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Abstract

We propose a multistage algorithm for the Vehicle Routing Problem with Time Win-

dows and Synchronised Visits, which is capable of solving large problem instances

arising in Home Health Care applications. The algorithm is based on a Constraint

Programming formulation of the daily Home Care Scheduling and Routing Prob-

lem. It contains visits with hard time windows and pairwise synchronisation to be

staffed by carers who have different skills and work custom shift patterns with con-

tractual breaks. In a computational study, we first experiment with a benchmark

set from the literature for the Vehicle Routing Problem with Time Windows and

Synchronised Visits. Our algorithm reproduced the majority of the best-known so-

lutions, and strictly improved results for several other instances. Most importantly,

we demonstrate that the algorithm can effectively solve real scheduling instances

obtained from a UK home care provider. Their size significantly surpass similar

scheduling problems considered in the literature. The multistage algorithm solved

each of these instances in a matter of minutes, and outperformed human planners,

scheduling more visits and significantly reducing total travel time.
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1. Introduction

The Vehicle Routing Problem with Time Windows and Synchronised Visits

(VRPTWSyn) is about a fleet of vehicles that are supposed to visit a group of ge-

ographically distributed customers. Every visit has a predefined time window for its

start and some prescribed duration. No violation of the time window constraints is

allowed. Some visits require two vehicles, and they cannot commence until both ve-

hicles arrive. Each vehicle is initially located in a depot, to which the vehicle returns

following the last visit. The objective of the problem is to find the assignment of visits

to specific vehicles and the routes each vehicle follows while optimising some decision

criterion, i.e., to minimise the total travel time for all vehicles.

Relying on the apparent analogy between vehicles and home care workers, we con-

sider a practical application of the VRPTWSyn for daily scheduling and routing in

Home Healthcare (HHC). Therefore, we extend the baseline VRPTWSyn problem to

capture the following relevant features in the application domain. Carers start and

end their routes at their homes. They work in sequences of time intervals, referred to

as shift patterns. Periods between the time intervals are contractual breaks. Similar

to visits, contractual breaks have time windows, last a fixed duration, and cannot be

interrupted. A visit consists of a set of tasks to be executed by a carer. Every task

requires a different skill. Only carers who possess relevant skills to complete all tasks

can be assigned to the visit. A client may have several consecutive visits throughout

the day. The number of different carers who visit a given client is restricted to pro-

vide the continuity of care. Finally, the number of requested visits may exceed the

capacity of the system. Thus, a visit can be declined subject to a penalty. We refer

to the problem as the daily Home Care Scheduling and Routing Problem (HCSRP).

Its objective is to find an assignment of visits to carers as well as routes carers should

follow to minimise the total distance travelled and the penalty incurred for declined

visits.

1.1. Related Work

We focus on daily (single-period) routing and scheduling in HHC. Particular attention

is devoted to the modelling of breaks and the treatment of pairwise synchronisation

between visits, i.e., visits required to perform at the same time, which is a central fea-

ture of the VRPTWSyn. Let us remark that dispatching more vehicles for a visit is the

subject of different problems, notably the Manpower Allocation Problem (MAP) (Li

et al., 2005) or Technician Routing and Scheduling (TRS) (Kovacs et al., 2012). As-

pects related to the problem decomposition (Laesanklang and Landa-Silva, 2017),

districting (Benzarti et al., 2013), the assignment of a patient to a health care profes-
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sional (Hertz and Lahrichi, 2009), scheduling over multiple days (Nickel et al., 2012),

and the treatment of uncertainty (Ehmke et al., 2015; Cappanera et al., 2018) are

outside of the scope of this work. For a thorough description of OR in HHC, we refer

the interested reader to recent literature reviews of Cissé et al. (2017) and Fikar and

Hirsch (2017). Both authors provide a reference of notable contributions in the field,

suggest a classification of the optimisation problems considered, briefly explain the

solution methods, and attempt to predict future research directions.

Mathematical models for scheduling problems that contain a routing component

are derivatives of Integer Programming (IP) models for the Vehicle Routing Prob-

lem (VRP) rather than personnel scheduling (Beck et al., 2003). The dominating

theme in the literature is to model personnel scheduling and the routing problem

using either a set partitioning formulation with side constraints (Dohn et al., 2011;

Rasmussen et al., 2012) or a network flow model (Bredström and Rönnqvist, 2008;

Cappanera and Scutellà, 2015; Castillo-Salazar et al., 2016; Thomsen, 2006; Traut-

samwieser and Hirsch, 2011). The former model is usually solved with the branch-

and-cut-and-price method. In practice, however, instances with 100 or more visits

frequently arise, which are too computationally expensive for IP solvers (Castillo-

Salazar et al., 2016). Problem instances with more than 150 visits are effectively

intractable (Paraskevopoulos et al., 2017). Practitioners agreeably remark that short

computational times are critical, mainly due to the need for computing several alter-

native schedules for decision makers (Bertels and Fahle, 2006; Eveborn et al., 2006;

Trautsamwieser and Hirsch, 2011) and the dynamic nature of the environment re-

sulting in last-minute cancellation of visits. This has motivated the development

of hybrid approaches employing a range of methods, including, among others, an

arc insertion heuristic (Thomsen, 2006), hyper-heuristics (Mısır et al., 2015), Con-

straint Programming (CP) (Bertels and Fahle, 2006; Nickel et al., 2012; Rahimian

et al., 2017a), IP (Bredström and Rönnqvist, 2008; Rahimian et al., 2017b), Variable

Neighbourhood Search (VNS) (Rahimian et al., 2017b; Trautsamwieser et al., 2011),

Adaptive Large Neighbourhood Search (ALNS) (Nickel et al., 2012), Guided Local

Search (GLS) (Voudouris and Tsang, 1999), Genetic Algorithm (GA) (Decerle et al.,

2018), Simulated Annealing (SA) (Afifi et al., 2016), Particle Swarm Optimisation

(PSO) (Mutingi and Mbohwa, 2014) and Tabu Search (TS) (Bertels and Fahle, 2006;

Thomsen, 2006).

The need to coordinate actions performed by vehicles is a source of additional com-

putational and modelling challenges. Routing problems in which vehicles do not act

independently were studied by Drexl (2012) who coined the term Vehicle Routing

Problem with Multiple Synchronisation Constraints (VRPMS). The author proposed

a unified taxonomy of arbitrary dependencies apparent in routing problems and com-
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piled an extensive reference of practical applications. Drexl (2012) considers coupling

constraints restricting the start time of visits as “synchronisation of operations”. Com-

mencing a visit simultaneously by two vehicles prevalent in HHC (e.g., to assist a per-

son with reduced mobility (Rasmussen et al., 2012)) is called an “exact operation”.

Following Drexl (2012), other examples of the synchronisation of operations are tem-

poral precedence dependencies and pure spacial operations (i.e., actions that need to

be performed once in the scheduling horizon).

Cheng and Rich (1998) proposed one of the first formulations of single-period

scheduling in HHC. Their goal was to reduce the cost of overtime and part-time con-

tractors needed to staff visits with time windows constraints and skill requirements.

Restricting eligible vehicles to serve a customer due to skill considerations is known

as the Skill Vehicle Routing Problem (Skill-VRP) (Cappanera et al., 2011). Skill re-

quirements are sometimes complemented or replaced by preferences, which measure

satisfaction from assigning a carer to a given visit. Contrary to skills, not respect-

ing preferences does not lead to infeasible schedules but has a detrimental impact on

the cost of the solution. Scheduling in HHC is considered an example of the Vehi-

cle Routing Problem with Resource Constraints (VRPRC) (Paraskevopoulos et al.,

2017). Other notable representatives of this class are TRS (Kovacs et al., 2012) and

MAP (Li et al., 2005).

Fikar and Hirsch (2017), Cissé et al. (2017) and Duque et al. (2015) provide recent

surveys of single and multi-period scheduling in HHC. The authors organised the re-

viewed articles based on the features considered in the formulation of the constraints,

the components included in the objective function, and the solution methods applied.

Predictably, the features of the HCSRP we solve in this paper have been studied by

other researchers. However, the treatment of breaks in the literature and the formula-

tions supporting the synchronisation of visits have some noteworthy limitations which

we explained below.

Thompson and Pullman (2007) considered breaks as visits, for which a carer should

return to a depot. However, this is only justifiable for long breaks in urban areas, where

travel times to reach the depot are short. Kergosien et al. (2009) reserved specific time

slots in carers’ schedules as not available for work. Nevertheless, it is inflexible for

scenarios, where waiting time preceding a visit could be accommodated as a break.

Nickel et al. (2012) avoided scheduling breaks by using shifts shorter than the period

after which labour law enforces a mandatory break, (e.g., 6 hours in Austria and

Germany). Finally, Trautsamwieser et al. (2011) proposed a more general approach,

although limited to one lunch break per carer. The researchers used a network flow-

based formulation, where visits and breaks were two separate classes of nodes. Break

nodes could only be reached from visit nodes, and a carer must return immediately to
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the preceding visit node from which the break node was reached to continue the tour.

This way carers retained their location in the network. Liu et al. (2017) developed a

similar formulation also restricted to a single lunch break supported by a branch-and-

price framework which could solve instances up to 100 visits to optimality. Overall, the

techniques applied to the modelling of breaks impose simplifying assumptions, such

as fixed start time, return to a depot, no more than one break allowed. Consequently,

they do not seem well-posed for multiple breaks and in particular for short (relief)

breaks. The technique of modelling breaks we adopted is free of such assumptions.

We allow for an arbitrary number of breaks which do not require travelling and whose

start times could be flexibly adjusted within predefined time windows.

Besides the need to model working hours and breaks, HHC are further complicated

by visits with synchronisation constraints. Table 1 provides an overview of the lit-

erature considering visits which require simultaneous presence of two vehicles. The

majority of the papers considered were covered in literature reviews (Cissé et al.,

2017; Drexl, 2012; Fikar and Hirsch, 2017). We decided not to include works related

to the MAP (Dohn et al., 2009; Li et al., 2005; Lim et al., 2004) and TRS (Kovacs

et al., 2012) because they consider visits with synchronisation of more than two work-

ers, and it was not mentioned precisely how many visits required multiple staff. For the

same reason, we did not include (Eveborn et al., 2006), who presented a construction

heuristic for home care scheduling and routing. For each reviewed article, we mention

the problem discussed in the paper, the solution method, and some features in the

problem formulation that are vital for HHC applications. Among them, we distinguish

shift patterns and contractual breaks, the continuity of care, and the assignment of

carers to visits based on skills or preferences.

All articles in Table 1 model visits with hard time windows. The authors who fo-

cused on the VRPTWSyn, which is a generic problem, do not include HHC specific

features. Of the papers analysed, only Bachouch et al. (2011) considered a scheduling

horizon longer than a single day, and it is also the only work that supports synchro-

nised visits, the continuity of care, and lunch breaks. Contrary to shift patterns with

contractual breaks and the continuity of care, either skills or preferences are commonly

present in problem formulations.

Overall, the largest instances with synchronised visits solved in the literature are

much smaller compared to the scheduling problems presented in HHC applications

that consider exclusively single carer visits (Fikar and Hirsch, 2017), i.e., 500-700

visits, see (Duque et al., 2015; Hiermann et al., 2015; Trautsamwieser and Hirsch,

2011). Our use case, supported by the requirements of a home care organisation,

demonstrates that solution methods which can solve problem instances of similar size,

albeit with pairwise synchronisation, are needed in the real world, and it is the primary
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Table 1.: Overview of literature on VRPTWSyn. Columns of the table report: the

source article, the class of the problem, the solution method, support for specific

features in the model, and the size of the largest problem instance solved. Among the

features relevant to HHC applications, we distinguish shift patterns and contractual

breaks (B), the continuity of care (CC), and the assignment of carers to visits based

on skills or preferences (SP). The support for breaks may be limited to one lunch

break (L) or offering full flexibility in the number of breaks and their time windows

(Y). The continuity of care indicates if there is a restriction on the number of different

carers who visit a given client (Y). The support for skills and preferences can include

only skills (S), only preferences (P), or both (SP). For the largest instance size solved,

we report the number of carers (C), the number of visits that require one carer (V 1),

and the number of visits with pairwise synchronisation constraints (V 2). The table is

sorted in the ascending order of the number of synchronised visits.

Source Problem Solution Method
Features Largest Instance

B CC SP C V 1 V 2

Kergosien et al. (2009) HCSRP MIP - - S 40 32 8

Bredström and Rönnqvist (2007) VRPTWSyn Branch and Price - - P 16 64 16

Afifi et al. (2016) VRPTWSyn Heuristic + LS + LS - - P 16 64 16

Parragh and Doerner (2018) VRPTWSyn LNS - - - 16 64 16

En-nahli et al. (2016) HCSRP LNS - - - 16 64 16

Frifita et al. (2017) HCSRP VNS - - - 16 64 16

Decerle et al. (2018) HCSRP GA - - - 16 64 16

Bredström and Rönnqvist (2008) VRPTWSyn MIP-driven heuristic - - P 9 0 18

Mutingi and Mbohwa (2014) HCSRP GA, TS, SA, PSO - - S 5 0 20

Bachouch et al. (2011) HCSRP Commercial Product L Y S 5 80 20

Liu et al. (2019) VRPTWSyn LNS - - P 50 160 40

Rasmussen et al. (2012) HCSRP Branch and Price - - SP 15 104 46

Mankowska et al. (2014) HCSRP Heuristic + LNS - - S 40 100 200

This Paper HCSRP Heuristic + LNS + GLS Y Y S 63 388 240

motivation for this work.

1.2. Contributions of the Paper

The main contributions of the paper are:

(1) We present a CP formulation for the VRPTWSyn and its extension to model

the daily HCSRP problem. The latter formulation provides a broad set of fea-

tures crucial to the HHC domain, i.e., skill matching, the continuity of care,

and shift patterns with an arbitrary number of breaks, which may have time
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windows. Consequently, the solutions of the formulation can be fairly compared

with human planners whose schedules account for those constraints.

(2) The multistage optimisation algorithm we propose can solve both formulations.

The algorithm is competitive with other solution methods presented in the

VRPTWSyn literature; it reproduced the majority of the best-known results

for the benchmark set (Bredström and Rönnqvist, 2007) and strictly improved

solutions for five instances. Furthermore, the multistage algorithm is capable of

solving real instances of the daily HCSRP with synchronised visits, which are

considerably larger than those presented in the literature before.

Finally, we emphasise that the utility of the contributions is not limited to our

specific application, e.g., Paraskevopoulos et al. (2017) remark that studies in the

whole class of the Vehicle Routing Problem with Resource Constraints (VRPRC)

seldom consider working regulations. In the case study, we model shift patterns with

contractual breaks adopted by a real HC organisation in the UK and show it does not

have a detrimental impact on the ability to solve large HCSRP problem instances.

1.3. Organisation of the Paper

The next section presents CP formulations for the VRPTWSyn and the HCSRP, re-

spectively. The formulations, albeit concise, are difficult to solve for large problem

instances by stand-alone CP solvers. Therefore, we introduce in Section 3 a multi-

stage optimisation algorithm. Section 4 details computational results demonstrating

the utility of the proposed solution approach. Concluding remarks are presented in

Section 5.

2. Constraint Programming Formulation

Before presenting the formulations, we introduce the notation and describe relevant

global constraints which will make the CP models for the problems we consider more

concise and faster to solve.

2.1. Notation

We adopt the following notation. Capital letters written using regular font represent

sets. Bold lower-case letters denote vectors. We use the vector notation for index-based

access to the content of a vector, i.e., vi is the value of the element at the i-th position

in the vector v. Symbols Z and B denote integer and binary numbers, respectively.

Given some integer constant n, the syntax Z0≤n represents a set of integer numbers
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between 0 and n with the boundary values included. Let bool(·) be an operator which

accepts a logical expression and converts it into a binary decision variable. Finally,

let us define a generic placeholder operator ιn(· · · ) for some integer n. The operator

accepts an arbitrary number of input arguments and returns the element passed at

the n-th position in the argument list.

2.2. Global Constraints

Global constraints are common modelling structures apparent in many Discrete Op-

timisation problems, i.e., packing constraints. They act as abstract interfaces to algo-

rithms which propagate bounds for integer variables faster than an equivalent refor-

mulation of the given constraint into a system of mixed-integer inequalities.

We employ the global constraints explained below. In their definitions, we assume

x is a vector of some prescribed size s which contains integer variables that represent

routes. The value of the variable xi indicates the next node visited after the node i.

A route terminates at the node i if the value assigned to the variable xi is outside the

bounds of the vector x.

NO-CYCLE(x) - No cycles are present in the routes encoded by the vector x.

ALL-DIFFERENT(x) - Elements of the vector x are assigned different values.

AT-MOST(y, z, f) - No more than f elements of the vector y ∈ Zs are assigned value

z.

PATH-CUMUL(x,y, γ) - The constraint computes the quantity of some arbitrary

resource acquired along routes encoded by the vector x. The amount of the resource

available at every node is saved in the vector y ∈ Zs. The function γ : [0, . . . , s− 1]×
Z → Z computes the marginal change in the resource acquired following a visit of a

given node and the current quantity of the resource. The PATH-CUMUL constraint

can be used to model the progression of time along a route, i.e., the start time of a

succeeding visit is greater or equal to the sum of the start time of the previous visit,

its duration, and the travel time to the succeeding visit.

MEMBER(x, S) - Value assigned to the integer variable x is an element of the set S.

2.3. Vehicle Routing Problem with Synchronised Visits

We present a multi-depot formulation for the VRPTWSyn which is obtained by adding

the support for visits with synchronisation constraints to the generic CP model for

the Vehicle Routing Problem with Time Windows (VRPTW) proposed by Perron

(2011).

Let V be the set of visits. A visit v ∈ V can commence within the time window
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[sv, sv] and has duration dv. Every regular visit with a synchronisation constraint is

represented by multiple elements in the set V . Their number equals the number of

requested vehicles. To query visits which require the same number of vehicles, we define

a generic set V i for some integer i as the subset of V restricted to elements representing

visits which require exactly i vehicles to arrive. Furthermore, we define M i to be the

partition of the vector V i in which each subset contains elements representing the

same visit.

Let C be the set of vehicles. Every vehicle c has an individual depot. We represent

it using separate nodes bc and ec that correspond to the start depot and the terminal

depot, respectively. To derive a more straightforward and generic formulation, we

consider depots as visits. Consequently, for every vehicle c, the interval [sbc , sbc ] =

[sec , sec ] indicates the working hours of the vehicle. The duration of the visit at a

depot is zero, i.e., dbc = dec = 0.

Consider a complete graph G(N = V ∪
⋃

c∈C{bc, ec}, E) where N is the set of

nodes, and E is the set of edges. The function δ : N ×N → Z≥0 computes the travel

time between two nodes. It is convenient to wrap it with the function τ(ni, nj) =

dni
+ δ(ni, nj) which computes marginal increase in time needed to complete the visit

ni and arrive to the node nj .

We define the following decision variables. For each node n ∈ N , xn contains the

node succeeding the node n on a route of some vehicle. Furthermore, for all nodes

n ∈ N , the variable sn stores the start time if the node represents a visit, the departure

time if the node corresponds to a start depot, and the arrival time if the node is a

terminal depot. Similarly, the variable wn indicates the vehicle visiting the node n.

Without loss of generality, we assume that sets C and N represent vehicles and

nodes as integer indices which will be used to access decision variables stored in

vectors. With these necessary prerequisites, we propose the following formulation.

min
∑
n∈N

δ(n, xn) (1)

s.t. ALL-DIFFERENT(x) (2)

NO-CYCLE(x) (3)

PATH-CUMUL(x, s, τ) (4)

PATH-CUMUL(x,w, ι2) (5)

svi = svj ∀(vi, vj) ∈M2 (6)

wvi ≤ wvj ∀(vi, vj) ∈M2 (7)
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sn ≤ sn ≤ sn ∀n ∈ N (8)

x ∈ Z|N |0≤|N |−1, s ∈ Z|N |≥0 , w ∈ Z|N |0≤|C|−1 (9)

We remark that pre-processing is employed, e.g., to fix variables associated with the

start and the terminal depot of each vehicle. The objective function (1) minimises the

total travel time for all vehicles. Constraint (2) ensures that each visit has a different

successor (hence no visit is performed more than once), and Constraint (3) elimi-

nates routes which contain cycles. Constraint (4) models time propagation between

consecutive nodes on a route. In a similar vein, the index of the vehicle servicing a

route is passed through connected nodes by Constraint (5). Constraints (6) controls

the start time for visits with pairwise synchronisation. Constraint (7) is a symmetry

breaker which ensures the first element of the pair of visits is assigned to the ve-

hicle represented by a lower integer number. Constraints (8) requires start times to

respect predefined time windows. Finally, Constraint (9) declares types and domains

for decision variables.

2.4. Daily Home Care Scheduling and Routing Problem

Next, we extend the VRPTWSyn formulation to model the HCSRP problem.

Let ρ be the penalty for a declined visit, which is incurred once for every regular

visit from the problem domain. All declined visits will be assigned to the auxiliary

carer c∅.

Every carer c ∈ C has some set of skills P c. Similarly, every visit v ∈ V requires

some set of skills Rv. Furthermore, every two visits that must start simultaneously

have the same set of skills, i.e., Rv1 = Rv2 ∀(v1, v2) ∈ V 2. A carer who does not

possess all relevant skills is not eligible for making the visit. For conciseness, for every

visit v ∈ V , we introduce an additional symbol Cv which denotes the subset of carers

who possess all requested skills to perform the visit v, i.e., Cv = {c ∈ C | Rv ⊆ P c}.
The symbol U represents the set of clients. Let V u be the set of visits requested

for the client u. Every client u has an upper limit fu on the maximum number of

different carers who can visit the client during a day, which reinforces the continuity

of care.

For each carer c ∈ C, let Bc be an ordered set of time intervals when the carer is

not supposed to work, which includes contractual breaks and periods outside working

hours. The first element of the set represents the time before working hours. Its start

time is fixed, and its duration can be reduced to allow commencing a shift earlier.

Next, the set Bc contains a sequence of contractual breaks [b1, . . . , bn]. Every break

b has a flexible start time which must commence within the range [sb, sb] and lasts

fixed duration db. Finally, the last element of the set Bc is the period representing
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the time outside working hours. Its start time window has limited flexibility restricted

by the maximum overtime allowance. The total number of contractual breaks, their

time and duration vary between carers. In the set of problem instances we studied,

carers with the longest working hours were entitled to four breaks while carers who

worked just a few hours had no breaks. Although time intervals in the set Bc share

similar properties to visits, we do not treat them this way due to the assumption that

taking a break or time outside working hours does not involve travelling. Instead, we

follow the approach proposed by Perron (2011) in which routing decisions precede

scheduling breaks. The latter are scheduled using a custom global constraint whose

simplified implementation is presented in Appendix B.

We introduce the following auxiliary variables. For each visit v, let av be a binary

variable which indicates whether the visit is covered in the schedule or has been

declined. Furthermore, for each pair of the client u and the carer c, the variable fc,u

indicates whether the carer visits the client at least once.

Let us represent Constraints (2-9) from the VRPTWSyn formulation using the

feasible set F . It includes schedules with declined visits because the domain of the

decision variables w has been expanded to account for the auxiliary carer c∅.

min
∑
n∈N

δ(n, xn) + ρ
∑
v∈V 1

(1− av) +
1

2
ρ
∑
v∈V 2

(1− av) (10)

s.t. wv = c∅ ⇔ xv = v ∀v ∈ V (11)

av = BOOL(xv ∈ N t \ {v}) ∀v ∈ V (12)

avi
= avj ∀(vi, vj) ∈M2 (13)

MEMBER(wv, C
v) ∀v ∈ V (14)

BREAKS(x, s,d, δ, bc, ec, B
c) ∀c ∈ C (15)∑

v∈V u

BOOL(wv = c) ≤ |V u|fc,u ∀c ∈ C ∀u ∈ U (16)∑
c∈C

fc,u ≤ fu ∀u ∈ U (17)

(x, s,w) ∈ F (18)

a ∈ B|V |, f ∈ B|C|×|U | (19)

The objective function (10) minimises the total distance travelled by carers and

penalties incurred by declined visits. Constraint (11) ensures that if a visit is not per-

formed its corresponding decision variable will represent a self-loop, which is required

for correct calculation of the total travel time. Constraints (12-13) update the status
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of variables indicating whether visits are scheduled. Only carers with relevant skills are

allowed to perform a visit due to Constraint (14). Sufficient time for scheduling breaks

is ensured by Constraint (15). Constraints (16) and (17) provision the continuity of

care. Constraint (18) includes the VRPTWSyn formulation. Finally, Constraint (19)

declares variable types and their domains.

The breaks constraint is developed purposefully for this formulation. Its basic im-

plementation transforms all activities the carer is expected to perform (i.e., visits,

breaks, travelling) into intervals with the relevant time window restrictions and tem-

poral dependencies known during the constraint propagation. For instance, visits must

be performed according to the order established by the route the carer follows and pre-

ceded by travelling. If the intervals cannot be arranged in a non-overlapping manner

without violating the time window restrictions, then the solution is infeasible.

Preliminary computational experiments using the CP formulation to solve large in-

stances (450-500 visits out of which 100 requires two carers) demonstrated that the CP

solver fails to find schedules staffing more than 60-70% of all visits. We identified the

synchronisation constraints as the computational bottleneck and therefore, developed

the multi-stage approach, which is discussed next.

3. Three-Stage Optimisation Algorithm

The three-stage optimisation algorithm can solve either the VRPTWSyn or the HC-

SRP problem, depending on the choice of the formulation presented in the previous

section. The algorithm optimises a given formulation in three subsequent stages. A

solution obtained at one stage is provided as the initial guess for optimisation in the

next stage. Every stage optimises the problem instance using the routing library from

the or-tools framework (Google, 2018). The library simplifies the formulation of a

VRP and configures the CP solver from the same toolbox to solve the problem in-

stance using a highly customisable hybrid method. The solution approach combines a

heuristic initialisation, LS and LNS operators, constraint propagation, and optionally

a meta-heuristic. The pseudocode of the hybrid method is illustrated in Algorithm 1.

For ease of exposition, the pseudocode presents a specialised variant of the generic

optimisation method adapted to solve minimisation problems.

The algorithm uses the following symbols and functions. Let S be the set of search

operators and Π be the solution pool. A solution x is added to the pool Π using

the function ADD(Π,x). The function NEXT(Π) retrieves a solution from the pool

Π to initialise search in the next iteration. The best solution stored in the pool Π is

queried using the function BEST(Π). For implementation of the stopping criterion,

the function ELAPSED-TIME() returns the time since the start of the optimisation

12



Data: Initial feasible solution x(i)

Parameters: Problem formulation, Search operators S, Solution pool Π

ADD(Π, x(i))

x(s),x(n) ← ∅,x(i)

t← 0

repeat

x(s) ← x(n)

for s ∈ S do

X ← NEIGHBOURHOOD(s,x(s))

while X 6= ∅ do
for x(c) ∈ X do

if ELAPSED-TIME()− t ≥ ∆ then
return BEST(Π)

end

if IS-FEASIBLE(x(c)) and OBJ(x(c)) < OBJ(BEST(Π))) then

ADD(Π,x(c))

t← ELAPSED-TIME()

X ← NEIGHBOURHOOD(s,x(s))

break

end

end

end

end

x(n) ← NEXT(Π)

until x(s) = x(n)

return BEST(Π)

Algorithm 1: Specialisation of the generic method for solving VRPs implemented

in the or-tools framework (Google, 2018). The method is adapted to solve min-

imisation problems with stopping criterion defined as the maximum time without

improving the incumbent solution.

and the symbol ∆ denotes the maximum time without improvement of the incumbent

solution. If the time limit is exceeded, the algorithm will terminate. The function

IS-FEASIBLE(x) tests the feasibility of the solution x and the function OBJ(x) com-

putes the objective. Finally, the function NEIGHBOURHOOD(s,x) returns the set

of candidate solutions for the given search operator s in the neighbourhood of the

solution x.
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The method takes an initial feasible solution as input and iteratively improves it

through the exploration of solutions in neighbourhoods induced by search operators.

The control flow resembles a VNS without the perturbation step. The role of the

search operators is reduced to the enumeration of the candidate solutions that may

not even be fully initialised. It is the responsibility of the CP solver to find values

for the unassigned variables, to check the feasibility of the candidate solution and to

evaluate its cost. The specialisation of the algorithm we present accepts candidate

solutions only if they strictly improve the incumbent solution. The generic method

implemented in the or-tools framework (Google, 2018) can be customised by intro-

ducing a meta-heuristic and tentatively accepting solutions that do not improve the

objective. Furthermore, users have the flexibility to alter stopping criteria and change

the implementation of the solution pool. By default, no meta-heuristic is used, and

the solution pool stores only the current best solution. The algorithm continues ex-

ploration until stopping conditions are triggered. Furthermore, if no meta-heuristic is

used, the optimisation is stopped when no search operator can improve the incumbent

solution.

Each of three stages calls to the algorithm above using the OPTIMISE procedure.

We next elaborate on the details of each stage.

3.1. First Stage

The first stage aims to find an initial solution which schedules as many visits with

synchronisation constraints as possible. Such a schedule will then be passed as a partial

solution (with all other visits declined) to the second stage and re-optimised.

Following the approach of human planners to staff visits with synchronisation con-

straints, we create teams of two carers who work and travel together. The team se-

lection procedure we adopted follows a greedy strategy that creates pairs of carers to

maximise the number of skills and working hours both team members share in com-

mon. The algorithm traverses the list of carers sorted by the number of working hours

in descending order. If a carer is not a member of a team, we search for another carer

who has the most compatible working hours and skills. If no such carer is available,

i.e., the number of shared working hours is less than some minimum threshold (e.g.,

2 hours and 15 minutes), a team is not formed, and the carer will not be consid-

ered for team selection any more. The pseudocode of the algorithm is presented in

Appendix A.

After the teams are constructed, the first stage proceeds to solve the CP formulation

for the subproblem F (V (T ), C(T )) of finding a schedule to staff visits with synchro-

nisation constraints (V (T )), using the set of teams (C(T )). For every pair of visits

which are required to commence simultaneously, one element of the pair belongs to
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the set V (T ). The synchronisation and symmetry breaking constraints are implicitly

satisfied. Hence, they are removed from the CP formulation. Algorithm 2 illustrates

the pseudocode of the first stage optimisation.

Parameters: Problem formulation F (V (T ), C(T )), Search operators S1

Result: First stage solution x(1)

x← [1, . . . , |N (T )|]
for c ∈ C(T ) do

xbc ← ec

end

Q← ∅ // initialise a priority queue

for v ∈ V (T ) do

for c ∈ C(T ) do

ADD(Q, δ(bt, v) + δ(v, et)− δ(bt, et), [bt, et, v]) // insertion bt − [v]− et
end

end

while Q 6= ∅ do
a, b, v ← POP(Q) // get the next cheapest insertion

if xa 6= b then

// nodes a and b are no longer directly connected

continue // insertion not possible

end

x(c) ← x // perform the insertion on a copy

x
(c)
a , x

(c)
v ← v, b // insert v between nodes a and b

if IS-FEASIBLE(x(c)) then

x← x(c) // accept the insertion

for v ∈ V (T ) do

if xv = v then

// visit v is still available for insertion

ADD(Q, δ(a, v) + δ(v, c)− δ(a, c), [a, c, v]) // insertion a− [v]− c
ADD(Q, δ(c, v) + δ(v, b)− δ(c, b), [c, b, v]) // insertion c− [v]− b

end

end

end

end

return OPTIMISE(F (V (T ), C(T )),x, S1)

Algorithm 2: First stage optimisation.

The first stage applies the parallel cheapest insertion heuristic to construct the
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initial guess. The implementation of the heuristic in the routing library (Google,

2018) is a loose adaptation of the heuristic as proposed by Savelsbergh (1990). The

algorithm is based on a min priority queue Q. The function ADD(Q,v, c) adds the

element v with the declared cost c to the priority queue Q. Conversely, the function

POP(Q) removes the element at the top from the priority queue Q. The algorithm

starts with the set of empty routes which join the begin and end depots for each

vehicle. For all unstaffed visits, the algorithm considers an insertion between every

pair of subsequent nodes for all routes. The available insertion operations are stored

in the priority queue ordered according to the marginal increase in the total travel

time. If depots’ locations for both vehicles in a team are different, we use mean travel

time instead. The algorithm iteratively attempts to perform the next possible cheapest

insertion that does not make the solution infeasible. Every completed insertion creates

new opportunities to insert the remaining visit, which are added to the priority queue.

The algorithm proceeds until no more insertions are possible.

The initial guess is then optimised using Algorithm 1 and the following LS operators

implemented in the framework (Google, 2018). All search operators work on the set of

routes encoded using the variables x from the CP formulation. Remaining variables

are assigned by the CP solver using constraint propagation. For ease of exposition,

we arrange the search operators into groups depending on the objects they process.

The first group of operators work with nodes which belong to the same route, i.e., to

move a node to a different position, to swap positions of two nodes, to move a chain of

nodes between two most costly arcs to a new position. This group also includes well-

known operators proposed for the Travelling Salesman Problem: 2-Opt, OrOpt, and

the operator of Lin and Kernighan (1973). In the first stage, we use only one operator

that works on two routes, i.e., to swap chains of consecutive nodes at the beginning

of two routes. Finally, several operators work on a route and the set of declined visits.

We do not list them all here because they are simple variants of a generic operator

that attempts to insert a declined visit into a route optionally removing another node

from the route to make the insertion feasible. The optimisation is stopped as soon as

no search operator can find a better solution.

3.2. Second Stage

The second stage optimises the original problem instance F (V,C) starting from the

solution produced by the first stage. Algorithm 3 illustrates the pseudocode of the

second stage optimisation.

We start by transforming the solution restricted to visits with synchronisation con-

straints found by the first stage into an initial guess for the second stage optimisation.

Teams are disbanded into individual vehicles, and every routing node visited by a
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Data: First stage solution x(1)

Parameters: Problem formulation F (V,C), Search operators S1 ∪ S2

Result: Second stage solution x(2)

x(i) ← [1, . . . , N ]

for n ∈ N (T ) do

n1, n2 ← FIRST(n),SECOND(n)

xn1
, xn2

← FIRST(x
(1)
n ),SECOND(x

(1)
n )

end

return OPTIMISE(F (V,C),x(i), S1 ∪ S2)

Algorithm 3: Second stage optimisation.

team is split into two separate routing nodes for each vehicle. Functions FIRST(n)

and SECOND(n) for a node n in the first stage given as input return corresponding

routing nodes n1 and n2 in the second stage. For simplicity, we use the same set of

functions for the mapping between teams and individual vehicles. All visits without

synchronisation constraints are left unassigned in the initial guess, and the solver is

free to change the matching between vehicles and visits. On top of the LS opera-

tors described in the first stage (S1), we enable two additional LNS operators (S2)

implemented in the or-tools framework (Google, 2018). The first operator destroys

the assignment of variables that represent two chains of up to three subsequent arcs

selected across all routes. The chains could be located on the same route and may

even overlap. The second operator destroys one route entirely as well as the whole set

of declined visits. The CP solver is responsible for performing the repair operation.

Similarly to the first stage, the optimisation is stopped once the incumbent solution

cannot be improved by an exhaustive examination of neighbourhoods induced by all

search operators.

3.3. Third Stage

The third stage optimisation attempts to reduce further the cost of the solution ob-

tained in the second stage. For this purpose, we adopt the GLS meta-heuristic, which

works by applying an adaptive penalty for using a given arc on a route. The imple-

mentation of the meta-heuristic in the framework (Google, 2018) adds the following

term to the objective function:

λ
∑
n∈Ns

(pn,xn
δ(n, xn)) (20)
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where λ is a scaling factor set to 0.1 and pa,b is the penalty for using the arc (a, b).

We refer to the formulation with the modified objective function as F (GLS)(V,C,p).

The vector p stores the current values of penalties.

Algorithm 4 presents the pseudocode of the third stage optimisation.

Data: Second stage solution x(2)

Parameters: Problem formulation F (V,C), Search operators S1 ∪ S2 ∪ S3,

Solution pool Π

Result: Third stage solution x(3)

ADD(Π,x(3))

p← [0]|N |×|N | . initialise GLS penalties

t← 0

while ELAPSED-TIME()− t ≤ ∆ do

x(i) ← NEXT(Π)

x(c) ← OPTIMISE(x(i), F (GLS)(V,C,p), S1 ∪ S2 ∪ S3, L)

if OBJ(x(c)) < OBJ(BEST(Π)) then

t← ELAPSED-TIME()

end

ADD(Π,x(c))

d← []

for n ∈ N do

. compute the utility for each arc in the solution

if x
(c)
n 6= n then

d← d||[δ(n, xn)/(pn,xn
+ 1), n, xn] . append a row to the 2D vector

end

end

. increment penalties for arcs with the highest utility

DESCENDING-SORT(d, ι1)

umax ← d0,0

for (u, a, b) ∈ d do

if u 6= umax then

break

end

pa,b ← pa,b + 1

end

end

return BEST(Π)

Algorithm 4: Third stage optimisation.
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The third stage is warm-started using the best solution found by the second stage.

The GLS penalties are initially set to zero for each arc. The method proceeds iter-

atively until the maximum time without improvement to the incumbent solution is

reached, which we defined as the stopping criterion for the third stage. In every it-

eration, the solution most recently added to the pool is passed as the initial guess

to start optimisation using Algorithm 1. Besides search operators enabled in the first

and the second stage (S1∪S2), the solver exploits an additional LS operator from the

framework (Google, 2018) which moves forward and backward chains of subsequent

nodes only if the move contributes to decreasing the cost of a route. The optimisa-

tion is stopped after the time limit without improvement of the incumbent solution is

reached. The obtained solution is then added to the solution pool and used to decide

which penalties should be updated. For every arc (a, b) traversed in the most recent

solution, the meta-heuristic computes the expression δ(a, b)/(pa,b + 1) called the util-

ity of a feature. Then, the function SORT-DESCENDING(d, ι1) sorts the vector d

in descending order by the utility, and the penalties are increased by one for all arcs

for which the utility attained the highest value. Consequently, a penalty for using a

costly arc is not exacerbated if the arc frequently appears in solutions.

4. Computational Results

Computational experiments will verify whether the multistage algorithm is compet-

itive with the solution methods proposed for the VRPTWSyn and demonstrate if it

remains a viable approach for considerably larger and more complex HCSRP instances

which arise in the real world. To provide diversified results, we run computational tests

with the benchmark set of 50 VRPTWSyn instances (Bredström and Rönnqvist, 2007)

as well as 14 real-world HCSRP instances obtained from a home care provider, who

operates in a major city in the UK. Before describing the problem instances and the

results, we discuss the implementation of the algorithm and the configuration param-

eters.

4.1. Implementation and Configuration Details

The multistage algorithm and the CP formulations were implemented in C++ as a

single-thread program using the or-tools library (Google, 2018). The computations

were run on a workstation with AMD Ryzen 7 processor and 32 GB of RAM. Ter-

mination of the third stage optimisation is triggered by not improving the incum-

bent solution within the prescribed time limit. We set it to three minutes for the

VRPTWSyn instances and five minutes for the HCSRP instances. These values were
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derived experimentally after observing that longer time limits do not contribute to

obtaining better results. The first stage and the second stage do not need external

stopping criteria because they do not use meta-heuristics and terminate as soon as

none of the search operators can improve the incumbent solution.

4.2. Vehicle Routing Problem with Time Windows and Synchronised

Visits

The VRPTWSyn benchmark set compiled by Bredström and Rönnqvist (2007) con-

sists of 50 instances derived from 10 base problems. Each base problem contains either

20, 50, or 80 visits. The ratio of visits with synchronisation constraints is 10%. The

instances are obtained from the base problems by applying different time window

configurations: no time windows (F), small (S), medium (M), large (L), and time

windows equal to the span of the scheduling horizon (A). The number of vehicles is

restricted. Each vehicle can work at most 9 hours, which overlaps with the span of

the scheduling horizon. Among the objective functions defined for the benchmark, we

use the minimisation of the total travel time.

For some of the problem instances, for which proving optimality remains an open

problem, the multistage algorithm strictly improved the best results published in the

literature. To quantify the improvement, we calculate a relative marginal difference

between the best solution reported in the literature and the solution found by the

multistage algorithm. We refer to this quantity as ∆ and formally define it as ∆ =

100 · (OLit −OMS)/OLit, where OMS and OLit denote objective function values of the

schedule found by the multistage algorithm and the best schedule reported in the

literature, respectively.

In Table 2, we present the best solutions known in the literature, along with the

results found by the proposed multistage algorithm. An asterisk in the second column

indicates whether the solution has been proven optimal. All solutions of the benchmark

problems found by the multistage optimisation algorithm are included in the data

set (Polnik et al., 2018). The multistage algorithm reproduced 39 out of 50 best

solutions from the literature and strictly improved results for five instances (9S, 6A,

7A, 8A, 9A). For four instances (10S, 10M, 9L, 10L), the multistage algorithm found

a slightly worse solutions than the best-known solution, with the difference being less

than 0.7%. Finally, the multistage algorithm failed to find a feasible solution in two

cases (8F and 9F). To the best of our knowledge, the two instances were solved only

by Parragh and Doerner (2018). Overall, comparing the optimality of the solutions

produced, the multistage algorithm is competitive with the other most successful

approaches proposed in the literature (Afifi et al., 2016; Liu et al., 2019; Parragh

and Doerner, 2018). None of these methods unequivocally dominates others in this
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Table 2.: Column (P) indicates the problem instance. The number of vehicles, visits

without synchronisation constraints, and visits with pairwise synchronisation are dis-

played in Columns (C), (V 1), and (V 2). Column (OLit) contains the objective value

of the best solution published in the literature. Column (OMS) reports the objective

of the best solution returned by the multistage algorithm, and Column (TMS) displays

the computational time required to find that solution. Finally, Column (∆) presents

the relative improvement of the multistage solution divided by the best-known result

from the literature.

P C V 1 V 2 OLit OMS TMS [s] ∆

1F 4 16 2 5.13*a 5.13 0.1 0

2F 4 16 2 4.98*a 4.98 0.01 0

3F 4 16 2 5.19*a 5.19 3.51 0

4F 4 16 2 7.21*a 7.21 0.01 0

5F 4 16 2 5.37*a 5.37 0.76 0

6F 10 40 5 14.45*b 14.45 12.74 0

7F 10 40 5 13.02*b 13.02 7.74 0

8F 10 40 5 34.94*c - - -

9F 16 64 8 43.48*c - - -

10F 16 64 8 12.08*c 12.08 57.49 0

1S 4 16 2 3.55*a 3.55 0.05 0

2S 4 16 2 4.27*a 4.27 0.04 0

3S 4 16 2 3.63*a 3.63 0.12 0

4S 4 16 2 6.14*a 6.14 7.38 0

5S 4 16 2 3.93*a 3.93 0.24 0

6S 10 40 5 8.14*d 8.14 1.82 0

7S 10 40 5 8.39*d 8.39 9.16 0

8S 10 40 5 9.54*d 9.54 86.72 0

9S 16 64 8 11.93 e 11.92 2521.88 0.08

10S 16 64 8 8.54 f 8.58 1423.75 -0.47

1M 4 16 2 3.55*d 3.55 0.16 0

2M 4 16 2 3.58*d 3.58 3.25 0

3M 4 16 2 3.33*d 3.33 1.05 0

4M 4 16 2 5.67*d 5.67 0.81 0

5M 4 16 2 3.53*a 3.53 0.51 0

P C V 1 V 2 OLit OMS TMS [s] ∆

6M 10 40 5 7.7e 7.7 41.89 0

7M 10 40 5 7.48e 7.48 23.49 0

8M 10 40 5 8.54*a 8.54 119.03 0

9M 16 64 8 10.92e 10.92 129.36 0

10M 16 64 8 7.62e 7.67 1590.21 -0.66

1L 4 16 2 3.39*d 3.39 0.18 0

2L 4 16 2 3.42*d 3.42 7.43 0

3L 4 16 2 3.29*d 3.29 0.07 0

4L 4 16 2 5.13*d 5.13 0.3 0

5L 4 16 2 3.34*d 3.34 0.37 0

6L 10 40 5 7.14*d 7.14 53.92 0

7L 10 40 5 6.88d 6.88 52.03 0

8L 10 40 5 8e 8 2656.16 0

9L 16 64 8 10.43 f 10.5 190.14 -0.67

10L 16 64 8 7.36 f 7.38 256.76 -0.27

1A 4 16 2 2.95c 2.95 0.02 0

2A 4 16 2 2.88c 2.88 0.02 0

3A 4 16 2 2.74c 2.74 0.11 0

4A 4 16 2 4.29 g 4.29 0.02 0

5A 4 16 2 2.81c 2.81 0.5 0

6A 10 40 5 6.48b 5.77 56.66 10.96

7A 10 40 5 5.71c 5.7 160.85 0.18

8A 10 40 5 6.52c 6.51 86.08 0.15

9A 16 64 8 8.51c 8.5 116.37 0.12

10A 16 64 8 6.31c 6.31 676.65 0

a Bredström and Rönnqvist (2008); b Decerle et al. (2018); c Parragh and Doerner (2018); d Bredström

and Rönnqvist (2007); e Afifi et al. (2016); f Liu et al. (2019);g Gayraud (2015);

benchmark, as for each solution approach, we can find at least one instance for which

a given method did not find the best-known schedule.

From the computational time perspective, the multistage algorithm is slower, in

particular on instances with 16 vehicles, compared to methods developed by Afifi et al.

(2016); Liu et al. (2019); Parragh and Doerner (2018). In the most extreme case, our

algorithm ran 45 minutes (8L), whereas the ALNS of Parragh and Doerner (2018)
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runs always below 45 seconds. Among factors that contribute to slower performance,

we remark that we are using a general-purpose algorithm with a standard CP solver,

rather than a meta-heuristic tailored for this specific problem. On the other hand, the

flexibility of the multistage algorithm allows us to extend its use broadly, including a

real-world application.

4.3. Daily Home Care Scheduling and Routing Problem

We obtained the HCSRP instances from a home care organisation that provides ser-

vices in a major city in the UK. The benchmark suite comprises instances for the first

two weeks of October 2017 for the largest district where the company operates. The

period and the month overlap with the pilot deployment of our algorithm in the home

care organisation. Furthermore, other researchers, e.g., Duque et al. (2015), conducted

computational studies using data collected in the same period. Depending on the day,

between 444 and 508 visits were requested, and the number of available carers varied

from 47 to 71. The records include the expected duration of the visit, tasks to be

performed, and the number of carers needed. Approximately 20% of visits required

pairwise synchronisation.

Shift patterns and contractual breaks of each carer are extracted from historical

schedules, which is a common way of retrieving carers’ working hours in the literature,

see, e.g., (Duque et al., 2015; Nickel et al., 2012). Postal addresses of visits locations

were replaced by a distance matrix for pedestrians computed using the Open Source

Routing Machine (Luxen and Vetter, 2011). The anonymised problem instances are

available online for testing and benchmarking purposes, see (Polnik et al., 2018).

To the best of our knowledge, they are the largest HCSRP instances with pairwise

synchronisation considered in the literature.

When solving the problem instances, we allow the start times of visits and breaks

to be moved up to 90 minutes from their nominal values. Furthermore, each carer

can work no more than 60 minutes overtime, 30 minutes before the start of the shift,

and 30 minutes after its end. The penalty term was set to the sum of the five longest

travel times between every pair of visits’ locations in the given problem instance. The

resultant value was high enough to prevent attempts to decline a visit and compensate

for the penalty incurred by the reduction of the travel time. Finally, clients with single

carer visits only can be visited by at most two different carers per day to provide the

continuity of care. The limit is extended to four carers for clients who receive multiple

carer visits.

Table 3 compares the schedules obtained by human planners and the multistage

algorithm. Human planners create schedules manually, starting from a baseline sched-

ule in which the same carer or a team of carers perform a recurring visit for a given
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Table 3.: The first set of columns summarise attributes of the problem instances:

problem identifier (P), the number of carers (C), single carer visits (V 1), visits with

pairwise synchronisation constraints (V 2), and the penalty incurred for declining a

visit (ρ). The next three sets of columns contrast solutions obtained by human plan-

ners (HP) and the multistage algorithm in the second stage (MS2) and the third stage

(MS3): the cost of the solution (Objective), the number of declined visits (Declined),

and the total travel time for all carers (Travel). The last column reports the compu-

tational time when the best solutions were reported in the second and the third stage

of the algorithm.

P C V 1 V 2 ρ
Objective Declined Travel [h] Time [s]

HP MS2 MS3 HP MS2 MS3 HP MS2 MS3 MS2 MS3

1 47 338 224 7.03 120.64 29.07 21.11 7 0 0 71.46 29.07 21.11 309 1079

2 62 389 232 7.07 204.9 51.6 36.28 19 3 2 70.59 30.39 22.14 858 2520

3 60 386 240 7.07 200.44 31.37 22.93 17 0 0 80.27 31.37 22.93 73 1322

4 63 388 240 7.07 192.52 52.55 32.73 17 4 2 72.35 24.27 18.59 968 2316

5 62 388 232 7.07 165.43 40.09 32.9 13 2 2 73.54 25.95 18.76 80 1464

6 64 393 224 7.07 147.93 25.09 17.8 10 0 0 77.24 25.09 17.8 503 1222

7 47 343 224 7.03 163.89 57.31 40.64 12 4 3 79.57 29.21 19.56 1335 3486

8 47 336 226 7.03 94.85 45.28 35.8 2 3 2 80.8 24.2 21.74 93 208

9 58 387 224 7.07 168.75 58.66 52.47 13 4 4 76.85 30.38 24.19 1534 2202

10 60 375 236 6.97 159.33 41.8 37.34 11 2 2 82.65 27.85 23.4 96 707

11 58 380 232 6.97 178.24 42.87 36.34 14 2 2 80.66 28.93 22.4 1541 2677

12 71 382 234 6.97 200.45 47.99 38.52 17 3 2 81.96 27.08 24.58 1601 2735

13 58 383 218 6.97 176.86 26.72 17.98 14 0 0 79.27 26.72 17.98 110 1042

14 53 329 230 6.89 176.64 44.91 35.04 14 2 2 80.14 31.13 21.26 1080 2201

client. If a carer is not available, e.g., due to different work arrangements, the first-line

manager will have to find a replacement among carers present in the area that day.

The alternative assignment is typically selected based on the number of visits already

allocated to a given carer.

Considering the objective function, the best solutions reported in the second stage

of the multistage algorithm significantly outperformed schedules created by human

planners. The second stage solved each instance in less than 30 minutes of computa-

tional time. The third stage reduced the cost of a schedule even further at the expense

of additional computational time. The best solutions reported by the algorithm typ-

ically had three times less declined visits compared to human planners and reduced

time spent on travelling by half. Hindle and Hindle (2010) remark that travel-related

costs are most likely to negatively impact service levels. Consequently, this extra ca-

pacity is a very desirable outcome for first-line managers, e.g., to minimise delays in

commencing visits, to perform even more visits (Trautsamwieser and Hirsch, 2011),
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and to increase work satisfaction allowing carers to finish their shifts early (Thomsen,

2006).

Both the multistage algorithm and human planners declined some visits. The over-

subscription is a well-known fact to first-line managers, who resolve such issues by

widening the time windows of the visit, shortening its duration, or rescheduling for

some other time. If the manager concludes that not enough workforce is available,

individual carers may work more overtime, or some visits may be transferred to an

external agency.

Overall, the problems with synchronised visits considered in the literature are sig-

nificantly smaller than their counterparts, which contain only single carer visits (Fikar

and Hirsch, 2017). However, as our example demonstrates, the need for solving large

instances with synchronisation constraints arises in the real world. The multistage

algorithm we presented solved such problems in a reasonable computational time, i.e.,

less than 30 minutes, and without ignoring important features in the HHC application

domain, i.e., the continuity of care, scheduling of contractual breaks for carers, etc.

Such aspects were of critical importance to the home care organisation we supported.

The company has evaluated our software during a pilot deployment, and its results are

consistent with the findings discussed in this section. Most importantly, the schedul-

ing problems the organisation is dealing with are practically solvable by optimisation

software which provides the opportunity for the travel time reduction and does not

compromise the continuity of care human planners deliver. As a result, the company

board is supporting the adoption of automated scheduling methods in planning the

daily operations of the organisation.

5. Conclusion

We proposed a multistage algorithm that solves a Constraint Programming formu-

lation of the Vehicle Routing Problem with Time Windows and Synchronised Visits

and its extended version adapted to the Home Healthcare domain. The improved

formulation supports flexible shift patterns with an arbitrary number of contractual

breaks, skill requirements for visits, and the continuity of care. These features are

vital, considering a real application in scheduling home care visits and enable a fair

comparison with human planners.

The multistage algorithm is competitive with the other methods proposed in the lit-

erature for the pure Vehicle Routing Problem with Time Windows and Synchronised

Visits. Our solution method reproduced the majority of the best-known solutions for

the popular benchmark set (Bredström and Rönnqvist, 2007) and strictly improved re-

sults for several instances. Furthermore, we evaluated the algorithm and the extended
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formulation on a suite of real-world instances obtained from a home care provider who

operates in a large city in the UK. To the best of our knowledge, these instances are

at least two times bigger than the problems with pairwise synchronisation previously

considered in the literature. We show that such instances are effectively solvable in ac-

ceptable computational times, and the new solutions significantly outperform human

planners.

Our current research focuses on improving schedules by altering the CP formulation

at the last stage of the optimisation algorithm, i.e., to reduce the number of carers

needed to staff the visits or to improve the on-time arrival of carers to a visit.
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Appendix A. Team Construction Heuristic

Algorithm 5 presents the team selection policy we adopted.

We extend symbols introduced in Section 2 as follows. Let A be the set of carers

who can join a team. The minimum duration both carers should work together to form

a team is restricted by t, which equals 2 hours and 15 minutes. Carers who throughout

the selection process either joined a team or do not meet criteria to form a team are

stored in the set U . The set T contains the teams constructed by the algorithm. The

function ω accepts an arbitrary number of arguments representing carers and returns

the total time all of them work together.
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input: C

T ← ∅; U ← ∅
foreach ci ∈ SORT-DESCENDING(C,ω) do

if ci ∈ U then

continue

end

U ← U ∪ {ci}; A← C \ U
if A = ∅ then

return T

end

m← c∅

foreach ck ∈ A do
if ω(ci, ck) ≥ t and ω(ci, ck) ≥ ω(ci,m) and |P cu ∩ P ck | ≥ |P ci ∩ Pm|
then

m← ck

end

end

if m 6= c∅ then

U ← U ∪ {m}; T ← T ∪ {(ci,m)}
end

end

return T
Algorithm 5: Team Selection

Overall, the algorithm follows a greedy strategy maximising the working hours and

the number of skills a team has. The flow of the algorithm is explained in Section 3.1

in the main text. The proposed heuristic algorithm runs in O(|C|2log(|C|)) time due

to O(nlog(n)) complexity of sorting.

Appendix B. Breaks Constraint

Algorithm 6 presents a simplified implementation of a custom CP constraint to enforce

that carers do not work during contractual breaks and time out of office hours. The

implementation of the algorithm extensively uses variables of the interval type de-

signed to model temporal activities that commence within a predefined time window

and finish after a specified duration.

Besides symbols introduced in Section 2, the algorithm employs the following func-

tions. The function H(e) converts the element e of some set into an interval, e.g., if v
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input: x, s, d, bc, ec, B
c

if not PATH-CONNECTED(x, s, d, δ, bc, ec) then

return

end

I ← ∅; vi ← bc

while vi 6= ec do

vj ← xvi

STARTS-AFTER-END(H(δ(vi, vj)),H(dvi
))

STARTS-AFTER-END(H(dvj ),H(δ(vi, vj)))

if LB(H(dvi
)e) + δ(vi, vj) > UB(svj

) then

fail

end

if vi 6= bc then

I ← I ∪ {H(dvi)}
end

I ← I ∪ {H(δ(vi, vj))}; vi ← vj

end

foreach bi ∈ Bc do

I ← I ∪ {H(dbi)}
foreach bj ∈ Bc do

if LB(sbi) < LB(sbj ) then

STARTS-AFTER-END(H(bj),H(bi))

end

end

end

ALL-DISJUNCTIVE(I)

Algorithm 6: BREAKS Constraint

belongs to the set of visits V , then H(v) creates its corresponding time interval. Given

some interval i, the function END(i) returns the variable that denotes the time when

the interval i ends. Interval variable type is accompanied with a set of built-in con-

straints. Our implementation employs the ALL-DISJUNCTIVE(i) constraint to assert

that no pair of intervals in the vector i overlaps and the STARTS-AFTER-END(a, b)

constraint which defines a precedence relation between the end of the interval b and the

start of the interval a. Functions LB and UB return the lower and upper bounds for the

given variable, respectively. Finally, the function PATH-CONNECTED(x, s,d, bc, ec)

tests whether variables encode a valid route from the begin depot bc to the end depot

ec.
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If the precondition holds, we create a time interval for every activity a carer performs

on a route besides breaks and time outside working hours. H(δ(vi, vj)) denotes the

interval corresponding to travel between visits vi and vj . The interval H(dvi) represents

performing a visit vi. The length of the interval equals the duration of the visit, and the

beginning of the interval respects the time window for commencing a visit. Relevant

precedence constraints between intervals are defined whenever possible. Travel to the

next visit location can be started after the previous visit is completed. Similarly,

the succeeding visit cannot commence unless the travel is finished. The statement

LB(END(H(vi)) + δ(vi, vj) > UB(sj) guards against negative intervals. If the time

window of the succeeding visit is violated, the assertion will fail, and the solution will

be declared invalid. Furthermore, the start times of breaks must respect their relative

order during the day. Ultimately, none of the intervals can overlap, which is enforced

by the ALL-DISJUNCTIVE constraint.
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