, for case j, j = 1, 2, . . . , 5, since D(t1) is positive in [0, T ], and from
Proposition 4.6, Zj(T1) is a strictly decreasing function with respect to T1. Thus, if

Zj(T
Lbj
1 ) > 0 and Zj(T

Ubj
1 ) < 0, then the Intermediate Value Theorem implies that

there exists a unique value T j∗1 ∈ (T
Lbj
1 , T

Ubj
1 ) satisfying Zj(T1) = 0. Furthermore,

taking the second derivative of Π2j(T1) with respect to T1, we have d2Π2j(T1)
dT 2

1
|T1=T j∗

1
=

1
T Z
′
j(T

j∗
1 )D(T j∗1 ) < 0. Thus, T j∗1 is the unique maximum solution of Π2j(T1).

From Eqs.(125)-(129), the first derivative of Π2j(T1) with respect to T1 can also be

formulated as dΠ2j(T1)
dT1

= 1
T Zj(T1)D(T1), so for any T1 ∈ [T

Lbj
1 , T

Ubj
1 ], if Zj(T

Ubj
1 ) > 0,

then dΠ2j(T1)
dt1

= 1
T Zj(T1)D(T1) > 1

T Zj(T
Ubj
1 )D(T1) > 0, which indicates that Π2j(T1)

is strictly increasing on [T
Lbj
1 , T

Ubj
1 ]. Thus, T j∗1 = T

Ubj
1 is the optimal solution of

Π2j(T1), where j = 1, 2, . . . , 5.

For any T1 ∈ [T
Lbj
1 , T

Ubj
1 ], if Zj(T

Lbj
1 ) < 0, then dΠ2j(T1)

dT1
= 1

T Zj(T1)D(T1) <
1
T Zj(T

Lbj
1 )D(T1) < 0, which implies that Π2j(T1) is strictly decreasing on [T

Lbj
1 , T

Ubj
1 ].

Thus, T j∗1 = T
Lbj
1 is the optimal solution of Π2j(T1), where j = 1, 2, . . . , 5.

OA4 The flowchart for the solution algorithm in the inventory system

[Position of Figure 9]
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Lists of Figure and Table Captions

Figure 1 The inventory behavior graph with time in case with 0 ≤ t1 ≤ µ
Figure 2 The inventory behavior graph with time in case with µ < γ ≤ t0 < T1 ≤ T
Figure 3 The inventory behavior graph with time in case with µ ≤ t1 ≤ γ
Figure 4 The inventory behavior graph with time in case with γ ≤ t1 ≤ T
Figure 5 The inventory behavior graph with time in case with µ ≤ t0 ≤ γ ≤ T1 ≤ T
Figure 6 The inventory behavior graph with time in case with t0 ≤ µ < γ ≤ T1 ≤ T
Figure 7 The inventory behavior graph with time in case with t0 ≤ µ ≤ T1 ≤ γ ≤ T
Figure 8 The inventory behavior graph with time in case with t0 < T1 ≤ µ < γ ≤ T
Figure 9 The flowchart for the solution algorithm in the inventory system
Table 1 Summary of related assumptions in previous studies.

Table 2 The value of T
Lbj
1 , T

Ubj
1 for each case j.

Table 3 Optimal solutions for different situations in the two-warehouse mode
Table 4 Effects of changes in the model parameters
Table 5 Effects of changes in the model parameters for Example 5.1
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Figure 1. The inventory behavior graph with time in case with 0 ≤ t1 ≤ µ
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Figure 2. The inventory behavior graph with time in case with µ < γ ≤ t0 < T1 ≤ T
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Figure 3. The inventory behavior graph with time in case with µ ≤ t1 ≤ γ
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Figure 4. The inventory behavior graph with time in case with γ ≤ t1 ≤ T
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Figure 5. The inventory behavior graph with time in case with µ ≤ t0 ≤ γ ≤ T1 ≤ T
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Figure 6. The inventory behavior graph with time in case with t0 ≤ µ < γ ≤ T1 ≤ T
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Figure 7. The inventory behavior graph with time in case with t0 ≤ µ ≤ T1 ≤ γ ≤ T
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Figure 8. The inventory behavior graph with time in case with t0 < T1 ≤ µ < γ ≤ T
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Figure 9. The flowchart for the solution algorithm in the inventory system
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Table 2. The values of T
Lbj
1 and T

Ubj
1 for each case j.

Case j T
Lbj
1 T

Ubj
1

1 G−1(G(γ) +W )(i) T
2 max{γ,G−1(G(γ) +W − d0(γ − µ))} min{G−1(G(γ) +W ), T}
3 max{γ,G−1(G(γ) +W −

∫ µ
0 a(x)dx− d0(γ − µ))} min{G−1(G(γ) +W − d0(γ − µ)), T}

4 max{µ, (W −
∫ µ
0 a(x)dx+ d0µ)/d0} min{γ, (W + d0µ)/d0}

5 F−1(W + F (0))(ii) µ

Note: (i) G(x) =
∫
b(x)dx; (ii) F (x) =

∫
a(x)dx.

Table 3. Optimal solutions for different situations in the two-warehouse case.

Case j T
Lbj
1 T

Ubj
1 Γj(T

Lbj
1 ) Γj(T

Ubj
1 ) tj∗0 T j∗1 Π2i(T

j∗
1 ) Qrj QB2j

1 1.3994 2.0000 < 0 < 0 0.8000 1.3994 485.6413 82.8092 30.8322
2 0.9893 1.3994 < 0 > 0 0.6943 1.2390 487.1265 71.6982 41.8677
3 0.8000 0.9893 < 0 < 0 0.5000 0.9893 482.5902 57.2711 62.1138
4 0.5000 0.8000 < 0 < 0 0.3228 0.8000 471.4847 32.8092 80.3723
5 0.4879 0.5000 < 0 < 0 0.0127 0.5000 440.6261 01.2711 111.4875

Table 4. Effects of changes in the model parameters.

H W L t∗0 t∗1 Π(t∗1) Qo Qr QB Use RW?

1.5 50 3 0.6943 1.2390 487.1265 50 71.6982 41.8677 Yes
4 0.6958 1.2412 487.0389 50 71.8612 41.7059 Yes

100 3 0.2638 1.3091 493.1273 100 26.7329 36.8694 Yes
4 0.2652 1.3112 493.0579 100 26.8733 36.7299 Yes

150 3 0 1.3521 494.1105 129.6789 0 33.9430 No
4 0 1.3541 494.0509 129.8201 0 33.8028 No

3.0 50 3 0.5201 1.0129 472.9561 50 53.3804 60.0255 Yes
4 0.5218 1.0150 472.7887 50 53.5633 59.8444 Yes

100 3 0.2014 1.2209 491.0977 100 20.3474 43.2081 Yes
4 0.2027 1.2226 491.0048 100 20.4752 43.0813 Yes

150 3 0 1.3521 494.1105 129.6789 0 33.9430 No
4 0 1.3541 494.0509 129.8201 0 33.8028 No

4.5 50 3 0 0.4879 438.9612 50 0 112.7397 No
4 0 0.4879 436.7800 50 0 112.7397 No

100 3 0 0.9753 485.1008 100 0 63.3720 No
4 0 0.9753 484.9161 100 0 63.3720 No

150 3 0 1.3521 494.1105 129.6789 0 33.9430 No
4 0 1.3541 494.0509 129.8201 0 33.8028 No
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Table 5. Effects of changes in the model parameters for Example 5.1

Parameters t∗0 t∗1 Π(t∗1) Qr QB

p 8 0.6880 1.2301 159.9998 71.0334 42.5274
10 0.6912 1.2346 323.5619 71.3683 42.1951
12 0.6943 1.2390 487.1265 71.6982 41.8677
14 0.6974 1.2434 650.6936 72.0231 41.5452
16 0.7004 1.2478 814.2631 72.3433 41.2273

C 3 0.6974 1.2434 650.6936 72.0231 41.5452
4 0.6959 1.2412 568.9097 71.8612 41.7059
5 0.6943 1.2390 487.1265 71.6982 41.8677
6 0.6927 1.2368 405.3439 71.5339 42.0308
7 0.6912 1.2346 323.5619 71.3683 42.1950

A 30 0.6943 1.2390 497.1265 71.6982 41.8677
50 0.6943 1.2390 487.1265 71.6982 41.8677
70 0.6943 1.2390 477.1265 71.6982 41.8677
90 0.6943 1.2390 467.1265 71.6982 41.8677
110 0.6943 1.2390 457.1265 71.6982 41.8677

h 0.8 0.7168 1.2715 491.9361 74.0656 39.5178
0.9 0.7055 1.2551 489.5150 72.8780 40.0967
1.0 0.6943 1.2390 487.1265 71.6982 41.8677
1.1 0.6831 1.2233 484.7700 70.5250 43.0319
1.2 0.6720 1.2077 482.4451 69.3576 44.1901

B 1.6 0.6216 1.1396 491.2017 64.0551 49.4490
1.8 0.6608 1.1923 489.0111 68.1775 45.3609
2.0 0.6943 1.2390 487.1265 71.6982 41.8677
2.2 0.7232 1.2809 485.4893 74.7352 38.8531
2.4 0.7483 1.3184 484.0549 77.3786 36.2281

δ 0.01 0.6943 1.2390 487.1265 71.6982 41.8677
0.02 0.7071 1.2573 486.3670 73.0396 40.3715
0.03 0.7191 1.2748 485.6518 74.3031 38.9715
0.04 0.7304 1.2915 484.9773 75.4950 37.6593
0.05 0.7411 1.3075 484.3403 76.6208 36.4272

M 80 0.5676 1.2597 361.0694 46.7015 25.9247
90 0.6377 1.2483 422.6320 59.1698 33.4378
100 0.6943 1.2390 487.1265 71.6982 41.8677
110 0.7411 1.2314 554.5791 84.2841 51.2151
120 0.7806 1.2250 625.0117 96.9252 61.4817

N 160 0.7140 1.2358 525.9714 73.7636 52.4262
180 0.7035 1.2375 504.4350 72.6598 46.5410
200 0.6943 1.2390 487.1265 71.6982 41.8677
220 0.6862 1.2404 472.8800 70.8490 38.0671
240 0.6790 1.2415 460.9300 70.0909 34.9156

µ 0.46 0.6923 1.2394 485.1467 71.3932 41.5136
0.48 0.6932 1.2392 486.1416 71.5476 41.6903
0.50 0.6943 1.2390 487.1265 71.6982 41.8677
0.52 0.6953 1.2389 488.1014 71.8448 42.0459
0.54 0.6964 1.2387 489.0663 71.9875 42.2248

γ 0.76 0.6798 1.2414 473.9453 70.1722 38.9952
0.78 0.6873 1.2402 480.6589 70.9642 40.4441
0.80 0.6943 1.2390 487.1265 71.6982 41.8677
0.82 0.7008 1.2380 493.3570 72.3773 43.2658
0.84 0.7067 1.2370 499.3589 73.0045 44.6381

T 1.6 0.5087 0.9995 548.4042 52.1822 42.5197
1.7 0.5581 1.0589 532.7641 57.3796 42.6213
1.8 0.6055 1.1186 517.2675 62.3602 42.5304
1.9 0.6509 1.1787 502.0282 67.1307 42.2718
2.0 0.6943 1.2390 487.1265 71.6982 41.8677
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