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ABSTRACT
This paper considers the problem of scheduling periodic maintenance items for oil
and gas plants. Each maintenance item involves various maintenance tasks and may
require temporary equipment shutdowns, which are costly and highly disruptive to
production. The aim is to minimize equipment shutdowns by grouping maintenance
items with similar shutdown requirements into short-term maintenance operations
called campaigns. Real plants can involve tens of thousands of maintenance items
and thus manually scheduling the campaigns is an extreme challenge. In this paper,
we develop a mixed-integer linear programming model for optimally allocating main-
tenance items to campaigns so that total shutdown cost is minimized. The model
incorporates constraints on maintenance deadlines, campaign times, maintenance
item suppression and labour hours per campaign. We solve the model for realistic
scenarios involving data for Karratha Gas Plant in Western Australia, which is the
main processing plant for the massive North West Shelf oil and gas project.
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1. Introduction

Maintenance is a major cost in any asset-intensive industry and oil and gas is no ex-
ception (Al-Turki et al. (2019)). Oil and gas plants contain thousands of individual
pieces of equipment, all competing for limited maintenance resources, and different
pieces of equipment have different priorities and require different maintenance strate-
gies. Balancing these varying requirements to achieve an overall optimal outcome is a
major challenge for maintenance managers, who must strike a delicate balance between
over-maintenance (which is inefficient and costly) and under-maintenance (which can
lead to unacceptable risks).

For the massive, isolated plants common in the resources industry, heavy mainte-
nance work is often concentrated into intensive short-term maintenance campaigns
where the plant is partially or completely shut down. This “campaign maintenance”
approach is necessary when the work sites are situated in remote areas where it is not
possible to base a large workforce. Consequently, local resources are limited and most
maintenance personnel are employed on a “fly-in fly-out” basis.
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With the growing need to minimize maintenance costs and unplanned outages, the
last decade has seen tremendous growth in machine learning methods for predicting
equipment faults—their timing, location, and likely causes (Fuqiong et al. (2013);
Khorasgani et al. (2016); Sankararaman (2015); Shi and Zeng (2016)). Even with
perfect predictions, however, designing an optimal maintenance schedule is far from
trivial given the massive number of inter-related components in a real-world plant. For
campaign maintenance, there are two key planning and scheduling problems:

(1) Single campaign planning – determine the optimal work sequence for a series of
inter-related maintenance activities within a single campaign, with the aim of
minimizing campaign duration and the resources required; and

(2) Multi-campaign planning – determine the best way of dividing maintenance work
into campaigns and schedule the timing of these campaigns over a long-term time
horizon (typically many years), with the aim of maximizing plant availability and
minimizing cost.

The first problem is essentially a resource-constrained project scheduling problem
(RCPS), a classic optimization problem that has been studied since the 1960s. The
RCPS is NP-hard and requires selecting the timing of each activity in a project
given precedence relationships and constraints on the number of resources available
(Blazewicz et al. (1983)). The objective is typically to minimize schedule duration
and the problem can be represented as a network in which the nodes represent activ-
ities and the arcs represent precedences. See Mika et al. (2015) for a comprehensive
review of the RCPS and Hartmann and Briskorn (2010) for a discussion on some of
its extensions.

Both exact and heuristic methods have been proposed for solving the RCPS. Most of
the exact methods are based on branch-and-bound algorithms that exploit the network
structure of the problem to determine efficient lower bounds, branching strategies,
and subproblem selection strategies. The lower bounds help to reduce the size of the
search tree and the most common lower bounds are the critical path lower bound
(obtained by removing the resource constraints), the resource capacity lower bound
(obtained by removing the precedence constraints), and the critical capacity lower
bound (similar to the resource capacity lower bound but with the early start times
from the critical path taken into account). Other, more advanced lower bounds used
in the literature include the critical sequence lower bound, the parallel machine lower
bound, and the incompatible pairs lower bound (Coelho and Vanhoucke (2018); Shim
and Kim (2007)). The branching strategies dictate how the full RCPS is decomposed
into subproblems, and the main strategies used include serial branching (Sprecher
(2000)), parallel branching (Demeulemeester and Herroelen (1992)), and activity start
branching (Dorndorf et al. (2000); Ranjbar et al. (2012)). Finally, the subproblem
selection strategies dictate the order in which the subproblems in the search tree are
solved, either through depth-first search, best bound search, or some combination.

Branch-and-bound methods for solving the RCPS—and, by extension, the single
campaign planning problem (1) above—are exact algorithms that, while mathemati-
cally rigorous, are often time-consuming for real problems. Thus, various heuristic and
meta-heuristic methods have also been proposed in the literature (Kolisch and Hart-
mann (2006)). Heuristic methods generate a feasible schedule or a set of schedules from
scratch using either a serial approach (iterating activity by activity) or parallel ap-
proach (iterating time instant by time instant) (Boctor (1990); Kolisch and Hartmann
(1999); Li and Willis (1992)). In both approaches, various priority rules are used to
select the next activity to schedule, such as choosing the activity with the maximum
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number of successors, choosing the activity with the shortest duration, or choosing
the activity with the minimum latest start time (Kolisch (1996)). These heuris-
tic methods are specific to the RCPS, whereas meta-heuristics are general-purpose
frameworks designed for a wide range of problems. For the RCPS, the most popular
meta-heuristics include local search algorithms such as tabu search (Lambrechts et
al. (2008)), population-based algorithms such as particle swarm optimization (Jar-
boui et al. (2008)), and learning algorithms such as neural networks (Agarwal et al.
(2011)). Hybrid methods for the RCPS take this one step further by combining different
meta-heuristics, such as using local search methods in population-based optimization
(Ziarati et al. (2011)), or by combining meta-heuristics with exact methods such as
branch-and-bound or constraint programming (Yoosefzadeh and Tareghian (2013)).
See Pellerin et al. (2019) for a recent survey of hybrid meta-heuristic methods for the
RCPS.

The references described above are for the general RCPS—of which the campaign
planning problem is a special case—rather than being specifically targeted at main-
tenance. One of the only maintenance-focused papers in this area of the literature
is Megow et al. (2011), which discusses heuristic methods for solving the RCPS
in turnaround and shutdown maintenance projects. Two other papers (Pillac et al.
(2013); Zamorano and Stolletz (2017)) focus on the problem of routing maintenance
technicians in short-term maintenance projects. This routing aspect is related to the
campaign planning problem (1), but is generally excluded from RCPS formulations.

Although our discussion thus far reveals that optimal scheduling for short-term
maintenance operations or campaigns has been extensively studied, problem (2) on
long-term multi-campaign planning has yet to be explored in the literature. Instead,
the focus is on continuous maintenance strategies where the maintenance effort is
evenly distributed across the time horizon (Ebrahimipour et al. (2015); Moinian et
al. (2017)). Discrete maintenance campaigns—short bursts of intensive maintenance
activity followed by long periods of minimal maintenance—are ignored.

This paper fills this gap in the literature by proposing a mixed-integer linear pro-
gramming model for the multi-campaign planning problem introduced above. In this
respect, the paper is similar in philosophy to the exact solution approaches for the
RCPS, which also generally involve mixed-integer programming models, but the struc-
ture of our model and the corresponding mathematical results are completely different
due to the different problem settings. Our model involves allocating periodic main-
tenance activities, called maintenance items, to a fixed number of maintenance cam-
paigns and determining the timing of those campaigns over the remaining life of the
plant. Since the maintenance items may require certain systems and equipment to be
shut down, the aim is to group maintenance items with similar shutdown requirements
into the same campaign to minimize re-work. This can be achieved by performing
some items more frequently than required (over-maintenance) and other items less
frequently than required (under-maintenance). For example, it may be advantageous
to delay a maintenance item so that it coincides with other similar items requiring the
same shutdowns. In each campaign, the amount of work is restricted due to resource
limitations. Moreover, there are limits on the extent to which maintenance items can
be delayed, and some safety-critical items cannot be delayed at all.

The remainder of this paper is organized as follows. Section 2 describes our mixed-
integer linear programming model for the multi-campaign planning problem. Section 3
gives the mathematical justification for the model, and then Section 4 presents the
results from various numerical simulations. Section 4 consists of two parts: Section 4.1
covers a real case study involving data for Karratha Gas Plant operated by Woodside
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1 2 3 4 5 6 7 8 9 10

Figure 1. Maintenance schedule for a two-year maintenance item (circle) and a three-year maintenance item
(square).

Energy Ltd., Australia’s largest independent oil and gas company, and Section 4.2
discusses the results for randomly-generated test problems. Section 5 concludes the
paper with a summary of our contributions and suggestions for future work.

2. Mathematical Model

2.1. Overview

The key entities in our maintenance scheduling problem are maintenance items, main-
tenance plans and maintenance campaigns. A maintenance item is a recurring service
operation—consisting of various maintenance tasks—for specific pieces of equipment,
and a maintenance plan is a group of related maintenance items. The maintenance
items are performed as part of maintenance campaigns, each lasting several weeks
during the year. These campaigns are intensive short-term maintenance operations
that typically involve hundreds or thousands of specialist maintenance personnel. The
number of campaigns per year and the number of years in the time horizon are input
parameters for the optimization model.

Each maintenance item takes a certain duration and requires a certain number of
resources to complete. Each maintenance item also has a cycle time or frequency that
defines the ideal rate at which it should be performed, as shown in the example schedule
in Figure 1. The frequency is only a guide and in practice some maintenance items can
deviate from their recommended frequency. For example, a yearly maintenance item
may be “brought forward” and repeated after only 10 months so that it aligns with
other maintenance items requiring similar resources. In this paper we only consider low-
frequency maintenance items whose cycle times are an integer number of years, which
constitutes the bulk of maintenance items in an oil and gas plant. The assumption
of integer frequencies ensures that each maintenance item in the optimization model
occurs at most once per year.

A maintenance plan typically contains maintenance items corresponding to different
service frequencies for the same pieces of equipment—for example, a two-year service
and a three-year service as shown in Figure 1. Such items are grouped into a single
plan so that they can be synchronized for efficiency. In the case of Figure 1, the two-
year and three-year services should be synchronized so that when they coincide every
sixth year, they occur together in the same campaign.

In some cases, when two maintenance items in the same plan coincide in a particular
year, the tasks in one of the items will replace (suppress) the tasks in the other item.
For example, a two-year maintenance service may already include all of the tasks in the
one-year service, meaning that the one-year service is redundant every second year. The
precise suppression rules are defined by a hierarchy value attached to each maintenance
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item, and higher hierarchy values suppress lower hierarchy values. In other words, when
multiple maintenance items coincide, only the maintenance item (or items) with the
highest hierarchy value is performed, and those with lower hierarchies are ignored.
For example, consider a maintenance plan containing a one-year maintenance item
with hierarchy value 1, and two-year and three-year maintenance items with hierarchy
value 2. The one-year item has the lowest hierarchy value and is thus omitted every
second and third year, when it coincides with either the two-year item or the three-
year item. In every sixth year when all three maintenance items coincide, both the
two-year and the three-year items must be performed because they share the same
hierarchy value, but the one-year item is redundant.

The hierarchy values are user inputs that can be altered to reflect different mainte-
nance strategies. Some maintenance plans may not use suppression, in which case all
items in the plan have the same hierarchy. For maintenance plans using suppression,
the hierarchy values will normally be proportional to the cycle time, since maintenance
items on long cycles are typically more extensive than those on short cycles. For ex-
ample, if the two-year and three-year maintenance items in Figure 1 use suppression,
then the tasks in the three-year item will likely supercede those in the two-year item
when they coincide every six years.

The optimization problem we consider involves scheduling repeated instances of
maintenance plans over a multi-year time horizon. Each maintenance plan is allocated
to a specific campaign and all items in the plan are performed as part of this campaign
in the years they are due. Hence, if the first instance of a maintenance item is completed
in a certain campaign, then all subsequent instances of that item are completed in
the same campaign (but in different years). The number of items performed in a
plan varies from year to year depending on the frequencies. The decision variables in
the optimization problem define the timing of each campaign in each year, and the
allocation of maintenance plans to campaigns. There are constraints on the minimum
and maximum campaign durations and the number of labour hours in a campaign.
Moreover, campaigns cannot overlap.

Some maintenance items require certain systems and equipment in the plant to be
shut down temporarily. The shutdowns required for a maintenance item can range from
the local shutdown of a single piece of equipment to a complete plant shutdown. The
objective function in the optimization model measures the total cost of all required
shutdowns over the time horizon. This cost can be reduced by grouping maintenance
plans requiring the same shutdowns into the same campaign. To achieve an optimal
grouping that minimizes overall shutdown cost, maintenance items can be delayed or
advanced with respect to their due dates. The extent to which a maintenance item can
be delayed or advanced is constrained based on the item’s importance. In particular,
maintenance items that are critical to safety or production typically cannot be delayed.

We conclude this section with a small example to illustrate the relationship between
items, campaigns, and shutdowns. Suppose that there are two campaigns and six
maintenance items to schedule during a particular year in the time horizon and the
due dates for the items are in increasing order as shown in Figure 2. Suppose further
that items 1, 3, 5, and 6 require no equipment shutdowns, and items 2 and 4 require a
full plant shutdown. Assuming a balanced workload of three items per campaign, the
obvious allocation would be to allocate items 1–3 to the first campaign and items 4–6
to the second campaign, as shown in Figure 2(a). This involves delaying items 1 and 4
and advancing items 3 and 6, and results in two plant shutdowns—one for item 2
in the first campaign, and one for item 4 in the second campaign. But by swapping
items 3 and 4, we obtain the situation shown in Figure 2(b), where only the first
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Items 1, 2, 3 Items 4, 5, 6

t1 t2 t3 t4 t5 t6

(a) Items 1 and 4 delayed; items 3 and 6 advanced; 2 plant shutdowns

Items 1, 2, 4 Items 3, 5, 6

t1 t2 t3 t4 t5 t6

(b) Items 1 and 3 delayed; items 4 and 6 advanced; 1 plant shutdown

Figure 2. A simple example illustrating the relationship between items, campaigns, and shutdowns. Here,

the grey boxes denote the campaigns and ti denotes the due time for maintenance item i.

campaign requires a shutdown. Here, items 1 and 3 are delayed and items 4 and 6 are
advanced. This simple example shows how the number of shutdowns can be reduced
by judiciously delaying and advancing maintenance items and changing the allocations
of items to campaigns. In reality the problem is far more complex since we need to
balance the requirements across multiple years, thousands of maintenance items, and
constraints on the extent to which maintenance items can be delayed and advanced.
The optimization model takes all of this into account.

2.2. Sets and Parameters

The model involves a set of maintenance plans P , a set of maintenance items I, a set
of maintenance campaigns C, and a set of years Y . Each item in I belongs to a plan
in P and the campaigns in C are repeated in each year. The plans, items, campaigns,
and years are labelled by integers, with maxY denoting the final year in the planning
horizon and maxC denoting the last campaign in each year.

The key parameters defining each maintenance item i ∈ I are:

• fi = frequency (in whole years) of maintenance item i;
• y∗i = first due year of maintenance item i;
• τ∗i = due day of maintenance item i in year y∗i ;
• di = duration (in days) of maintenance item i;
• ri = number of resources required to complete maintenance item i; and
• hi = suppression hierarchy value (a positive integer) for maintenance item i.

According to this input data, maintenance item i is due on day τ∗i in years y∗i , y
∗
i + fi,

y∗i + 2fi, and so on.
Let Ip denote the set of maintenance items in maintenance plan p. Furthermore, let

Ipy denote the set of items in plan p that are due in year y. This set is completely defined
by the input data and it depends on the item frequencies (since the frequencies define
the years in which the items are due) and the suppression hierarchy rules (since some
items may be suppressed if they coincide with other items higher in the suppression
hierarchy). The precise logic for defining Ipy is given in Algorithm 1. The algorithm
starts with Ipy = ∅ for each y and then loops through each item and each year,
progressively updating Ipy to ensure that it only contains the active items with the
highest hierarchy value.

Although maintenance item i is due on day τ∗i in years y∗i , y
∗
i + fi, y

∗
i + 2fi and so

on, this does not mean that it must occur exactly on day τ∗i , as maintenance items
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Algorithm 1 Returns the maintenance items due in each year for plan p
Initialize the set of maintenance items performed in plan p in each year: Ipy ← ∅, y ∈ Y
Initialize the dominant hierarchy value in plan p in each year: h̄py ← 1, y ∈ Y
for all (i ∈ Ip) do

Initialize the year counter: y ← y∗i
while (y ≤ maxY ) do

if (hi > h̄py) then
Item i suppresses all items currently in Ipy : Ipy ← {i}
Update the dominant hierarchy value for plan p in year y: h̄py ← hi

else if (hi = h̄py) then
Item i has the same hierarchy value as the items currently in Ipy : Ipy ← Ipy ∪ {i}

end if

Update the year counter: y ← y + fi
end while

end for

Due Date

δadviy δdeliy

︸ ︷︷ ︸
Time window

Figure 3. The time window for maintenance item i due in year y.

can be delayed or advanced when it is advantageous to do so. Let δadv
iy denote the

maximum number of days that item i can be advanced in year y, and let δdel
iy denote

the maximum number of days that item i can be delayed in year y. These parameters
define time windows around the maintenance due times; see Figure 3.

The key input parameters related to campaigns are:

• t̃min
cy = lower bound for the start time of campaign c in year y;

• t̃max
cy = upper bound for the end time of campaign c in year y;

• ε = minimum duration (in days) between consecutive campaigns;
• ∆min = lower bound (in days) for campaign duration;
• ∆max = upper bound (in days) for campaign duration;
• Rmax = maximum number of resources available per campaign per year;
• α = minimum ratio of campaign duration to item duration (must be at least 1);
• ρmin = ratio defining the minimum proportion of maintenance items that must

be assigned to each campaign in each year (must be between 0 and 1); and
• ρmax = ratio defining the maximum proportion of maintenance items that can

be assigned to each campaign in each year (must be between 0 and 1).

Here, ε > 0 ensures that campaigns do not overlap and the ratios ρmin ∈ (0, 1) and
ρmax ∈ (0, 1) ensure that the campaign workloads are sufficiently balanced.

Finally, we now introduce the input data and notation related to the equipment
shutdowns required by maintenance items. This is the central aspect of the optimiza-
tion model because shutdowns are disruptive and the goal is to minimize them by
grouping similar maintenance items into the same campaign. The shutdowns required
for a maintenance item are defined with respect to a structure diagram called the plant
hierarchy tree; see Figure 4 for an example.
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Plant

Unit 2

Sub-unit 2.3Sub-unit 2.2Sub-unit 2.1

Unit 1

Sub-unit 1.2Sub-unit 1.1

Figure 4. A three-level hierarchy tree for a plant decomposed into units and sub-units.

The plant hierarchy tree consists of multiple levels, with the top level containing
a single node representing the entire plant, the intermediate levels containing nodes
representing units and systems in the plant, and the bottom level containing nodes rep-
resenting individual pieces of equipment. The edges in the plant hierarchy tree connect
nodes in consecutive levels, indicating a parent-child relationship in the hierarchy.

Let N be the set of nodes in the plant hierarchy tree and let ψ(n) denote the unique
path from node n to the root node in the top level, where ψ(n) = n if node n is itself
the root node. For example, path ψ(n) starting at sub-unit 2.1 in Figure 4 is

Sub-unit 2.1→ Unit 2→ Plant.

Each maintenance item may require a shutdown of zero, one, or multiple nodes in the
plant hierarchy tree. This information is input data for the optimization model and is
typically stored in maintenance databases. If a maintenance item requires node n to be
shut down, then all of its child nodes must also be shut down while the maintenance
item is performed. For example, in Figure 4, a shutdown of unit 1 would also necessitate
shutdowns of sub-units 1.1 and 1.2. Given a group of maintenance items, the dominant
shutdown units are the highest-level nodes in the plant hierarchy tree that must be shut
down to perform the maintenance items in the group. The dominant shutdown units
are independent and are not covered by any higher-level shutdowns. Mathematically,
we say that node n ∈ N is a dominant shutdown unit for a group of maintenance items
I ′ if the following two conditions are satisfied:

(i) At least one maintenance item in I ′ requires a shutdown of node n; and
(ii) No maintenance item in I ′ requires a shutdown of any node in ψ(n) \ {n} (that

is, a node higher than node n in the plant hierarchy tree).

For example, referring to Figure 4, if I ′ contains one maintenance item requiring
a shutdown of unit 1 and another maintenance item requiring a shutdown of sub-
unit 1.1, then unit 1 is the dominant shutdown unit, since sub-unit 1.1 sits below
unit 1 in the hierarchy tree and is thus automatically covered by unit 1. If I ′ also
contains a maintenance item requiring a shutdown of sub-unit 2.2, then both unit 1
and sub-unit 2.2 are dominant shutdown units.

Let wn > 0 denote the cost of a shutdown of node n and let spyn be a binary
parameter indicating whether node n is a dominant shutdown unit for the maintenance
items in Ipy. Thus, spyn = 1 means that node n and all of its descendants in the
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Set Description

P Set of maintenance plans
I Set of maintenance items
C Set of maintenance campaigns
Y Set of years
Ip Set of maintenance items in plan p
Ipy Set of maintenance items in plan p due in year y
N Set of nodes in the plant hierarchy tree

Table 1. Sets in the mathematical model.

hierarchy tree must be shut down to perform plan p in year y. This information can
be extracted directly from the maintenance databases.

Nodes higher in the plant hierarchy are more costly to shut down than nodes lower
in the hierarchy, with a complete plant shutdown being the most expensive. Since the
cost of shutting down a node is greater than the cost of individually shutting down
each of its children in the hierarchy tree, we impose the following conditions on the
cost parameters:

wn >
∑

j∈N : ψ(j)\ψ(n)=j

wj , ∀n ∈ N, (1)

where the summation on the right-hand side is taken over all immediate children of
node n in the plant hierarchy. Condition (1) states that the total cost of shutting down
each sub-unit of unit n is less than the cost of shutting down unit n itself.

The sets and parameters described above, which form the inputs for the mathemat-
ical optimization model, are listed in Tables 1 and 2.

2.3. Problem Statement

There are three classes of decision variables in the optimization model: decision vari-
ables to govern the allocation of plans to campaigns, decision variables to govern the
timing of campaigns, and decision variables to link the plan allocations with the shut-
down requirements. The decision variables in the first class are binary variables xpc
indicating whether maintenance plan p is allocated to campaign c. The decision vari-
ables in the second class are continuous-valued variables tmin

cy and tmax
cy , which define

the start and end times of campaign c in year y, respectively (measured as the num-
ber of days since the beginning of the year). The decision variables in the third class
are binary variables ξcyn indicating whether node n is a dominant shutdown unit for
campaign c in year y. These decision variables are summarized in Table 3.

The scheduling decisions for allocating maintenance items to campaigns are taken
over multiple years because the frequency of each item is a whole number of years,
and the frequency of some items can exceed 10 years. Within each year, the campaign
times and the limits on delaying and advancing items are expressed in days. Our model
does not determine the timing of each maintenance item; it only decides which items
go in which campaigns and at what times the campaigns should be scheduled to ensure
that all constraints related to the maintenance deadlines can be satisfied. The precise
scheduling of maintenance items within a single campaign is a later, more detailed
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Parameter Description

fi Frequency of maintenance item i
ri Resources for maintenance item i
di Duration of maintenance item i
y∗i First due year for maintenance item i
τ∗i Due day for maintenance item i in year y∗i
hi Suppression hierarchy value for maintenance item i

δadv
iy , δdel

iy Advance/Delay limits for maintenance item i
spyn Shutdown indicators for maintenance items in plan p in year y
wn Shutdown cost for node n

t̃min
cy , t̃max

cy Lower/Upper bounds for start/end of campaign c in year y
ε Min duration between consecutive campaigns

∆min, ∆max Min/Max campaign durations
α User-defined weight for campaign durations

Rmax Max resources per campaign per year
ρmin, ρmax Min/Max ratios for number of items assigned to each campaign

Table 2. Parameters in the mathematical model.

Decision Variable Type Description

xpc Binary Maintenance plan allocations
tmin
cy , tmax

cy Continuous Campaign start/end times
ξcyn Binary Dominant shutdown indicators

Table 3. Decision variables in the optimization model.

step that would involve solving a RCPS, as explained in the introduction.
The objective in our optimization model is to minimize the total shutdown cost over

the entire time horizon:

min
xpc, tmin

cy , tmax
cy , ξcyn

∑
c∈C

∑
y∈Y

∑
n∈N

wnξcyn. (2)

We now list the various constraints in the model.

• Each maintenance plan is allocated to a single campaign:∑
c∈C

xpc = 1, ∀p ∈ P. (3)

• Bound constraints on the campaign start and end times:

t̃min
cy ≤ tmin

cy ≤ tmax
cy ≤ t̃max

cy , ∀c ∈ C, ∀y ∈ Y. (4)

• Bound constraints on the campaign durations:

∆min ≤ tmax
cy − tmin

cy ≤ ∆max, ∀c ∈ C, ∀y ∈ Y. (5)
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• Each campaign is at least as long as the items that it contains:

tmax
cy − tmin

cy ≥ α xpc max
i∈Ipy

di, ∀c ∈ C, ∀y ∈ Y, ∀p ∈ P : Ipy 6= ∅. (6)

• Minimum duration between consecutive campaigns:

tmin
c+1,y ≥ tmax

cy + ε, ∀c ∈ C \ {maxC}, ∀y ∈ Y, (7)

tmin
1,y+1 ≥ tmax

maxC,y − 365 + ε, ∀y ∈ Y \ {maxY }. (8)

• Limit on labour hours per campaign:∑
p∈P

∑
i∈Ipy

24dirixpc ≤ Rmax(tmax
cy − tmin

cy ), ∀c ∈ C, ∀y ∈ Y. (9)

• Workload balancing constraints:

ρmin

∑
p∈P
|Ipy| ≤

∑
p∈P
|Ipy|xpc ≤ ρmax

∑
p∈P
|Ipy|, ∀c ∈ C, ∀y ∈ Y. (10)

• Time window constraints for items in the first due year:

tmin
cy∗i
− τ∗i ≤ δdel

iy∗i
+M(1− xpc), ∀c ∈ C, ∀p ∈ P, ∀i ∈ Ip, (11)

τ∗i − tmax
cy∗i

+ di ≤ δadv
iy∗i

+M(1− xpc), ∀c ∈ C, ∀p ∈ P, ∀i ∈ Ip, (12)

where M is a sufficiently large real constant.
• Time window constraints for items in subsequent years:

tmin
cy − tmin

c(y−fi) ≤ δ
del
iy +M(1− xpc),

∀c ∈ C, ∀y ∈ Y : y > y∗i , ∀p ∈ P, ∀i ∈ Ipy, (13)

tmax
c(y−fi) − t

max
cy ≤ δadv

iy +M(1− xpc),
∀c ∈ C, ∀y ∈ Y : y > y∗i , ∀p ∈ P, ∀i ∈ Ipy, (14)

where M is a sufficiently large real constant.
• Shutdown indicator constraints:

ξcyn ≥ xpc −
∑

j∈ψ(n): j 6=n

ξcyj ,

∀c ∈ C, ∀y ∈ Y, ∀n ∈ N, ∀p ∈ P : spyn = 1, (15)

where the summation on the right-hand side is taken over all nodes except node n
on path ψ(n).

The optimization problem is to choose xpc, t
min
cy , tmax

cy , and ξcyn to minimize the
objective function (2) subject to constraints (3)-(15). This is a mixed-integer linear
programming problem for which real-life instances can be very large—for example, the
number of maintenance plans can easily exceed 1000 in practice. For simplicity, the
model assumes that each year has 365 days and hence leap years are not considered.
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Constraints (3) ensure that each maintenance plan is assigned to exactly one cam-
paign, so that items in the same plan are performed in the same campaign in the years
in which they are due. Thus, xpc = 1 means that items in plan p are always performed
as part of campaign c; they cannot change campaign from year to year.

Constraints (4)-(8) govern the timing of campaigns: (4) ensures that the campaign
times are within the specified windows, (5) ensures that the campaign durations are
within the specified minimum and maximum limits, (6) ensures that each campaign
is sufficiently long to contain the maintenance items that it has been allocated (recall
that α ≥ 1), and (7) and (8) ensure that campaigns do not overlap (recall that ε > 0).
Note also that constraint (4) forces each maintenance item i to occur during its planned
years y∗i , y

∗
i +fi, y

∗
i +2fi, and so on—delaying or advancing an item into a non-planned

year is prohibited, even if the maximum delay and advance parameters allow. Thus,
for example, maintenance item i due on day 5 of year y cannot be advanced into the
previous year even if δadv

iy > 5.
Constraints (9) and (10) restrict the campaign workloads: the first set of constraints

specifies a maximum limit on the labour hours per campaign, and the second set of
constraints ensures that the number of items allocated to a campaign is within the
minimum and maximum percentages of the total number of items due in that year.

The mathematical formulations of constraints (3)-(10) are self-explanatory. Con-
straints (11)-(15) require further explanation and this is provided in the next section.
In particular, Proposition 1 in the next section shows that constraints (11) and (12)
enforce the time window constraints for the first instance of each maintenance item,
and similarly Proposition 2 shows that constraints (13) and (14) enforce the time
window constraints for subsequent instances of each maintenance item. Propositions 3
and 4 show that constraints (15) ensure the decision variables ξcyn correctly define
which nodes are the dominant shutdown units in each campaign in each year.

3. Time Window and Shutdown Constraints

In this section, we provide the mathematical justification for constraints (11)-(15).

3.1. Time Window Constraints for Maintenance Item Deadlines

Consider an arbitrary maintenance item i. In the first year item i is due (year y∗i ), the
time window for commencing item i is [τ∗i − δadv

iy∗i
, τ∗i + δdel

iy∗i
]. Thus, item i can occur

in campaign c in year y∗i if and only if the intersection of [τ∗i − δadv
iy∗i

, τ∗i + δdel
iy∗i

] and

[tmin
cy∗i

, tmax
cy∗i
− di] is non-empty as shown in Figure 5. The following result gives a set of

constraints to characterize this condition.

Proposition 1. Maintenance item i ∈ I can be scheduled in campaign c ∈ C in
year y∗i if and only if

tmin
cy∗i
− τ∗i ≤ δdel

iy∗i
, (16)

τ∗i − tmax
cy∗i

+ di ≤ δadv
iy∗i

, (17)

tmin
cy∗i
≤ tmax

cy∗i
− di. (18)

Proof. The intersection of [tmin
cy∗i

, tmax
cy∗i
− di] and [τ∗i − δadv

iy∗i
, τ∗i + δdel

iy∗i
] is non-empty if

12



Year y∗i

τ∗iδadv
iy∗i

δdel
iy∗i︸ ︷︷ ︸

Time window

tmin
cy∗i

tmax
cy∗i

di

Campaign c

Figure 5. Allocating maintenance item i to campaign c in year y∗i . The grey area shows the feasible start

times for item i.

and only if

max(tmin
cy∗i

, τ∗i − δadv
iy∗i

) ≤ min(tmax
cy∗i
− di, τ∗i + δdel

iy∗i
). (19)

Hence, it is sufficient to show that (16)-(18) are equivalent to (19). Suppose first
that (19) holds. Then clearly,

tmin
cy∗i
≤ max(tmin

cy∗i
, τ∗i − δadv

iy∗i
) ≤ min(tmax

cy∗i
− di, τ∗i + δdel

iy∗i
) ≤ τ∗i + δdel

iy∗i
,

τ∗i − δadv
iy∗i
≤ max(tmin

cy∗i
, τ∗i − δadv

iy∗i
) ≤ min(tmax

cy∗i
− di, τ∗i + δdel

iy∗i
) ≤ tmax

cy∗i
− di,

tmin
cy∗i
≤ max(tmin

cy∗i
, τ∗i − δadv

iy∗i
) ≤ min(tmax

cy∗i
− di, τ∗i + δdel

iy∗i
) ≤ tmax

cy∗i
− di,

from which (16)-(18) are easily obtained. Conversely, assume that (16)-(18) hold. Then
from (16) and (18),

tmin
cy∗i
≤ min(tmax

cy∗i
− di, τ∗i + δdel

iy∗i
). (20)

Furthermore, from (17) and since both δadv
iy∗i

and δdel
iy∗i

are non-negative,

τ∗i − δadv
iy∗i
≤ min(tmax

cy∗i
− di, τ∗i + δdel

iy∗i
). (21)

Combining (20) and (21) gives (19), as required.

For each maintenance plan p, we need to impose (16)-(18) for the unique c such
that xpc = 1 (the campaign to which p belongs) and all items i ∈ Ip (the items in
plan p). Inequality (18) is in fact already implied by (6). The other inequalities (16)
and (17) correspond to constraints (11) and (12), which reduce to (16) and (17) when
xpc = 1. When xpc = 0, these constraints are redundant for M sufficiently large.

Now consider an arbitrary maintenance item i in year y > y∗i . Prior to year y,
the previous instance of item i is executed in year y − fi in a certain campaign c.
The precise start time of item i in year y − fi could be any point in the interval
[tmin
c(y−fi), t

max
c(y−fi) − di] and this previous start day is also the due time for item i in

year y > y∗i . Hence, item i can occur in campaign c in year y if and only if, for each
potential start time t ∈ [tmin

c(y−fi), t
max
c(y−fi)− di], the intersection of [t− δadv

iy , t+ δdel
iy ] and

13



Year y − fi Year y

t t︸ ︷︷ ︸
Time window

Start time for item i

tmin
c(y−fi)

tmax
c(y−fi)

di

Campaign c tmin
cy tmax

cy

δadviy δdeliy

di

Campaign c

Figure 6. Allocating maintenance item i to campaign c in year y > y∗i . The grey area shows the feasible start
times for item i in year y.

[tmin
cy , tmax

cy − di] is non-empty as shown in Figure 6. This then leads to the following
result, which is the analogue of Proposition 1 for y > y∗i .

Proposition 2. Maintenance item i ∈ I can be scheduled in campaign c ∈ C in year
y > y∗i if and only if

tmin
cy − tmin

c(y−fi) ≤ δ
del
iy , (22)

tmax
c(y−fi) − t

max
cy ≤ δadv

iy , (23)

tmin
cy ≤ tmax

cy − di. (24)

Proof. The intersection of [tmin
cy , tmax

cy −di] and [t−δadv
iy , t+δdel

iy ] is non-empty for each

t ∈ [tmin
c(y−fi), t

max
c(y−fi) − di] if and only if

max(tmin
cy , t− δadv

iy ) ≤ min(tmax
cy − di, t+ δdel

iy ), ∀t ∈ [tmin
c(y−fi), t

max
c(y−fi) − di]. (25)

We complete the proof by showing that (22)-(24) are equivalent to (25).
First, for the reverse implication, assume that (25) holds. Then clearly (24) also

holds. Choosing t = tmin
c(y−fi) in (25) gives

tmin
cy ≤ max(tmin

cy , tmin
c(y−fi) − δ

adv
iy ) ≤ min(tmax

cy − di, tmin
c(y−fi) + δdel

iy ) ≤ tmin
c(y−fi) + δdel

iy ,

which proves (22). Furthermore, choosing t = tmax
c(y−fi) − di in (25) gives

tmax
c(y−fi) − di − δ

adv
iy ≤ max(tmin

cy , tmax
c(y−fi) − di − δ

adv
iy )

≤ min(tmax
cy − di, tmax

c(y−fi) − di + δdel
iy ) ≤ tmax

cy − di,

proving (23).
Now, for the forward implication, assume (22)-(24) hold. Then, from (22) and (24),

for all t ≥ tmin
c(y−fi),

tmin
cy ≤ tmin

c(y−fi) + δdel
iy ≤ t+ δdel

iy , tmin
cy ≤ tmax

cy − di.

14



Hence,

tmin
cy ≤ min(tmax

cy − di, t+ δdel
iy ). (26)

Moreover, from (23) and since δadv
iy ≥ 0 and δdel

iy ≥ 0, for all t ≤ tmax
c(y−fi) − di,

t− δadv
iy ≤ tmax

c(y−fi) − di − δ
adv
iy ≤ tmax

cy − di, t− δadv
iy ≤ t+ δdel

iy .

Thus,

t− δadv
iy ≤ min(tmax

cy − di, t+ δdel
iy ). (27)

Combining (26) and (27) completes the proof.

As with (18) in Proposition 1, inequality (24) in Proposition 2 is implied by (6). For
each maintenance plan p, the other two inequalities in Proposition 2 need to be imposed
for the campaign c to which p belongs and for all items i ∈ Ipy belonging to plan p in
each year y > y∗i . This leads to constraints (13) and (14) in the optimization model.
These constraints, along with (11) and (12), ensure that the maintenance deadlines
are respected for each maintenance item.

Recall that constraints (11)-(14) involve a parameter M that must be set sufficiently
large so that the constraints are redundant when xpc = 0. For constraints (11) and
(12), it is sufficient to choose M as

M = max
c∈C, i∈I

{
max

{
t̃max
cy∗i
− τ∗i − δdel

iy∗i
, τ∗i − t̃min

cy∗i
+ di − δadv

iy∗i

}}
−∆min,

since by constraints (4) and (5),

tmin
cy∗i
− τ∗i − δdel

iy∗i
≤ t̃max

cy∗i
−∆min − τ∗i − δdel

iy∗i
,

τ∗i − tmax
cy∗i

+ di − δadv
iy∗i
≤ τ∗i − t̃min

cy∗i
−∆min + di − δadv

iy∗i
.

Similarly, for constraints (13) and (14), it is sufficient to choose

M = max
c∈C, i∈I, y∈Y :
y>y∗i , i∈∪pIpy

{
max

{
t̃max
cy − t̃min

c(y−fi) − δ
del
iy , t̃

max
c(y−fi) − t̃

min
cy − δadv

iy

}}
−∆min,

where the outer maximization is taken over all campaigns c and all items i that are
due in year y > y∗i . This expression for M follows immediately from

tmin
cy − tmin

c(y−fi) − δ
del
iy ≤ t̃max

cy −∆min − t̃min
c(y−fi) − δ

del
iy ,

tmax
c(y−fi) − t

max
cy − δadv

iy ≤ t̃max
c(y−fi) − t̃

min
cy −∆min − δadv

iy .

3.2. Shutdown Indicator Constraints

We now turn our attention to the final set of constraints (15). The two main results
proved in this section show that under (15), variables ξcyn correctly define which nodes
are the dominant shutdown units in each campaign in each year.
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Proposition 3. Suppose that the maintenance plans in P have been allocated to
the campaigns in C through the decision variables xpc, p ∈ P , c ∈ C. Based on this
allocation and the plant hierarchy tree, for each c ∈ C, y ∈ Y , and n ∈ N , define

ξcyn =

{
1, if node n is a dominant shutdown unit for campaign c in year y,

0, otherwise.

Then ξcyn, c ∈ C, y ∈ Y , n ∈ N , as defined above are feasible for (15).

Proof. Let c ∈ C, y ∈ Y , and n ∈ N be arbitrary but fixed. If ξcyn = 1, then

xpc −
∑

j∈ψ(n): j 6=n

ξcyj ≤ 1−
∑

j∈ψ(n): j 6=n

ξcyj ≤ 1 = ξcyn, ∀p ∈ P : spyn = 1,

which shows (15) is satisfied as required. On the other hand, if ξcyn = 0, then for each
p ∈ P with spyn = 1, either xpc = 0 (case 1) or xpc = 1 (case 2). For case 1,

xpc −
∑

j∈ψ(n): j 6=n

ξcyj = −
∑

j∈ψ(n): j 6=n

ξcyj ≤ 0 = ξcyn,

which shows (15) is satisfied as required. For case 2, plan p belongs to campaign c and
node n is a dominant shutdown unit for plan p in year y, but not for campaign c in
year y. Thus, there must exist a dominant shutdown unit j′ above node n on path
ψ(n) (that is, j′ ∈ ψ(n) \ {n}). This implies ξcyj′ = 1 according to our definition and
therefore

xpc −
∑

j∈ψ(n): j 6=n

ξcyj = 1−
∑

j∈ψ(n): j 6=n

ξcyj ≤ 1− ξcyj′ = 0 = ξcyn,

which shows that (15) is satisfied as required.

Proposition 3 shows that using the binary variables ξcyn to indicate which nodes
are the dominant shutdown units in each campaign in each year, as per our modelling
approach, is feasible with respect to constraints (15). However, this is not necessarily
the only feasible choice, and hence Proposition 3 alone is insufficient to prove that the
proposed cost function (2) correctly measures the total shutdown cost over the entire
time horizon. To prove that (2) is indeed correct, we require the following additional
result, which relies on condition (1) stating that the cost of shutting down an entire
unit is greater than the cost of shutting down all of its individual sub-units.

Proposition 4. Suppose that condition (1) holds. Given fixed values of xpc, p ∈ P ,
c ∈ C, the optimal values of ξcyn, c ∈ C, y ∈ Y , n ∈ N , that minimize (2) subject
to (15) are such that ξcyn = 1 if and only if node n is a dominant shutdown unit for
campaign c in year y.

Proof. Since the cost function (2) is linear and the constraints (15) only link variables
ξcyn for the same campaign and the same year, these variables can be optimized
independently for each c ∈ C and y ∈ Y . Hence, in this proof, we let c ∈ C and
y ∈ Y be fixed but arbitrary and assume that ξcyn, n ∈ N , are optimal values that
minimize

∑
nwnξcyn (the cost terms corresponding to c and y) subject to (15).
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We first consider the reverse implication and assume, to the contrary, that cam-
paign c in year y has at least one dominant shutdown unit n with ξcyn = 0. Let N1

denote the set of all such dominant shutdown units. For any n ∈ N1, constraint (15)
gives

xpc −
∑

j∈ψ(n): j 6=n

ξcyj ≤ 0 = ξcyn, ∀p ∈ P : spyn = 1. (28)

Clearly there exists at least one p with xpc = 1 in the above inequality, since otherwise
n ∈ N1 could not be a dominant shutdown unit for campaign c in year y. Let p̄ := p̄(n)
denote one such p (arbitrarily chosen) with xpc = 1 and spyn = 1. Then for each n ∈ N1,
substituting p = p̄(n) into (28) gives

xp̄c −
∑

j∈ψ(n): j 6=n

ξcyj = 1−
∑

j∈ψ(n): j 6=n

ξcyj ≤ 0.

This inequality can only be satisfied if ξcyj = 1 for some j ∈ ψ(n) \ {n}.
Let µ := µ(n) denote one such node with µ(n) ∈ ψ(n) \ {n} and ξcyµ = 1, and let

N2 denote the set of all such µ(n):

N2 = {µ(n) : n ∈ N1}.

Clearly, µ(n) is above node n in the plant hierarchy and N1 and N2 are disjoint. Now,
define ξ̄cyn, n ∈ N , as follows:

ξ̄cyn =


1, if n ∈ N1,

0, if n ∈ N2,

ξcyn, if n /∈ N1 ∪N2.

We will show that ξ̄cyn, n ∈ N , are feasible with respect to (15), which requires
checking constraint (15) for each n ∈ N . There are three cases to consider:

1. n ∈ N1;
2. n /∈ N1, but n is below a node in N1 in the plant hierarchy; and
3. n /∈ N1, and n is not below a node in N1 in the plant hierarchy.

For case 1,

xpc −
∑

j∈ψ(n): j 6=n

ξ̄cyj ≤ 1−
∑

j∈ψ(n): j 6=n

ξ̄cyj ≤ 1 = ξ̄cyn, ∀p ∈ P : spyn = 1, (29)

which shows that (15) for n ∈ N1 is satisfied. For case 2, there exists n′ ∈ N1 such
that n′ ∈ ψ(n) \ {n}. Thus,

xpc −
∑

j∈ψ(n): j 6=n

ξ̄cyj ≤ 1−
∑

j∈ψ(n): j 6=n

ξ̄cyj ≤ 1− ξ̄cyn′ = 0 ≤ ξ̄cyn, ∀p ∈ P : spyn = 1,

(30)

which again shows that (15) is satisfied in this case. Finally, for case 3, when xpc = 0,
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we have

xpc −
∑

j∈ψ(n): j 6=n

ξ̄cyj = −
∑

j∈ψ(n): j 6=n

ξ̄cyj ≤ 0 ≤ ξ̄cyn, ∀p ∈ P : xpc = 0, spyn = 1.

(31)

On the other hand, when xpc = 1 for plan p with spyn = 1, the dominant shutdown
units for campaign c in year y must include a node n′′ ∈ ψ(n) (either node n or a node
above node n). The scenario where n′′ ∈ N1 is covered in cases 1 and 2 and thus we
may assume that n′′ /∈ N1. Furthermore, n′′ /∈ N2, since otherwise there would exist a
dominant shutdown unit below n′′ in the plant hierarchy, which is impossible because
n′′ is itself a dominant shutdown unit. Consequently, ξ̄cyn′′ = ξcyn′′ = 1 and for n = n′′,

xpc −
∑

j∈ψ(n): j 6=n

ξ̄cyj = 1−
∑

j∈ψ(n): j 6=n

ξ̄cyj ≤ 1 = ξ̄cyn,

∀p ∈ P : xpc = 1, spyn = 1, (32)

and for n 6= n′′,

xpc −
∑

j∈ψ(n): j 6=n

ξ̄cyj = 1−
∑

j∈ψ(n): j 6=n

ξ̄cyj ≤ 1− ξ̄cyn′′ = 0 ≤ ξ̄cyn,

∀p ∈ P : xpc = 1, spyn = 1. (33)

Inequalities (29)-(33) show that ξ̄cyn, n ∈ N , are feasible with respect to con-
straints (15).

We now show that under condition (1),

wn >
∑

j∈N1:µ(j)=n

wj , ∀n ∈ N2. (34)

Indeed, this is proved by letting S denote the set of nodes mapped to node n ∈ N2

under the mapping µ(·), letting Γl denote the set of nodes exactly l levels below node n
in the plant hierarchy tree, and then using induction to deduce the following inequality
for each integer k ≥ 1:

wn >

k∑
l=1

∑
j∈Γl∩S

wj +
∑

j∈Γk:ψ(j)∩S=∅

wj , (35)

where

S =
{
j ∈ N1 : µ(j) = n

}
, Γl =

{
j ∈ N : n ∈ ψ(j) \ {j}, |ψ(j) \ ψ(n)| = l

}
.

The first term on the right-hand side above is a summation over all nodes in S that
are no more than k levels below node n in the hierarchy tree, and the second term is a
summation over all nodes that are exactly k levels below node n and whose paths to
the root do not contain a node in S. When k is sufficiently large (at least as large as
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the number of levels below node n), inequality (35) simplifies to (34) as shown below:

wn >

k∑
l=1

∑
j∈Γl∩S

wj +
∑

j∈Γk:ψ(j)∩S=∅

wj ≥
k∑
l=1

∑
j∈Γl∩S

wj =
∑

j∈N1:µ(j)=n

wj .

The basis step (k = 1) for (34) follows immediately from splitting the summation in (1)
into two parts: one for j ∈ S and one for j /∈ S. For the induction step, assuming (35)
is true for k, applying (1) to each node in the second summation gives

wn >

k∑
l=1

∑
j∈Γl∩S

wj +
∑

j∈Γk:ψ(j)∩S=∅

wj

≥
k∑
l=1

∑
j∈Γl∩S

wj +
∑

j∈Γk:ψ(j)∩S=∅

∑
j′∈N :ψ(j′)\ψ(j)=j′

wj′

=

k∑
l=1

∑
j∈Γl∩S

wj +
∑

j∈Γk+1:ψ(j)∩S=∅

wj +
∑

j∈Γk+1∩S
wj =

k+1∑
l=1

∑
j∈Γl∩S

wj +
∑

j∈Γk+1:ψ(j)∩S=∅

wj ,

which proves the induction step as required.
Using (34), the cost of ξ̄cyn, n ∈ N , satisfies∑

n∈N
wnξ̄cyn =

∑
n∈N1

wn +
∑

n/∈N1∪N2

wnξcyn

=
∑
n∈N2

∑
j∈N1:µ(j)=n

wj +
∑

n/∈N1∪N2

wnξcyn

<
∑
n∈N2

wn +
∑

n/∈N1∪N2

wnξcyn =
∑
n∈N

wnξcyn,

where the second equality is a consequence of µ(·) being a many-to-one and onto
mapping from N1 to N2, and the inequality in the middle follows from (34). Thus, by
swapping the values of ξcyn for n ∈ N1 and n ∈ N2, we have reduced the cost while
maintaining feasibility, contradicting the optimality of the current solution. Therefore,
if n is a dominant shutdown unit for campaign c in year y, then we must have ξcyn = 1.
This proves the reverse implication for the proposition.

To prove the forward implication, suppose that ξcyn′ = 1 but n′ is not a dominant
shutdown unit for campaign c in year y. Then since wn′ > 0 and each dominant
shutdown unit n′′ also has ξcyn′′ = 1 (as per the first part of the proof), the cost of
ξcyn, n ∈ N , is greater than the cost of the feasible solution in Proposition 3, which
contradicts optimality. This proves the forward implication as required.

Propositions 3 and 4 together explain the need for constraints (15). Proposition 4
shows that, at any optimal solution of problem (2)-(15), the binary variables ξcyn
correctly indicate the dominant shutdown units, and thus (2) correctly measures the
total shutdown cost. Since for any feasible allocation of plans to campaigns, defining
ξcyn to indicate the dominant shutdown units as per Proposition 3 is always feasible,
it follows that problem (2)-(15) is guaranteed to give the optimal allocations and
campaign times that minimize overall cost.
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4. Numerical Simulations

4.1. Case Study: Karratha Gas Plant in Western Australia

4.1.1. Background

To test the optimization model in Section 2, we considered maintenance data for LNG
Train 5 at Karratha Gas Plant. This plant is operated by Woodside Energy and is the
main processing facility for the North West Shelf oil and gas project in Australia. The
plant hierarchy tree for LNG Train 5 has five levels as listed below:

• Plant section (entire LNG Train 5);
• Function;
• System;
• Sub-system; and
• Operation package.

Thus, LNG Train 5 contains multiple functions, each function contains multiple sys-
tems, each system contains multiple sub-systems, and each sub-system contains mul-
tiple packages. Plant section shutdowns are the highest priority, followed by function
shutdowns, system shutdowns, and so on.

Each maintenance item is assigned a code that indicates the level of shutdown
required to perform the maintenance item. The possible values are:

• 0 – no isolation required;
• 1 – local isolation only;
• 2 – operation package shutdown;
• 3 – sub-system shutdown;
• 4 – system shutdown;
• 5 – function shutdown; and
• 6 – complete plant section shutdown.

For example, if a maintenance item is assigned code 3, then the sub-system corre-
sponding to this maintenance item must be shut down when the maintenance item is
performed. This information defines the shutdown indicator parameters spyn for each
maintenance plan.

4.1.2. Data Set

The data set for LNG Train 5 involves 1,206 maintenance plans and 2,166 maintenance
items. The numbers of functions, systems, sub-systems, and operation packages are
given in Figure 7. For each maintenance item i, the data set defines the next due
time (y∗i and τ∗i ), the duration (di), the frequency (fi), and the suppression hierarchy
value (hi). Parameters ri and Rmax are not given in the data set and thus we ignored
constraint (9) in these simulations.

The item frequencies range from 1 year to 25 years. Interestingly, although the
plant hierarchy tree has five levels, the dominant shutdown units are all in the top and
bottom levels: 3.37% of the maintenance items require operation package shutdown,
35% require a complete LNG Train 5 shutdown, and the remainder require only local
isolation or no isolation.

Different test problems were defined by changing the number of campaigns, the
minimum/maximum ratio parameters ρmin and ρmax, and the maximum advance/delay
parameters δadv

iy and δdel
iy for y 6= y∗i . The maximum advance parameter for the first
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LNG Train 5

5 Functions

13 Systems

14 Sub-systems

30 Operation Packages

Figure 7. Number of nodes in each level of the hierarchy tree for LNG Train 5 in Karratha Gas Plant.

instance of each maintenance item was fixed to be 35% of the item’s frequency:

δadv
iy∗i

= 0.35× fi × 365 = 127.75fi, ∀i ∈ I.

Similarly, the maximum delay parameter for an item’s first instance was also fixed to
be 35% of the frequency, except for those items designated as technical integrity (TI)
items for which delays are tightly controlled:

δdel
iy∗i

=

{
5 days, for TI items,

0.35× fi × 365 = 127.75fi, for non-TI items,
∀i ∈ I.

About 21% of the maintenance items in the data set are TI items. In the test scenarios,
the first advance/delay limits δadv

iy∗i
and δdel

iy∗i
(fixed as above) are always wider than the

subsequent limits to give maximum opportunity for maintenance items to be scheduled
in the correct campaign.

Each test problem has a time horizon of 20 years and the minimum and maximum
campaign durations are

∆min = 20 days, ∆max = 50 days.

The other parameters in the constraints were chosen as

ε = 60, α = 1, t̃min
cy = 0, t̃max

cy = 365.

Finally, the weights in the objective function are

wn =

{
1, if n corresponds to an operation package,
3
2

∑
j∈N : ψ(j)\ψ(n)=j wj , otherwise,

where ψ(j) and ψ(n) are as defined in Section 2. These cost values penalize the overall
shutdown of a node by 50% more than the individual shutdown of all of its child nodes.
Actual cost data was not available, hence the need for the proxy costs defined above.

Recall that the maximum item frequency is 25 years, but the time horizon is only
20 years. This does not mean, however, that such “long-cycle” items should be excluded

21



Delay/Advance (y 6= y∗i )

Problem Campaigns ρmin ρmax δadviy = δdeliy (non-TI for delay)

1 2 0.3 0.7 0.20fi × 365
2 2 0.2 0.8 0.05fi × 365

3 3 0.3 0.7 0.20fi × 365

4 3 0.2 0.8 0.05fi × 365
5 4 0.2 0.8 0.05fi × 365

Table 4. Specifications for the five test problems in Section 4.1.

from the model; depending on when they were last executed, these items may still be
due during the 20-year time horizon and hence they must be considered.

4.1.3. Results and Discussion

We implemented the linear programming model in the AIMMS optimization package,
with CPLEX version 12.8 used as the solver. All simulations were performed on a
standard desktop computer with an Intel Core i5-7400 processor and 8GB of RAM.

Five test problems were considered; see Table 4 for the full specifications. Prob-
lems 1 and 2 are for two campaigns, problems 3 and 4 are for three campaigns,
and problem 5 is for four campaigns. Problems 1 and 3 have the tightest con-
straints on campaign workload balancing with (ρmin, ρmax) = (0.3, 0.7), compared
with (ρmin, ρmax) = (0.2, 0.8) for the other problems. Problems 2, 4, and 5 have the
tightest constraints on item advancing and delaying in years y 6= y∗i , with the maxi-
mum advance/delay limits set at 5% of the item frequency (excluding the delay times
for TI items, where the maximum delay is always 5 days). This 5% limit in problems
2, 4, and 5 compares with 20% for the other problems.

The dimensions of the test problems depend exclusively on the number of campaigns
and not on the values of ρmin, ρmax, and δadv

iy = δdel
iy . The test problems with two

campaigns (problems 1 and 2) contain 4,932 integer variables, 81 continuous variables,
and 57,056 constraints; the test problems with three campaigns (problems 3 and 4)
contain 7,398 integer variables, 121 continuous variables, and 84,981 constraints; and
the test problem with four campaigns (problem 5) contains 9,864 integer variables,
161 continuous variables, and 112,906 constraints.

CPLEX could solve each test problem in just a few seconds and the results are
reported in Table 5. The table contains the following metrics for each optimal schedule:

• Number of plans allocated to each campaign;
• Number of plant and package shutdowns over the time horizon;
• Number of items advanced and delayed; and
• Average advance and delay times in days.

Here, a maintenance item i is considered to be delayed if its first due time τ∗i is
before the mid-point of the campaign to which it has been assigned; otherwise, the
maintenance item is considered to be advanced. This can be expressed mathematically
by

τ∗i −
∑
c∈C

∑
p∈P : i∈Ip

1
2(tmin

cy∗i
+ tmax

cy∗i
)xpc

{
< 0 → item i delayed,

≥ 0 → item i advanced.
(36)
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Plans Allocated Shutdowns Item Advances Item Delays

Problem C1 C2 C3 C4 Plant Package Total Ave. (days) Total Ave. (days)

1 896 310 - - 30 30 2109 140 57 24

2 1044 162 - - 30 30 2086 147 80 21
3 566 306 334 - 30 45 1805 123 361 26

4 836 174 196 - 30 30 1906 140 260 28

5 539 221 234 212 30 50 1482 123 684 67

Table 5. Numerical results for Section 4.1.

The metric on the left of (36) is used to quantify the advance and delay times for the
averages in Table 5. Note that this is only an approximate characterization of whether
an item is delayed or advanced because the model does not determine the precise times
at which maintenance items occur. In practice, the detailed scheduling of maintenance
items within a certain campaign would occur later after the long-term schedule has
been determined.

For both test problems with two campaigns, the optimal solution involves 30 plant
shutdowns and 30 package shutdowns, and the number of shutdowns could not be
reduced by further relaxing the constraints. The most flexible case we considered (not
reported in the table) was (ρmin, ρmax) = (0.2, 0.8) with maximum advance/delay
limits set at 20% of the item frequency and this still yielded 30 plant shutdowns
and 30 package shutdowns for two campaigns. For three campaigns, tightening the
workload balancing constraints in problem 3 forces the optimal solution to have more
package shutdowns than problem 4. For four campaigns, (ρmin, ρmax) = (0.3, 0.7) is
always infeasible since the lower bound ρmin = 0.3 is impossible to achieve.

The optimal campaign schedules for test problems 2, 4, and 5 are shown in Figure 8.
Due to the different number of campaigns, the optimal schedules differ substantially,
even though the schedules for test problems 2 and 4 involve the same number of
shutdowns. Thus, even if the number of shutdowns does not change between problem
scenarios, the campaign timings and durations needed to achieve the optimum number
of shutdowns may be very different. In Figure 8 we also observe variability in the
campaign timings from year to year due to the different item frequencies.

Test problems 1–5 model the situation where the timing of the first instance of
each maintenance item can be optimized freely (up to 35% of the item frequency),
but subsequent instances are more tightly constrained. For items with frequencies of
three years and above, the maximum advance/delay limits for the first instance exceed
365 days, and thus these maintenance items can occur anywhere across the year. This
is equivalent to ignoring the previous completion time and effectively re-setting the
maintenance strategy from the start of the first year. This provides maximum flexibility
to perform similar maintenance items together as part of the same campaign, thus
reducing overall shutdown cost.

For each test problem, the dominant shutdown units in each campaign are either
at the plant section level (the entire LNG Train 5) or the operation package level (the
lowest level). This is because none of the maintenance items require separate system,
sub-system, or function shutdowns, even though these are possible according to the
plant hierarchy. The optimal solution for each test problem involved 30 LNG Train 5
shutdowns and either 30, 45, or 50 separate package shutdowns. There is naturally
a high number of plant section shutdowns in the optimal schedules because a large
proportion of maintenance items (around 35%) require a full plant shutdown. Although
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Figure 8. Optimal campaign schedules for problems 2, 4, and 5 in Section 4.1: the orange bars denote the

campaigns for problem 2, the green bars denote the campaigns for problem 4, and the red bars denote the
campaigns for problem 5.

the number of plant shutdowns is always the same, the schedules needed to achieve
this are different, as seen in Figure 8 and the plan allocations in Table 5. There is also
considerable variability in the average campaign duration, which ranges from 24.9 days
for problem 2 to 36.1 days for problem 1.

In the optimal campaign allocations corresponding to the results in Table 5, more
maintenance items are advanced than delayed. This is expected because for TI items
the constraints on under-maintenance are much tighter than the constraints on over-
maintenance. This is also the reason why the campaigns tend to be scheduled earlier
in the year; see Figure 8. As the number of campaigns is reduced, the total number of
package shutdowns also tends to reduce—again, this is expected because more items
are consolidated into fewer campaigns. The trade-off is that the campaigns become
larger and thus more costly, but this cost is not factored into the model.

Finally, we re-iterate that the results presented here do not take into account labour
hours, and hence the optimal schedules may not be feasible in practice if there are tight
restrictions on worker availability. Nevertheless, the workload balancing constraints
defined by ρmin and ρmax ensure that the campaigns are not too lopsided in terms of
item numbers.

4.2. Random Scenarios

4.2.1. Data Set

One of the limitations with the data set in Section 4.1 is that the item resource
requirements are not included and thus constraint (9) is meaningless. Another limita-
tion is that all of the dominant shutdown units are in the top and bottom levels of
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the plant hierarchy tree—the plant section and operation packages, respectively. This
means that the binary variables ξcyn for the intermediate hierarchy levels—the plant
sub-systems, systems, and functions—are essentially redundant.

Thus, to further test the model in Section 2, we randomly generated a set of 20
additional test problems in which all plant hierarchy levels are used and the mainte-
nance items include resource data. Like the problems in Section 4.1, these random test
problems involve five hierarchy levels and use shutdown codes in the range {0, . . . , 6}
to define the shutdown level required. The plant hierarchy tree for these problems has
76 nodes: five children for the top node, and two children each for every other node.
Hence, there is one node in the top level (representing the entire plant), 5 nodes in the
second level, 10 nodes in the third level, 20 nodes in the fourth level, and 40 nodes in
the bottom level. This is slightly larger than the plant hierarchy tree in Section 4.1.

Each test problem involves 3 campaigns, 3,000 maintenance items, and 1,000 po-
tential maintenance plans. The problems were generated by randomly selecting the
following data for each maintenance item uniformly from the given range:

• Maintenance plan containing the item – random integer in {1, . . . , 1000};
• System condition code – random integer in {0, . . . , 6};
• Frequency in years – random integer in {1, . . . , 10};
• Duration in days – random number in [0, 4];
• Suppression hierarchy value – random integer in {1, . . . , 5};
• Resources – random integer in {1, . . . , 5};
• Location in the plant hierarchy tree – random integer in {37, . . . , 76} (the set of

nodes representing operation packages in the hierarchy tree); and
• First execution year and day – defined by a random date between the start of

the time horizon and the start date plus the frequency.

In addition, each maintenance item was designated as TI according to a Bernoulli
distribution with probability 20%.

For the constraints, we chose ρmin = 0.2, ρmax = 0.8, and

δadv
iy =

{
0.35× fi × 365 = 127.75fi, for y = y∗i ,

0.10× fi × 365 = 36.50fi, for y 6= y∗i ,

δdel
iy =


10 days, for TI items,

0.35× fi × 365 = 127.75fi, for non-TI items and y = y∗i ,

0.10× fi × 365 = 36.50fi, for non-TI items and y 6= y∗i .

The other parameters in the constraints were assigned the same values as in Section 4.1
(except for Rmax, which is not considered in Section 4.1):

∆min = 20, ∆max = 50, ε = 60, α = 1, Rmax = 240, t̃min
cy = 0, t̃max

cy = 365.

The cost values wn were also defined as in Section 4.1. The complete data set for the
20 test problems is available online (see Loxton and Mardaneh (2020)).

4.2.2. Results and Discussion

The random test problems are slightly larger than the problems in Section 4.1 because
they involve more maintenance items and a larger plant hierarchy tree, but the increase
in dimensions is not massive. Nevertheless, the random problems proved far more
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Variables

Problem Constraints Integer Continuous Best Cost Optimality Gap

1 138,729 7,431 121 3,747 3.40%

2 135,976 7,434 121 3,743 1.66%
3 142,878 7,422 121 3,710 2.40%

4 140,231 7,437 121 3,690 0.69%

5 141,573 7,413 121 3,759 3.82%
6 138,344 7,401 121 3,711 0.38%

7 142,671 7,440 121 3,751 2.71%

8 139,607 7,410 121 3,720 3.96%
9 140,064 7,386 121 3,764 3.12%

10 141,144 7,413 121 3,710 2.70%

11 142,163 7,401 121 3,711 3.28%
12 137,513 7,401 121 3,730 3.48%

13 139,433 7,401 121 3,818 4.24%
14 137,642 7,437 121 3,762 3.76%

15 138,667 7,398 121 3,831 3.60%

16 139,720 7,398 121 3,689 3.47%
17 140,445 7,422 121 3,726 2.85%

18 137,563 7,371 121 3,707 2.04%

19 136,894 7,398 121 3,796 3.09%
20 140,203 7,407 121 3,685 1.88%

Table 6. Numerical results for Section 4.2.

difficult to solve. This is because, as we have already mentioned, many of the binary
variables and constraints in the previous test problems are redundant and can be
quickly eliminated by CPLEX. Despite the increase in complexity, we could still achieve
excellent results using CPLEX: after 2 hours of run time for each problem, the average
optimality gap was 2.83%. Running CPLEX for longer would likely result in a tighter
optimality gap, and the additional run time would certainly be justified in practice
given the long-term nature of this planning problem.

Table 6 shows the individual results for each test problem after applying CPLEX
version 12.8 for two hours (using the same computer as for the simulations in Sec-
tion 4.1). Although these results do not have any practical meaning, they do show
that the optimization model can be solved to near-optimality in a reasonable amount
of time, even for scenarios that are far more complex than the real scenarios in Sec-
tion 4.1. Note that unlike in Section 4.1, the number of binary variables and constraints
here changes from problem to problem because of the random variation in the number
of items per plan. The number of continuous variables, which only depends on the
years and campaigns, is the same for every problem.

5. Conclusion

In this paper we have developed an integer programming approach for long-term main-
tenance scheduling in oil and gas plants. The problem is to choose the start and end
times for a series of discrete maintenance operations, as well as the work allocated to
each of these maintenance operations, over a multi-year time horizon. Although our
focus has been on oil and gas plant maintenance, the proposed approach is also appli-
cable to other situations and industries where heavy maintenance work is concentrated
into several large-scale, discrete maintenance operations, such as plant maintenance
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at remote mine sites.
Despite the large dimensions involved, the optimization model in Section 2 could be

solved effectively using the commercial solver CPLEX. The test problems in Section 4,
which are based on real data from Australian oil and gas company Woodside Energy,
took only a few seconds to solve completely on a basic desktop computer, while for
the more complex randomly-generated problems in Section 4.2, a tight optimality
gap could be achieved in around two hours of computer run time (the average gap
for these problems was 2.83%). This is a relatively small computational cost given
that the problem itself is formulated over decades and involves numerous large-scale
maintenance campaigns and thousands of recurring maintenance activities.

Most of the existing literature on maintenance scheduling is focused on short-term
planning for a single maintenance operation (such as the RCPS), and not on the long-
term planning of multiple maintenance operations. The present paper is an initial step
towards filling this gap in the literature. Looking ahead, this foundational work could
potentially be extended in several important directions.

• The current model does not incorporate the costs of over- and under-maintenance
and the costs of larger and more expensive campaigns, which is the downside of
concentrating more work into fewer campaigns to reduce shutdowns.

• The model could be adapted to allow the number of campaigns to vary from year
to year based on the maintenance requirements, leading to a new set of decision
variables and more opportunities for optimization.

• Apart from shutdowns, the current model does not consider other synergies
between maintenance items, such as two items being in the same location or re-
quiring the same type of resources. Obviously, it would be preferable to schedule
such items together in the same campaign where possible, just as it is preferable
to schedule items with the same shutdowns together.

• The current model could also be extended by incorporating high-frequency items
with frequencies of under one year, and allowing low-frequency items (say those
with frequencies of ten years or above) to be delayed and advanced into other
years before and after the due year.

Disclosure statement

The views expressed in this paper are the authors’ personal views and are not at-
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and does not constitute advice. Woodside disclaims all liability for any loss or damage
incurred by any person or organization as a result of using, acting on, relying on, or
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