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1. Necessary concepts  

1.1 The conventional GM(1,1) model 

For a given system, we can obtain the original time sequence that 

is𝑋(0) = (𝑥(0)(1), 𝑥(0)(2),⋯ , 𝑥(0)(𝑛)) , where𝑥(0)(𝑖) > 0, 𝑖 = 1,2,⋯ , 𝑛 is equally-spaced over 

time and 𝑛 is more than four in number. Subsequently, the detailed steps of GM(1,1)  are 

outlined below: 

Step 1: Conducting the first-order accumulated generated operation (1-𝐴𝐺𝑂 ) for the 

collected𝑋(0), the new generalized accumulation sequence is presented:  

𝑋(1) = (𝑥(1)(1), 𝑥(1)(2),⋯ , 𝑥(1)(𝑛))                     (1) 

where𝑥(0)(1) = 𝑥(1)(1)and the𝑘𝑡ℎentry is defined as𝑥(1)(𝑘) = ∑ 𝑥(0)(𝑖)𝑘
𝑖=1 , 𝑘 = 1,2,⋯ , 𝑛. 

Step 2: Establishing GM(1,1) for the new time series. The form of the first-order grey 

differential equation of GM(1,1) is given by 

𝑥(0)(𝑘) + 𝑎𝑧(1)(𝑘) = 𝑏,                             (2) 

where𝑧(1)(𝑘)is called the background value, for which the𝑘𝑡ℎentry is defined as𝑧(1)(𝑘) =

0.5𝑥(1)(𝑘) + 0.5𝑥(1)(𝑘 − 1), 𝑘 = 2,3,⋯ , 𝑛 . Then, the corresponding albinism differential 

equation of GM(1,1) is: 

𝑑𝑥(1)(𝑡)

𝑑𝑡
+ 𝑎𝑥(1)(𝑡) = 𝑏.                           (3) 

 

where 𝑎 means the development coefficient and 𝑏 represents the grey action item. 

Step 3: Calculating the parameters  𝑎 and  𝑏. Substituting the values of 𝑘 into Eq. (2), one 

can obtain 

𝑥(0)(2) + 𝑎𝑧(1)(2) = 𝑏

𝑥(0)(3) + 𝑎𝑧(1)(3) = 𝑏
⋮

𝑥(0)(𝑛) + 𝑎𝑧(1)(𝑛) = 𝑏

.                            (4) 

In matrix form, 𝐁 = 𝐀�̂�, where 

𝐀 =

[
 
 
 
−𝑧(0)(2) 1

−𝑧(0)(3) 1
⋮ ⋮

−𝑧(0)(𝑛) 1]
 
 
 

, 𝐁 =

[
 
 
 
𝑥(0)(2)

𝑥(0)(3)
⋮

𝑥(0)(𝑛)]
 
 
 

, �̂� = [
�̂�
�̂�
].                     (5) 

By solving the above matrix form in Eq. (4), the least-squares estimation for 𝑎  and 

𝑏are�̂� = [�̂�, �̂�]
𝑇

= (𝐀𝐓𝐀)−𝟏𝐀𝐓𝐁. 



Step 4: Obtaining the newly-generated sequence for forecasting, based on the initial 

condition of �̂�(1)(1) = 𝑥(0)(1) = 𝑥(1)(1), which is given by 

�̂�(1)(𝑘) = [𝑥(1)(1) − �̂�/�̂�]𝑒−�̂�(𝑘−1) + �̂�/�̂�, 𝑘 = 2,3,⋯ , 𝑛, 𝑛 + 1,⋯                (6) 

Step 5: Calculating the fitted and forecasted values in the original domain by using the 

inverse 1-𝐴𝐺𝑂 with the expression�̂�(0)(𝑘) = �̂�(1)(𝑘) − �̂�(1)(𝑘 − 1), which can be expressed 

by 

�̂�(0)(𝑘) = [𝑥(1)(1) − �̂�/�̂�](1 − 𝑒�̂�)𝑒−�̂�(𝑘−1), 𝑘 = 2,3,⋯ , 𝑛, 𝑛 + 1,⋯,          (7) 

where�̂�(0)(𝑘)(𝑘 = 1,2,⋯ , 𝑛)are fitted values and�̂�(0)(𝑘)(𝑘 ≥ 𝑛 + 1)are forecasted values. 

2.2 The seasonal GM(1,1) model 

As Eq. (7) reveals, the prediction equation in the conventional GM(1,1) model is essentially a 

function for describing the exponential time series. If a given sequence has seasonal fluctuations, 

this model will perform unsatisfactory results due to its exponential mechanism. To address such 

issues, Wang et al. (2018c) put forward a seasonal grey model (SGM(1,1) ) based on the 

accumulation operators that are generated by using seasonal factors. The detailed process of this 

model can be introduced as follows. 

Suppose that 𝑋(0)represents the seasonally-influenced original data, which is defined in 

Section 2.1 and 𝑆 stands for a first-order seasonal accumulated generated operation (1-𝑆𝐴𝐺𝑂), 

then one can obtain 

𝑋𝑠
(1)

= 𝑋(0)𝑆 = (𝑥(1)(1)𝑠, 𝑥(1)(2)𝑠,⋯ , 𝑥(1)(𝑛)𝑠)                    (8) 

where 

𝑥(1)(𝑘)𝑠 = ∑ 𝑥(0)(𝑗)/𝑓𝑠(𝑗)
𝑘
𝑗=1 , 𝑘 = 1,2,⋯ , 𝑛                    (9) 

for which 𝑓𝑠(𝑗) is the seasonal factor acting at the 𝑗 𝑡ℎ data point in the collected data sequence. 

It represents a dimensionless parameter that can reflect the average seasonally-affected degree, for 

which the actual value in different data point deviates from the system trend due to the seasonal 

fluctuations. Then, its precise expression can be obtained by 

𝑓𝑠(𝑗) =
�̅�𝑀

(0)(𝑗)

�̅�𝑀𝑁
(0)

(𝑗)
                                   (10) 

where 𝑀 stands for the number of seasonal cycles and 𝑁 is the year of the 𝑗 𝑡ℎ data point. For 

instance, 𝑀 = 4 means the quarterly time series, while  𝑀 = 12 represents the monthly 

seasonal cycles. Besides, �̅�𝑀
(0)

(𝑗)and �̅�𝑀𝑁
(0)

(𝑗) represent the average value for the quarter or month 

at the 𝑗 𝑡ℎ data point and the total average value for all quarters or months, respectively. 

Subsequently, based on the processed time series by using the1-𝑆𝐴𝐺𝑂, we can have the 

functions ofSGM(1,1) as follows. 



The form of the grey differential equation ofSGM(1,1) is given by 

𝑥(0)(𝑘)/𝑓𝑠(𝑘) + 𝑎𝑠𝑧𝑠
(1)

(𝑘) = 𝑏𝑠                             (11) 

where 𝑧𝑠
(1)

(𝑘) = 0.5𝑥𝑠
(1)

(𝑘) + 0.5𝑥𝑠
(1)

(𝑘 − 1), 𝑘 = 2,3,⋯ , 𝑛. Then, the corresponding albinism 

differential equation ofSGM(1,1) is: 

𝑑𝑥𝑠
(1)(𝑡)

𝑑𝑡
+ 𝑎𝑠𝑥𝑠

(1)
(𝑡) = 𝑏𝑠.                           (12) 

where𝑎𝑠 means the development coefficient and 𝑏𝑠  represents the grey action item. The 

parameter �̂� = [�̂�𝑠, �̂�𝑠]
𝑇

can be estimated by using the least square method:  �̂� = [�̂�𝑠, �̂�𝑠]
𝑇

=

(𝐂𝐓𝐂)−𝟏𝐂𝐓𝐃, where 

𝐂 =

[
 
 
 
 −𝑧𝑠

(0)
(2) 1

−𝑧𝑠
(0)

(3) 1
⋮ ⋮

−𝑧𝑠
(0)

(𝑛) 1]
 
 
 
 

, 𝐃 =

[
 
 
 
𝑥(0)(2)/𝑓𝑠(2)

𝑥(0)(3)/𝑓𝑠(3)
⋮

𝑥(0)(𝑛)/𝑓𝑠(4)]
 
 
 

, �̂� = [
�̂�𝑠

�̂�𝑠
].                     (13) 

Based on the estimated parameters, the formation of SGM(1,1) is 

�̂�𝑠
(1)

(𝑘) = [𝑥(1)(1)/𝑓𝑠(1) − �̂�𝑠/�̂�𝑠]𝑒
−�̂�𝑠(𝑘−1) + �̂�𝑠/�̂�𝑠, 𝑘 = 2,3,⋯ , 𝑛, 𝑛 + 1,⋯       (14) 

The final fitted and forecasted value in the original domain can be obtained by 

�̂�(0)(𝑘) = 𝑓𝑠(𝑘) [�̂�𝑠
(1)

(𝑘) − �̂�𝑠
(1)

(𝑘 − 1)] , 𝑘 = 2,3,⋯ , 𝑛, 𝑛 + 1,⋯        (15) 

Though the GM(1,1) and its variants have certain advantages, such as simple structure and 

high precision, even facing a limited amount of data, it has certain disadvantages that are not 

suitable for middle- and long-term forecasting due to the inherent errors generated by the 

transformation from the discrete function to the continuous one (Ding, 2019; Xie and Liu, 2009). 

To be specific, these transformation errors might significantly reduce the accuracy of estimating 

the grey coefficient 𝑎, thereby generating unsatisfactory forecasting results. Table S1 

demonstrates the relationships between the development and applicability of GM(1,1) . Therefore, 

to deal with such issues, the discrete grey model ( SGM(1,1) )model is proposed by Xie and Liu 

(Xie and Liu, 2009), which can strikingly improve the forecasting performance in modeling 

various time sequences. 

Table S1 Relationships between the development coefficient and applicability of GM(1,1) (Liu and Deng, 

2000) 

Range of a  Applicability 

−0.3 ≤ 𝑎 Suitable for middle- and long-term forecasting 



−0.5 ≤ 𝑎 < −0.3 
Suitable for short-term forecasting and harmful for middle- and 

long-term forecasting 

−0.8 ≤ 𝑎 < −0.5 Suitable for short-term forecasting, but negative results 

−1.0 ≤ 𝑎 < −0.8 Applications with corrected results by the residual errors 

−1.0 > 𝑎 Not applicable in any situation 

 

3.3 The DGM(1,1) model 

In order to eliminate the transformation errors inherently stacked in the conventional

GM(1,1) model, Xie and Liu (2009) proposed the discrete grey model, whose detailed procedures 

are outlined as follows. 

Step 1: Collecting the raw observations 𝑋(0) = (𝑥(0)(1), 𝑥(0)(2),⋯ , 𝑥(0)(𝑛)) and 

conducting the first-order accumulated generated operation (1-𝐴𝐺𝑂 ), the new generalized 

accumulation sequence is presented:  

𝑋(1) = (𝑥(1)(1), 𝑥(1)(2),⋯ , 𝑥(1)(𝑛))                     (16) 

where 𝑥(0)(1) = 𝑥(1)(1)and the𝑘𝑡ℎentry is defined as 𝑥(1)(𝑘) = ∑ 𝑥(0)(𝑖), 𝑘 = 1,2,⋯ , 𝑛𝑘
𝑖=1 . 

Step 2: Establishing DGM(1,1) for the new time series, whose form can be given by 

𝑥(1)(𝑘 + 1) = 𝛽1𝑥
(1)(𝑘) + 𝛽2                             (17) 

where 𝛽1 means the development coefficient and 𝛽2 represents the grey constant. 

Step 3: Calculating the parameters 𝛽1 and 𝛽2. Substituting the values of 𝑘 in to Eq. (17), 

one can obtain 

𝑥(1)(2) = �̂�1𝑥
(1)(1) + �̂�2

𝑥(1)(3) = �̂�1𝑥
(1)(2) + �̂�2

⋮
𝑥(1)(𝑛) = �̂�1𝑥

(1)(𝑛 − 1) + �̂�2

                              (18) 

In matrix form, 𝐇 = 𝐆�̂�, where 

𝐆 =

[
 
 
 

−𝑥(1)(1) 1

−𝑥(1)(2) 1
⋮ ⋮

−𝑥(1)(𝑛 − 1) 1]
 
 
 

, 𝐇 =

[
 
 
 
𝑥(1)(2)

𝑥(1)(3)
⋮

𝑥(1)(𝑛)]
 
 
 

, �̂� = [
�̂�1

�̂�2

].                    (19) 

By solving the above matrix form in Eq. (18), the least-squares estimation for 𝛽1 and 𝛽2 

are�̂� = [�̂�1, �̂�2]
𝑇

= (𝐆𝐓𝐆)−𝟏𝐆𝐓𝐇. 

Step 4: Obtaining the newly-generated sequence for forecasting based on the initial condition 

of �̂�(1)(1) = 𝑥(0)(1) = 𝑥(1)(1), which is given by 



�̂�(1)(𝑘 + 1) = �̂�1
𝑘𝑥(1)(1) +

1−�̂�1
𝑘

1−�̂�1
∗ �̂�2, 𝑘 = 1,2,⋯ , 𝑛, 𝑛 + 1,⋯                (20) 

Step 5: Calculating the fitted and forecasted values in the original domain by using the 

inverse 1-𝐴𝐺𝑂 with the expression �̂�(0)(𝑘) = �̂�(1)(𝑘) − �̂�(1)(𝑘 − 1), which can be expressed 

by 

�̂�(0)(𝑘 + 1) = (�̂�1 − 1) ∗ [𝑥(1) −
�̂�2

1−�̂�1
] ∗ �̂�1

𝑘 , 𝑘 = 1,2,⋯ , 𝑛, 𝑛 + 1,⋯,            (21) 

where�̂�(0)(𝑘)(𝑘 = 1,2,⋯ , 𝑛)are fitted values and �̂�(0)(𝑘)(𝑘 ≥ 𝑛 + 1)are forecasted values. 

Although the DGM(1,1) model can eliminate the inherent jumping errors of the conventional

GM(1,1) model, it still limited capability to describe seasonal time series that are widely existed 

in the real world. Thus, to accurately estimate the seasonal fluctuations, a novel seasonal discrete 

grey model is put forward in this work for predicting electricity consumption and production in 

China. 

 

 

 

2. The forecasted error of the competing models when m=33 

Table S2 Error analysis of the competing models when m=33 

 Electricity consumption forecasting Electricity production forecasting 

Model MAE MARE MSE MSRE MAE MARE MSE MSRE 

SDGM(1,1) 398.1235 0.0861 256095.3200 0.0105 124.2342 0.0422 39878.4960 0.0031 

SGM(1,1) 390.4013 0.0847 244982.4286 0.0104 167.3441 0.0635 56546.7458 0.0066 

SARIMA 468.7037 0.0966 391690.4211 0.0144 150.2226 0.0588 55456.3081 0.0068 

LSSVR 581.8624 0.1255 592609.4834 0.0223 337.0271 0.1022 459368.2021 0.0225 

LSTM 739.9751 0.1762 784881.0025 0.0464 388.1003 0.1499 310346.1707 0.0340 

MLP 865.0773 0.1894 1344691.2820 0.0516 546.8208 0.2019 711490.7436 0.0590 

HW 489.2145 0.1067 449044.6649 0.0208 218.0218 0.0694 144734.4185 0.0094 

Snavie 656.8130 0.1484 577455.9010 0.0272 386.5183 0.1477 244927.5598 0.0285 

Note: the best performance values are given in bold. 

As Table S2 shows, a similar conclusion can be found with the results (m=11) that the 

proposed model still generates the best forecasting performance when m=33. Therefore, the 

empirical cases demonstrate that the newly-designed model is reliable and practical to predict 

electricity consumption and production. 



 

3. The results of the MCS test when m=33 

 

Table S3 The results of the MCS test when m=33 

    TR TSQ 

    MAE MARE MSE MSRE MAE MARE MSE MSRE 

Electricity 

consumption 

forecasting 

SDGM(1,1) 0.549 0.697 0.357 0.851 0.549 0.697 0.357 0.851 

SGM(1,1) 1 1 1 1 1 1 1 1 

SARIMA 0.074 0.099 0.02 0.011 0.051 0.149 0.01 0.019 

LSSVR 0 0 0.006 4.00E-04 6.00E-04 7.00E-04 0.006 7.00E-04 

LSTM 0 0 0 0 0 0 0 0 

MLP 0 0 2.00E-04 0 0 0 2.00E-04 0 

  HW 0.074 0.055 0.027 0.004 0.101 0.074 0.034 0.003 

  Snaive 0 0 2.00E-04 0 0 0 3.00E-04 0 

Electricity 

production 

forecasting 

SDGM(1,1) 1 1 1 1 1 1 1 1 

SGM(1,1) 0.006 0 0.179 3.00E-04 9.00E-04 0 0.076 0 

SARIMA 0.058 2.00E-04 0.179 3.00E-04 0.058 2.00E-04 0.149 1.00E-04 

LSSVR 4.00E-04 0 0.014 3.00E-04 1.00E-04 0 0.003 0 

LSTM 0 0 0 0 0 0 0 0 

MLP 0 0 0 0 0 0 0 0 

  HW 0.003 0 0.014 3.00E-04 1.00E-04 0 0.003 0 

  Snaive 0 0 0 0 0 0 0 0 

 

 

4. The results of the DM test when m=33 

 

Table S4 The results of the DM test when m=33 

 
 

  SGM(1,1) SARIMA LSSVR LSTM MLP HW Snaive 

Electricity 

consumption 

forecasting 

MAE 
DW 1.007 -3.104 -3.588 -7.291 -4.031 -2.726 -7.798 

p 0.316 0.002 5E-04 3E-11 9E-05 0.007 2E-12 

MARE 
DW 0.2 -3.001 -4.871 -6.543 -7.595 -4.24 -7.907 

p 0.842 0.003 3E-06 1E-09 5E-12 4E-05 1E-12 

MSE 
DW 1.346 -2.191 -1.62 -3.65 -2.049 -1.904 -2.64 

p 0.18 0.03 0.108 4E-04 0.042 0.059 0.009 

MSRE 
DW -0.719 -2.237 -2.512 -3.211 -3.986 -3.634 -5.249 

p 0.473 0.027 0.013 0.002 1E-04 4E-04 6E-07 

Electricity 

production 

forecasting 

MAE 
DW -2.962 -1.698 -3.385 -6.65 -4.121 -4.337 -10.08 

p 0.003 0.091 8E-04 1E-10 5E-05 2E-05 1E-20 

MARE 
DW -6.934 -6.042 -5.022 -11.33 -13.61 -7.084 -13.92 

p 3E-11 5E-09 9E-07 8E-25 8E-33 1E-11 6E-34 



MSE 
DW -0.443 -0.265 -2.224 -2.913 -1.52 -2.588 -4.686 

p 0.658 0.791 0.027 0.004 0.13 0.01 4E-06 

MSRE 
DW -4.012 -5.279 -2.375 -5.883 -7.315 -5.535 -8.436 

p 8E-05 3E-07 0.018 1E-08 3E-12 7E-08 2E-15 

 

 

5. The results of the SPA test when m=11 and m=33 



Table S5 The results of the SPA test when m=11 

    Electricity consumption forecasting   Electricity production forecasting 

SDGM(1,1) 

  SGM(1,1) SARIMA LSSVR LSTM MLP HW Snaive 

 

SGM(1,1) SARIMA LSSVR LSTM MLP HW Snaive 

MAE 1 1 1 1 1 1 1 
 

1 1 1 1 1 1 1 

MARE 1 1 1 1 1 1 1 
 

1 1 1 1 1 1 1 

MSE 1 1 1 1 1 1 1 
 

1 1 1 1 1 1 1 

MSRE 1 1 1 1 1 1 1 
 

1 1 1 1 1 1 1 

SGM(1,1) 

  SDGM(1,1) SARIMA LSSVR LSTM MLP HW Snaive 

 
SDGM(1,1) SARIMA LSSVR LSTM MLP HW Snaive 

MAE 0.425 1 1 1 1 1 1 
 

0.062 1 1 1 1 1 1 

MARE 0.314 1 1 1 1 1 1 
 

0.004 1 1 1 1 1 1 

MSE 0.317 1 1 1 1 1 1 
 

0.444 1 1 1 1 1 1 

MSRE 0.114 1 1 1 1 1 1 
 

0.011 1 1 1 1 1 1 

SARIMA 

  SDGM(1,1) SGM(1,1) LSSVR LSTM MLP HW Snaive 

 
SDGM(1,1) SGM(1,1) LSSVR LSTM MLP HW Snaive 

MAE 0.099 0.119 1 1 1 1 1 
 

0.083 0.161 1 1 1 0.286 1 

MARE 0.089 0.112 1 1 1 1 1 
 

0.087 0.297 1 1 1 1 1 

MSE 0.078 0.081 1 1 1 0.132 0.379 
 

0.056 0.061 1 1 1 0.052 1 

MSRE 0.059 0.08 1 1 1 0.158 0.165 
 

0.059 0.086 1 1 1 0.158 1 

LSSVR 

  SDGM(1,1) SGM(1,1) SARIMA LSTM MLP HW Snaive 

 
SDGM(1,1) SGM(1,1) SARIMA LSTM MLP HW Snaive 

MAE 0.002 0.003 0.015 1 1 0.018 0.093 
 

5E-04 0.002 0.011 1 1 0.009 1 

MARE 7E-04 9E-04 0.027 1 1 0.035 0.098 
 

2E-04 0.002 0.001 1 1 0.004 1 

MSE 0.017 0.015 0.048 0.13 1 0.033 0.041 
 

0.01 0.012 0.127 1 1 0.051 0.369 

MSRE 0.008 0.01 0.155 0.191 1 0.069 0.03 
 

0.014 0.02 0.268 1 1 0.122 1 

LSTM 

  SDGM(1,1) SGM(1,1) SARIMA LSSVR MLP HW Snaive 

 
SDGM(1,1) SGM(1,1) SARIMA LSSVR MLP HW Snaive 

MAE 0 0 4E-04 0.513 1 8E-04 9E-04 
 

0 0 0 0 1 0 0.098 

MARE 0 0 0.008 0.412 1 0.008 0.005 
 

0 0 0 0 1 0 1 

MSE 1E-04 1E-04 0.036 1 1 0.006 0.001 
 

0 0 0.007 0.026 1 0.001 0.009 

MSRE 0 0 0.386 1 1 0.122 0.002 
 

0 0 0.003 0.001 1 6E-04 0.195 

MLP 

  SDGM(1,1) SGM(1,1) SARIMA LSSVR LSTM HW Snaive 

 
SDGM(1,1) SGM(1,1) SARIMA LSSVR LSTM HW Snaive 

MAE 0 0 1E-04 0.058 0.039 1E-04 0.001 
 

0 0 0 0 0 0 0 

MARE 0 0 2E-04 0.041 0.024 3E-04 3E-04 
 

0 0 0 0 0 0 0 

MSE 0.014 0.014 0.029 0.221 0.07 0.023 0.026 
 

0.002 0.003 0.005 0.009 0.012 0.005 0.007 

MSRE 0 0 0.032 0.204 0.016 0.006 6E-04 
 

0 0 0 0 0 0 0 

HW 

  SDGM(1,1) SGM(1,1) SARIMA LSSVR LSTM MLP Snaive 

 
SDGM(1,1) SGM(1,1) SARIMA LSSVR LSTM MLP Snaive 

MAE 0.054 0.066 0.383 1 1 1 1 
 

0.106 0.21 1 1 1 1 1 

MARE 0.043 0.058 0.313 1 1 1 1 
 

0.075 0.279 0.466 1 1 1 1 

MSE 0.07 0.082 1 1 1 1 1 
 

0.113 0.119 1 1 1 1 1 

MSRE 0.046 0.06 1 1 1 1 0.229 
 

0.072 0.105 1 1 1 1 1 

Snaive 

  SDGM(1,1) SGM(1,1) SARIMA LSSVR LSTM MLP HW 

 
SDGM(1,1) SGM(1,1) SARIMA LSSVR LSTM MLP HW 

MAE 0 0 0.039 1 1 1 0.028 
 

0 0 0 1E-04 1 1 0 

MARE 0 0 0.145 1 1 1 0.167 
 

0 0 0 0 0.29 1 0 

MSE 2E-04 4E-04 1 1 1 1 0.289 
 

0 0 0.143 1 1 1 0.012 

MSRE 0.008 0.022 1 1 1 1 1   0 0 0.007 0.009 1 1 0 



Table S6 The results of the SPA test when m=33 

 

    Electricity consumption forecasting   Electricity production forecasting 

SDGM(1,1) 

  SGM(1,1) SARIMA LSSVR LSTM MLP HW Snaive 

 
SGM(1,1) SARIMA LSSVR LSTM MLP HW Snaive 

MAE 0.273 1 1 1 1 1 1 
 

1 1 1 1 1 1 1 

MARE 0.356 1 1 1 1 1 1 
 

1 1 1 1 1 1 1 

MSE 0.164 1 1 1 1 1 1 
 

1 1 1 1 1 1 1 

MSRE 0.414 1 1 1 1 1 1 
 

1 1 1 1 1 1 1 

SGM(1,1) 

  SDGM(1,1) SARIMA LSSVR LSTM MLP HW Snaive 

 
SDGM(1,1) SARIMA LSSVR LSTM MLP HW Snaive 

MAE 1 1 1 1 1 1 1 
 

2E-04 0.044 1 1 1 1 1 

MARE 1 1 1 1 1 1 1 
 

0 0.05 1 1 1 1 1 

MSE 1 1 1 1 1 1 1 
 

0.021 0.45 1 1 1 1 1 

MSRE 1 1 1 1 1 1 1 
 

0 1 1 1 1 1 1 

SARIMA 

  SDGM(1,1) SGM(1,1) LSSVR LSTM MLP HW Snaive 

 
SDGM(1,1) SGM(1,1) LSSVR LSTM MLP HW Snaive 

MAE 0.023 0.022 1 1 1 1 1 
 

0.056 1 1 1 1 1 1 

MARE 0.06 0.082 1 1 1 1 1 
 

0.001 1 1 1 1 1 1 

MSE 0.006 0.005 1 1 1 1 1 
 

0.103 1 1 1 1 1 1 

MSRE 0.008 0.023 1 1 1 1 1 
 

1E-04 0.315 1 1 1 1 1 

LSSVR 

  SDGM(1,1) SGM(1,1) SARIMA LSTM MLP HW Snaive 

 
SDGM(1,1) SGM(1,1) SARIMA LSTM MLP HW Snaive 

MAE 0 0 0.041 1 1 0.139 1 
 

6E-04 0.002 0.003 1 1 0.031 1 

MARE 0 0 0.02 1 1 0.16 1 
 

0 1E-04 3E-04 1 1 0.005 1 

MSE 0.002 0.003 0.075 1 1 0.199 0.374 
 

0.027 0.032 0.034 0.195 1 0.07 0.13 

MSRE 2E-04 1E-04 0.029 1 1 0.41 1 
 

0.006 0.014 0.013 1 1 0.034 1 

LSTM 

  SDGM(1,1) SGM(1,1) SARIMA LSSVR MLP HW Snaive 

 
SDGM(1,1) SGM(1,1) SARIMA LSSVR MLP HW Snaive 

MAE 0 0 2E-04 1E-04 1 8E-04 0.018 
 

0 0 0 0.123 1 0 0.474 

MARE 0 0 0 1E-04 1 1E-04 0.009 
 

0 0 0 1E-04 1 0 0.353 

MSE 0 0 0.004 0.022 1 0.016 0.008 
 

0 0 0 1 1 3E-04 0.036 

MSRE 1E-04 0 3E-04 0.002 1 0.002 0.007 
 

0 0 0 0.024 1 0 0.009 

MLP 

  SDGM(1,1) SGM(1,1) SARIMA LSSVR LSTM HW Snaive 

 
SDGM(1,1) SGM(1,1) SARIMA LSSVR LSTM HW Snaive 

MAE 0 0 0 2E-04 0.044 0 0.002 
 

0 0 0 1E-04 1E-04 0 2E-04 

MARE 0 0 0 0 0.155 0 1E-04 
 

0 0 0 0 0 0 0 

MSE 5E-04 5E-04 0.002 0.005 0.027 7E-04 0.006 
 

0.002 0.002 0.003 0.14 0.022 0.006 0.011 

MSRE 0 0 0 0 0.212 0 2E-04 
 

0 0 0 0 0 0 0 

HW 

  SDGM(1,1) SGM(1,1) SARIMA LSSVR LSTM MLP Snaive 

 
SDGM(1,1) SGM(1,1) SARIMA LSSVR LSTM MLP Snaive 

MAE 0.059 0.061 0.327 1 1 1 1 
 

0.001 0.044 0.007 1 1 1 1 

MARE 0.038 0.063 0.14 1 1 1 1 
 

1E-04 0.16 0.023 1 1 1 1 

MSE 0.031 0.035 0.25 1 1 1 1 
 

0.007 0.016 0.012 1 1 1 1 

MSRE 0.005 0.008 0.031 1 1 1 1 
 

0 0.033 0.034 1 1 1 1 

Snaive 

  SDGM(1,1) SGM(1,1) SARIMA LSSVR LSTM MLP HW 

 
SDGM(1,1) SGM(1,1) SARIMA LSSVR LSTM MLP HW 

MAE 0 0 0.001 8E-04 1 1 0.013 
 

0 0 0 0.159 1 1 0 

MARE 0 0 0 0 1 1 0.006 
 

0 0 0 0 1 1 0 

MSE 0 0 0.031 1 1 1 0.173 
 

0 0 0 1 1 1 0.009 

MSRE 0 0 0.001 0.011 1 1 0.137   0 0 0 0.173 1 1 0 


