
SUPPLEMENTARY FILE

Modeling and Solving the Supply Marketing Order Allocation

Problem with Time Consistency and Bundle Discounts

Yupeng Zhou a, Minghao Liu b, Feifei Ma c,d, Na Luo a and Minghao Yin a,e,∗

aSchool of Computer Science and Information Technology, Northeast Normal University,
Changchun, 130117, China;
bUniversity of Chinese Academy of Sciences, Beijing, 100049, China;
cState Key laboratory of Computer Science, Institute of Software Chinese Academy of
Sciences, Beijing, 100190, China
dLaboratory of Parallel Software and Computational Science, Institute of Software Chinese
Academy of Sciences, Beijing, 100190, China
eKey Laboratory of Applied Statistics of MOE, Northeast Normal University, Changchun
130024, China

ARTICLE HISTORY

Compiled March 19, 2021

1. Problem Description

Before proceeding, some nomenclature and abbreviations are given in Table 1.

Table 1. Nomenclature and abbreviations

Abbreviation Description
SMOAP Supply Marketing Order Allocation Problem
SSOA Supplier Selection and Order Allocation
CDA Combinatorial Double Auction
SPP Set Packing Problem
SMT Satisfiability Modulo Theories
ILP Integer Linear Programming

MILP Mixed Integer Linear Programming
CP Constraint Programming
LS Local Search
TS Tabu Search

GRASP Greedy Randomized Adaptive Search Procedure

1.1. Example

The supply marketing order allocation problem can be treated as a constraint weighted
bipartite graph matching problem, which is easier to understand. Purchasers’ orders
and suppliers’ orders are naturally divided into two subgraphs. The vertices in each
subgraph represent submitted orders and the edges connecting two vertices stand

* Corresponding author: Minghao Yin (ymh@nenu.edu.cn)

for feasible matching. The weight of each vertex is the order price, and the weight
of each edge is the delivery cost. For suppliers, vertices with the same font color
are in conflict, which is discussed above. So they cannot be allocated to the same
demand order. Figure 1 shows an example of SMOAP. Suppose there are six pur-
chasers P1, P2, P3, P4, P5, P6 and nine suppliers S1, S2, S3, S4, S5, S6, S7, S8, S9. In
the graph, S1, S6 are conflicting, S2, S3, S4 are conflicting, and S8, S9 are conflicting.
S1 bids for (P4, P5), S2 bids for (P1, P6), S3 bids for (P1, P2, P3), S4 bids for P3,
S5 bids for P2, S6 bids for (P4, P5), S7 bids for P5, S8 bids for P1, and S9 bids
for (P2, P3). An allocation plan is {< P1, S2 >,< P1, S8 >,< P2, S3 >,< P2, S5 >
,< P2, S9 >,< P3, S4 >,< P4, S1 >,< P5, S6 >,< P5, S7 >} with an objective
function value f = (W1price +W2price +W3price +W4price +W5price)− (W ′1price +
W ′2price +W ′3price +W ′4price +W ′5price +W ′6price +W ′7price +W ′8price +W ′9price)−
(E1delivery +E2delivery +E3delivery +E4delivery +E5delivery +E6delivery +E7delivery +
E8delivery + E9delivery). Our aim is to provide an optimal plan that can maximize f ,
i.e., the profits of the platform. For those blue nodes, agriculturists are suppliers, while
for green nodes, they are purchasers. However, these two trading backgrounds can be
integrated into one model and solved together.

Figure 1. An example of SMOAP

1.2. NP-hardness of SMOAP

We now prove the NP-hardness of SMOAP. Different from the combinatorial auction
problem which can be modeled as a set packing problem (SPP), SMOAP is proved
via reduction from the exact cover problem.

Proposition 1. The supply marketing order allocation problem is NP-hard.

2

Proof. Consider the more simplified decision version of SMOAP, which asks if it is
possible to allocate some supply orders from OS to only one demanding order from
OP so that the constraints 1, 3 and 4 are satisfied. For constraints 2 and 5, we can
assume that the purchaser always pays enough money, and the time segment of every
supply order has an intersection with the demanding order. We can prove that this
problem is NP-complete via reduction from the exact cover problem, which is one of
Karp’s 21 NP-complete problems. The exact cover problem is: Given a finite set X
and a collection C of subsets of X, does C contains an exact cover for X, that is, a
subcollection C ′ ⊆ C such that every element of X occurs in exactly one member of
C ′? We can construct a simplified decision problem of SMOAP from the exact cover
problem by the following steps:

(1) For the finite set X, create a demanding order oPi , whose demanding set of goods
equals X.

(2) For the collection C, create a supply order oSj for each of its elements Cj , whose
supply set of goods equals Cj .

Apparently, the above procedure is a polynomial-time reduction. Suppose the
SMOAP has a solution S = {xi,j}, then every Cj whose corresponding variable xi,j
is true can form a subcollection C ′, which is a solution of the exact cover problem.
Conversely, if the exact cover problem has a solution, so does the SMOAP, too.

Now that we have proved the NP-completeness of the simplified decision version of
the SMOAP, it easily follows that the problem itself is NP-hard.

2. The Local Search Algorithm

2.1. Solution representation and search space

Given a SMOAP model with |S| suppliers, S = {S1, S2, ..., Sn}, and |P | purchasers,
P = {P1, P2, ..., Pm}, a feasible allocation can be denoted as a binary tuple {aij =<
Pi, Sj >: Pi ∈ P, Sj ∈ S} such that aij = 1 if supply order Sj is allocated to purchaser
order Pi, and aij = 0 otherwise. Based on this, any candidate solution A is represented
by k -dimensional vectors, i.e., A = {aij = 1 :

∑m
i=1

∑n
j=1 aij = k, 1 ≤ i ≤ m, 1 ≤ j ≤

n}. We further define the search space as Ω = {a : a ∈ {0, 1}m∗n}. It should be
noted that k is unfixed according to the characteristics of the real scenario. That is,
unreasonably submitted orders of both sides may exist in the data gathering module
of the platform, thus causing less successful allocations (a smaller value of k). In this
case, the lower bound of k is assigned 0. As each supply order is only allowed to bid
for a unique demand order, the upper bound of the cardinality k is set to n.

2.2. Preprocessing Stage

In general, a lot of data will be included in one e-commerce platform, some of which
are redundant to the computation module. As we focus on algorithmic aspects of this
problem, the data preprocessing is needed to simplify the incoming inputs. Thus, only
the following variables are left behind per instance: total goods number, purchaser
number, supplier number, orders(ID, price, commodity set , weight, [datestart, dateend],
district code). By this means, instances for the supply marketing allocation problem
are simplified.

3

Table 2. Reduction rate of preprocessing
Name Before reduction After reduction Reduction rate

suppliers purchasers variables constraints suppliers purchasers variables constraints suppliers variables constraints
SMOAP-1 186 8 1682 2804 113 8 1025 2074 39.25% 39.06% 26.03%
SMOAP-2 182 8 1646 2764 139 8 1259 2334 23.63% 23.51% 15.56%
SMOAP-3 201 8 1817 2970 126 8 1142 2220 37.31% 37.15% 25.25%
SMOAP-4 189 8 1709 2834 125 8 1133 2194 33.86% 33.70% 22.58%
SMOAP-5 248 10 2738 4416 137 10 1517 3084 44.76% 44.59% 30.16%
SMOAP-6 425 21 9371 16873 287 21 6335 13699 32.47% 32.40% 18.81%
SMOAP-7 432 21 9525 16740 284 21 6269 13336 34.26% 34.18% 20.33%
SMOAP-8 366 21 8073 14676 246 21 5433 11916 32.79% 32.70% 18.81%
SMOAP-9 382 21 8425 15338 285 21 6291 13107 25.39% 25.33% 14.55%
SMOAP-10 402 21 8865 16428 271 21 5983 13415 32.59% 32.51% 18.34%
SMOAP-11 1175 40 48215 89830 813 40 33373 74626 30.81% 30.78% 16.93%
SMOAP-12 1159 40 47559 88918 805 40 33045 74050 30.54% 30.52% 16.72%
SMOAP-13 1138 40 46698 88036 753 40 30913 71866 33.83% 33.80% 18.37%
SMOAP-14 1185 40 48625 91130 842 40 34562 76724 28.95% 28.92% 15.81%
SMOAP-15 1242 40 50962 97124 871 40 35751 81542 29.87% 29.85% 16.04%
SMOAP-16 2892 62 OM OM 2038 62 OM OM 29.53% OM OM
SMOAP-17 3756 80 OM OM 2552 80 OM OM 32.06% OM OM
SMOAP-18 4572 96 OM OM 3133 96 OM OM 31.47% OM OM
SMOAP-19 5060 105 OM OM 3519 105 OM OM 30.45% OM OM
SMOAP-20 5185 110 OM OM 3561 110 OM OM 31.32% OM OM

Another issue that should be considered in the preprocessing stage is the date
consistency. Recall that two orders oPi and oSj can be matched if and only if GS

j ⊆ GP
i

and TP
i ∩ TS

j 6= φ. Each matching can be regarded as an edge connecting two nodes
(demand orders, supply orders) in a weighted bipartite graph. Therefore, the potential
matchings that violate the date consistency are deleted from the graph and no longer
checked during the local search process. After deleting inconsistency edges, the nodes
whose degree becomes zero are further removed. Note that suppliers are allowed to
submit orders with their own available date. This rule makes it possible for unselected
purchasers to adjust their orders in the second round.

The reduction does take effect, which can be seen in Table 2. We report the reduction
on suppliers, purchasers, variables and constraints. The number of variables is mostly
reduced by 30% to 40%, which has shown a relatively consistent trend with suppliers.
As for constraints, they have a reduction rate of 15% to 25%, around 12% lower than
variables. However, the number of purchasers remains unchanged for the reason that
all the demand orders have a series of corresponding union set in the benchmarks.

Divide-and-conquer is an efficient method to deal with large-scale optimization prob-
lems. As the data volume of this trading platform may be large, we adopt this idea
to decompose original problems into several subproblems that are easier to solve. In
SMOAP, |P | components are naturally divided in accordance with the number of
purchasers. For each subproblem Groupp, the algorithm tries to obtain one optimal
solution with related supply orders. Eventually, these solutions are integrated into one
allocation plan as the final result. It should be noted that some supply orders can be
divided into different groups for the reason that purchasers may have common interest
in the same commodity set. However, such kind of orders can be allocated only once.

As shown in Algorithm 1, the Preprocessing procedure is efficient with a time com-
plexity of O(|P | ∗ |S|) and executed only once. The output of this process is delivered
as the input of tabu search.

4

Algorithm 1 Preprocessing

1: Group = {Group1, ..., Group|P |} = φ;
2: for all p ∈ P do
3: for all s ∈ S do
4: if GS

s ⊆ GP
p then

5: if TP
p ∩ TS

s 6= φ then
6: Groupp = Groupp ∪ s;
7: else
8: delete < p, s >;
9: end if

10: end if
11: end for
12: if degree(p) = 0 or

⋃
i∈Groupp

GS
i 6= GP

p then
13: delete p and Groupp;
14: end if
15: end for
16: return Group;

2.3. Neighborhood structures

When we talk about local search methods, the most important component is the neigh-
borhood structures, which must be carefully designed. Given a current solution X, the
neighborhoods of X are defined as Ni(X), where different values of i represent differ-
ent types of neighborhood solutions. At each iteration, the best solution among Ni(X)
is selected to be the new solution in the next round, ensuring the searching direction
towards the space of interest. The scope of each neighborhood structure determines
the convergence, while the diversity of these neighbors influences the effectiveness pos-
itively and helps prevent the local optimal. Therefore, we propose two neighborhood
structures N1(X), N2(X) to be the candidate pools. As the decomposition method
is used through the whole process, N1(X), N2(X) are adopted within subproblems.
Specific formulations and explanations are stated as follows.

For a solution X = {x1, ..., xi, ..., xj , ..., xn}, if xi = 1 and xj = 1, then
remove(xi, xj) = {x1, ..., xi, ..., xj , ..., xn}, where xi is the opposite variable of xi. Note
that this two-step remove can also represent the condition of an one-step remove
via remove(xi, φ). After this operation, X becomes infeasible, allowing other combi-
nation of orders to be explored. For an infeasible solution X = {x1, ..., xi, ..., xn},
add(xi)={x1, ..., xi, ..., xn}, if xi = 0. In this step, one variable with the value of
1 in X = {x1, ..., xi, ..., xn} is selected and added into the solution. Based on this,
repair(X)={

⋃mv
i=1 add(xi)}, where mv is the minimum number of moves to make X

feasible. As the tabu list exists, repair(X) tries to add long-term forgotten orders
into the solution first, which contributes to the diversity of the local search. There-
fore, two kinds of neighborhoods are defined as N1(X) = {repair(remove(xi, φ))} and
N2(X) = {repair(remove(xi, xj))}.

In SMOAP, the neighborhood Neighbor(X) is defined by two operators:
remove(xi, xj) and repair(X). The local search will move along superior neighbor-
hoods for each step to get optimal. The effects of these two neighbors are verified in
the experiment part.

5

2.4. Tabu Search

Tabu search (TS) is a metaheuristic method that systematically impose and release
constraints to guide the local search procedure across the local optimal (Glover &
Marti, 1997). The two key elements of TS are tabu list and tabu tenure. If a potential
solution has been previously visited within a certain period, it is marked as ”tabu” and
added to the tabu list so that the algorithm does not consider that possibility repeat-
edly. When its tabu tenure is over, it returns to the available state and can be selected
again. There are two ways when designing the tabu list structure, that is, solution-
based tabu lists and operation-based tabu lists. We employ the operation-based tabu
list due to its efficiency and easy-implementation. Different from solution-based tabu
lists which will check the solution state during each local search, the operation-based
lists only taboo certain operations (e.g., remove in our LS) performed on one order
recently. TS is considered to be an efficient local search for combinational optimization
problems, as it can accept worse moves if all other improving moves are forbidden in
the tabu list.

The tabu search used in this paper is stated in Algorithm 2. Two neighborhoods,
N1(X) = {repair(remove(xi, φ))} and N2(X) = {repair(remove(xi, xj))}, are ex-
plored to select the most profitable solution (line 1). Every time we remove or add
orders, the tabu list should firstly be checked to make sure that the move is allowed
(line 2). If a better solution X ′ is generated from N(X), update the current solution
X and continuously search from this new solution (line 3-5). After the move, these
orders are pushed into the tabu list to avoid cyclic search (line 7). Furthermore, an
update of the tabu tenure is followed (line 8).

Algorithm 2 Tabu search procedure

Input: Current solution X
Output: Best solution X found
1: X ′ = N(X) with the greatest score;
2: if X ′ is not tabu then
3: if benefit(X) > benefit(X ′) then
4: X = X ′;
5: end if
6: end if
7: Update Tabulist;
8: Update Tabutenure;
9: return X;

2.5. Some discussions about local optimal

For local optimal challenges, two perturbation levels are adopted in our algorithm,
from tiny to violent adjustment.

(1) When deciding the next step towards the best solution, heuristics may work well,
yet potentially cause the premature convergence. In this case, a random move
is employed with a low probability of 1− rnd, and the best (greedy) move with
probability rnd during local search process. This is called a tiny perturbation
level because it only changes one-step move of the algorithm.

(2) A restart strategy is applied to escape from local optimum and to restart the

6

search in other areas of the search place. If the best solution has not been con-
tinuously improved for rs iterations in one subproblem, the local search will
reinitialize from a randomly generated solution. The scope of restart is within
this subproblem. There is no need to restart all the subproblems, especially the
ones without sufficient searching. This is called a violent perturbation level be-
cause it changes the current solution of one subproblem.

References

Glover, F., & Marti, R. (1997). Tabu search. General Information, 106 (2), 221-225.

7

