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Abstract

In this paper, we present a novel modelling perspective to the food-bank donation allocation prob-

lem under equity and efficiency performance measures. Using a penalty factor in the objective

function, our model explicitly accounts for both efficiency and equity, simultaneously. We give

the tightest lower and upper bounds of the penalty factor, which can conveniently characterize

closed-form optimal solutions for the perfect efficiency and perfect equity cases. Testing our model

on the full spectrum of our penalty factor, using real data from Feeding America, we demonstrate

that the solutions from our model dominate those of a benchmark from the literature in terms of

equity, efficiency, and utilization equity (utiloquity). Our sensitivity analysis demonstrates that the

society should put its priority on helping eliminate poverty before investing on capacity expansions

in charity organizations like food-banks. This will ensure that adding more capacity to the network

will always lead to a decrease in the price of equity for the food-banks. On the other hand, we

observed that encouraging the society towards charitability is always beneficial for the food-banks,

albeit with diminishing returns. Finally, our experiments demonstrate that reducing poverty, as the

most important element in achieving higher equity, is dependent on reducing demand variability,

as opposed to the average level of demand.
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1. Introduction

In spite of the increase in food production by means of the modern agriculture, the undernourished

population of the world has had a constant rise since 2014 reaching 10.8% of the entire world’s

population, amounting to 820 million people in 2021. In the US, more than 41 million people face

hunger, including nearly 13 million children. On the other hand, almost 33% of the food produced

in the world annually for human consumption is wasted, which amounts to a loss of almost 1 trillion

USD. Average annual food waste per person is estimated at 95-115 kg in Europe and the US and

6-11 kg in Africa and Asia (FAO 2018, USDA 2017).

In some countries, non-profit organizations fight hunger by collecting and distributing the oth-

erwise wasted food to the impoverished population. For instance, Feeding America is the United

States’ largest non-profit hunger-relief organization, operating through a nationwide network of 200

food-banks to provide food assistance to the poverty population. The organization collects food

donations from national food and grocery stores, retailers, farmers and governmental agencies and

distributes them in an equitable manner to its member food-banks. The food-banks subsequently

distribute the food they receive from Feeding America and other sources such as local grocers,

government and individuals to charitable agencies in their service regions (Orgut et al. 2016b).

Food-banks globally redistribute nearly 2.68 million metric tons of edible surplus, feeding nearly

62.5 million hungry people. In addition to feeding the poor, by saving the food from ending up in

landfills, food-banks have prevented the production of 10.54 kg of greenhouse gasses (GFN 2019).

The next tier of the supply chain, the charitable agencies, distribute the food they receive from the

food-banks to poor people in their local population. Agencies are typically run by fully volunteer

staff and have a certain capacity that is expressed in terms of pounds of food they can process. This

capacity is generally a function of several factors such as their volunteer manpower, storage, and

loading/unloading capacity. The decision to establish an agency in an area depends mainly on the

census data on the poverty level in that area. Therefore each agency faces a demand proportional

to the poverty population in the area it serves.

Beamon and Balcik (2008) define two pivotal performance measures to gauge humanitarian relief

operations which also apply to the case of food-banks: equity and efficiency. In this paper, we

address the problem of food allocation from a food-bank to charitable agencies by developing

policies that are (i) equitable: as far as possible, each agency should get its fair-share of the supply,

and (ii) efficient: as far as possible, waste of food across the network should be minimized.
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Unlike for-profit supply chains in which meeting demand is a crucial determinant of profitability,

in non-profit operations supplies are often scarce and thereby meeting demand is out of question.

Therefore, allocation of the limited supply in a fair way is the main task at hand. Fairness in food-

bank operations is defined by equitable distribution of food among the agencies where each agency’s

fair-share is proportional to the demand it serves. In our setting, we address equity by minimizing

the disparity of the shares of the total supply relative to the agency’s demand (represented by

fill-rate) among the agencies.

Under scarce supply, volunteer-based manpower, and tight budgets, efficiency is translated into

minimization of waste in non-profit network operations. Within the context of food-bank opera-

tions, limitations typically pertain to the available supplies. Therefore, efficiency in the context of

food-bank operations is explained by maximum distribution of food while avoiding waste (Ataseven

et al. 2018).

Waste can arise from all three areas in the network: upstream at the supply level, downstream

in the demand level, and also at the middle in the organization level. Some of the causes of waste

in the upstream level are lack of coordination in terms of mismatch in both type and quantity of

food donated versus the needs of the food-bank, poor information-sharing regarding the availability

time of the donations, and finally the constant variability of the quantity of donations which may

mandate different levels of manpower and transportation capacity from the food-bank. Causes of

waste at the demand level include mismatch between the demand preferences and food provided by

the agency, overestimation and underestimation of demand across the network, and poor forecasting

of the available manpower for handling the allocated food at the agencies. Finally, examples of

causes of waste at the organization level include lack of prioritizing schemes for using the close-

to-expiration supply, unbalanced allocation of the supply across the network with little attention

to capacity and demand at the agencies, and lack of coordinated communication and information

sharing with the agencies. In this paper, we address waste by maximizing efficiency in the network

through maximum distribution of supply while avoiding food waste at middle and downstream

levels in the network.

Equity and efficiency are conflicting objectives. Figure 1 shows the dynamics of the two perfor-

mance measures in non-profit settings. The center of each circle represents perfect accomplishment

of the corresponding performance measure and the line connecting the centers represents the set

of available policies that balance the non-profit organization’s objectives. The choice of the pol-
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icy depends on the flexibility of the organization’s desired trade-off between the two performance

measures, as well as practical considerations in the network. A goal of this research is to pro-

vide a flexible model to enable the food-bank decision makers to choose where in the spectrum of

equity-efficiency trade-off they would like to perform.

Efficiency

Equity

Figure 1: The dynamics of equitable and efficient policies.

Capacity of an agency is defined by the pounds of food it can process. Although capacity at

the agencies is characterized by many factors such as volunteer staff, storage capacity, and trans-

portation capability (among others), the number of volunteers at an agency is the key determinant

of its capacity. Relying on mainly volunteer staff at the agencies, food-banks face challenges aris-

ing from human choices at the agency level. Specifically, volunteer retention and motivation are

major concerns for food-banks. Although there is little control food-banks can have on volunteer

behaviour, there are still strategies to ensure that food-banks can do whatever they can on their

part to manage capacities in a more smart fashion.

One of the strategies for volunteer retention that is accentuated in the literature is the avoidance

of over-utilization as well as under-utilization of the capacities across the network. Over-utilization

can lead to volunteer burn-out at the agencies. Although over-utilization can increase efficiency in

the short-term, it can be disadvantageous to the food-bank’s capacity management in the long-run.

On the other hand, under-utilization means under-engagement of the volunteers which is argued

to have adverse effects on the motivation level of the volunteers, mainly arising from the effects of

idleness on human psychology (Clary et al. 1992, Agostinho and Paço 2012). Therefore, another

goal of this work is to address this modeling issue by creating donation allocation policies that not

only address the requirements of efficiency and equity, but also implicitly consider utilization equity

across the network in order to ensure volunteer retention and motivation. In the rest of the paper,

we use the term “utiloquity” to refer to the degree by which a solution is equitable in utilizing the

capacities across the agencies.
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Demand variability is inherent in food-bank operations. Although a certain portion of the demand

can be predicted by estimating the under-poverty population of the area served by the agencies,

the walk-in behaviour of the food-banks makes them an easy food-stop for local population which

in turn causes considerable variability in demand behaviour. Additionally, capacity can also be

estimated at the agencies by the historical data and the fact that volunteers generally sign up

before coming to an agency. Although in this paper, we assume demand and capacities at the

agencies are deterministic and perfectly known when the decisions are made at the food-bank level,

the third goal of this research is to design models that are robust against the variability in the data.

Our work contributes to the literature in deterministic decision-making within the context of

food-bank operations at the tactical level. Specifically, we, (i) develop a flexible and robust model

that explicitly accounts for both efficiency and equity in the objective function while implicitly

optimizing utiloquity across the network, (ii) derive closed-form solutions for perfect equity and

perfect efficiency, and through a numerical study show that our model dominates a benchmark

from the literature in terms of efficiency, equity, and utiloquity across the full spectrum of model

parameters, (iii) give the tightest spectrum of policies for food-bank decision makers to operate

in, and (iv) derive managerial insights with regards to society’s charitability, wealth disparity, and

food-bank volunteer levels which enables managers at the food-banks to make informed decisions

on their operations.

The remainder of this paper is organized as follows: Section 2 reviews the research most related to

our paper. Sections 3 and 4 introduce and analyze our model for the problem, respectively. Section

5 demonstrates the performance of our model compared to a benchmark from the literature and

highlights our insights on the decision-making of the food-bank. Finally, Section 6 concludes the

paper with critical insights from the study and future extensions of our work.

2. Relevant Literature

In contrast to for-profit organizations, the performance measures that non-profit firms seek are

not solely efficiency-based. Particularly, the need for understanding the trade-off between efficiency

and equity has been emphasized in the literature (Savas 1978). A stream of research to address

this need in the literature has been addressed in the context of humanitarian and disaster relief

operations (Orgut et al. 2016a, Balcik et al. 2008, Huang et al. 2012, Taskin and Lodree Jr 2010, Park

and Berenguer 2020). A majority of research published in the context of humanitarian operations
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addresses the objective of efficiently distributing a resource in an equitable manner; however, most

of this work only considers a disaster-related decision and not day-to-day operations as we described

in our paper.

Food-banks attract a major portion of research in non-profit literature. Some of the works in

food-bank research focus on operational level decisions (Mohan et al. 2013, Biswal et al. 2018).

Specifically, Mohan et al. (2013) develop a warehouse simulation model in partnership with a local

food-bank and through proper demand planning, supply coordination, and logistics integration

eliminate the need for extra warehouse space for handling extra volumes of supply. Biswal et al.

(2018) examine the benefits of RFID in terms of the effects of available rate of ordering and shrinkage

recovery rate on overall costs. Our paper differs from this stream in that our work focuses on tactical

level decisions of the food-bank.

On the tactical level, two particular sub-problems have received major attention in food-bank

research, i.e., (i) routing and (ii) allocation. The stream of research that focuses on routing in-

cludes scheduling of either pick-ups (from the donors) or drop-offs (at the agencies) or both, while

optimizing criteria like travel distance and freshness. Some of the works in this stream are Davis

et al. (2014), Solak et al. (2014), Balcik et al. (2014), Eisenhandler and Tzur (2019), Nair et al.

(2017). Davis et al. (2014) model the collection and distribution of the donated supply as a set-

covering problem. They assign the agencies in the network to a collection of food delivery points

and show that their model reduces the food access inequity while meeting constraints such as food

safety, collection frequency, and fleet capacity. Similar to Davis et al. (2014), Solak et al. (2014)

solve a food donation problem in which a central warehouse delivers food to multiple delivery sites

from where the partner agencies pick up their share. Their solution involves jointly selecting a set

of delivery sites, assigning agencies to these sites, and scheduling routes for the delivery vehicles.

Balcik et al. (2014) optimize the allocated food to the agencies while considering equity in the

allocation and minimizing food-waste in distribution. They offer a heuristic solution to solve the

problem and test the performance of their model under demand variability and changes in the

supply. Eisenhandler and Tzur (2019) study the collection and distribution of donated supply with

limited truck capacity under a maximum travel time constraint. They emphasize the importance

of explicitly accounting for efficiency (maximum distribution of food) and equity (fair-shares re-

ceived by the agencies) in food-bank research. Nair et al. (2017) is another work that incorporates

equity in allocation of the collected food and solves the routing and allocation model under three

objective types: utilitarian (efficiency-based), egalitarian (equity-based), and deviation-based. All
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of the above-mentioned works study the food-bank problem with a focus on the upstream issues

related to scheduling and routing. Additionally, the nature of the objective function in our setting

is a fill-rate based one which accounts for all three goals of efficiency, equity, and utiloquity while

these works focus on scheduling-based objective functions.

Equity is a major consideration for many supply chains and its position has been accentuated in

the literature (Dos-Santos 2020, Rea et al. 2021). Within the context of food-bank research, Orgut

et al. (2016b) scrutinize the equity-efficiency trade-off, with a thorough analysis of the importance

of equity in food-bank decision-making. While our work follows the same path, they account for

efficiency through minimization of leftover food and for equity through maximum deviation from a

perfectly equitable allocation. Our results in this model take Orgut et al. (2016b) as a benchmark

and demonstrate the dominance of our solutions to that of Orgut et al. (2016b) in terms of efficiency,

equity, and utiloquity. Islam and Ivy (2021) minimize the costs of food processing and waste at the

food-bank and, similar to Orgut et al. (2016b), account for equity in the model through a maximum

deviation tolerance from perfect equity. Orgut et al. (2017) focus on the effects of changes in the

capacities in their previous model in Orgut et al. (2016b) and conclude that the structure of the

solution to the problem has a newsvendor behaviour. Similar to Orgut et al. (2016b) and Orgut

et al. (2017), Orgut et al. (2018) consider equity and efficiency as major elements of their model,

and divide their analysis into two types of perfect equity and another that accounts for a maximum

allowed deviations from perfect equity. Similar to our work in terms of consideration of a fill-

rate based objective function, Lien et al. (2014) solve a sequential fair allocation problem, but

apply a maxi-min approach to raise the minimum fill-rate across the network. Their results focus

on developing near-optimal solutions for the sequence of agency visits. Fianu and Davis (2018)

consider fair allocation of unknown supply among the agencies of a food-bank and identify optimal

allocation rules under varying supply and demand scenarios. Similar to Fianu and Davis (2018),

Alkaabneh et al. (2020) develop a dynamic programming approach to the food allocation problem

by a food-bank to the agencies in its network and explicitly account for nutritional value of the food

delivered to each agency as well as the utility and equity among the served agencies. Fairness in

allocation of supply to demands across the network is studied by Spiliotopoulou and Conte (2021),

whose numerical results suggest that when a distribution network is supply-constrained using a fill-

rate based measure of equity is ideal. Hynninen et al. (2020) suggest that in a resource allocation

problem, cost of equity is an important measure to analyze within the contexts of utilitarian

(efficiency-based) and egalitarian (equity-based) objectives.
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In this research, we focus on allocation of the available supply from a single food-bank to the agen-

cies in its network while explicitly accounting for efficiency and equity and implicitly considering

utiloquity. We provide closed-form solutions to the cases of perfect equity and perfect efficiency and

provide numerical results to test the performance of our model while deriving managerial insights.

3. Model Formulation

We consider the deterministic problem faced by a food-bank that sources n charitable agencies in

its network. The food-bank receives an amount of donations (S) which needs to be allocated to its

network of agencies, where agency i has a capacity level (Ci) to handle and distribute their share

of the allocated donation among their demand (Di). The aim of the food-bank is to allocate the

available supply among the agencies in the most equitable and efficient manner.

In order to demonstrate the interaction of the two performance measures (efficiency and equity),

consider a simple example presented in Figure 2 in which the food-bank has received a total donation

amount of 5 units and intends to allocate it to its two agencies equitably and efficiently.

1 2

D1 D2

Donations

S=5

C1 C2

Food

x1 x2

Bank

Figure 2: An example of the food-bank network with 5 units of donations and two agencies.

Let’s assume the combination of capacity pair (C1 = 1, C2 = 5) and demand pair (D1 = 4, D2 =

8); x1 and x2 are the allocated portions of the supply to the first and the second agency, respectively.

Allocations to each agency cannot exceed its capacity or demand, for instance, x1 cannot exceed

min{C1, D1} = 1. We call this limit the effective demand. Let’s assume the amount allocated to
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the first agency equals its effective demand, that is x1 = 1. If the food-bank’s policy is solely on

being perfectly equitable, then one may use the demand in each area to represent its fair-share and

fill the demand at exactly the same level, i.e., the fill-rates of two agencies should be the same.

Therefore, x1/D1 = x2/D2 = 25% results in x1 = 1 and x2 = 2. This result is perfectly equitable

but not efficient. Across the network, only (x1 + x2)/S = 60% of the donations are consumed and

40% are wasted, while simultaneously 75% of the demand remains unsatisfied.

Now assume the combination of capacity pair (C1 = 5, C2 = 3) and demand pair (D1 = 5, D2 =

10). If the food-bank’s policy is solely based on efficiency, then one may choose (x1 = 5, x2 = 0) or

(x1 = 2, x2 = 3). However, neither of the two is perfectly equitable, because the first policy yields

(x1/D1, x2/D2) = (100%, 0%) and the second yields (x1/D1, x2/D2) = (40%, 30%).

Before proceeding to the model, we present the formal structure of the supply chain under con-

sideration in Figure 3:

I i . . .. . .1 n

DiD1 Dn

Donations

S

Ci CnC1

Food

xix1 xn

Bank

Figure 3: The overall problem setting.

In Figure 3, S, Ci, and Di are supply at the food-bank, capacity at agency i, and demand at

agency i, respectively. The decision variable xi represents the amount of donations allocated to

agency i. These three parameters along with the decision variable xi are calculated in pounds of

food. Further mathematical notations are defined in Table 1.
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Notation Definition Type

n number of agencies. Parameter
I set of agencies, i.e, I = {1, · · · , n}. Set
S supply of donations arrived at the food-bank. Parameter
Ci capacity at agency i. Parameter
Di demand at agency i. Parameter

D̃i effective demand at agency i, D̃i = min{Ci, Di},∀i ∈ I. Expression
D the total demand across all agencies, D =

∑
i∈I Di. Expression

xi amount of donations allocated to agency i. Decision Variable
ui utilization rate at agency i, ui = xi

Ci
,∀i ∈ I. Expression

βi fill-rate at agency i, βi = xi
Di
,∀i ∈ I. Expression

β maximum fill-rate among all agencies, β = maxi∈I βi. Decision Variable
zi deviation from the maximum fill-rate at agency i, zi = β − βi. Decision Variable
θ penalty for deviations from the maximum fill-rate. Parameter
θU the tightest upper-bound of θ. Parameter
θL the tightest lower-bound of θ. Parameter

Table 1: Summary of the mathematical notation.

We present the mathematical programming model to the problem (Model 1) as follows

Max
∑
i∈I

(βi − θzi) (1)

s.t.



∑
i∈I

xi ≤ S (1a)

xi ≤ Ci ∀i ∈ I (1b)

β − βi = zi ∀i ∈ I (1c)

βi =
xi
Di

∀i ∈ I (1d)

0 ≤ β ≤ 1 (1e)

xi, zi ≥ 0 ∀i ∈ I, (1f)

where βi is the fill-rate at agency i and β represents the maximum fill-rate among all agencies. We

define fill-rate as the ratio of the allocated supply to the demand at each agency (Zipkin 2000).

In Model 1, the objective function in Equation (1) maximizes fill-rates across the network (effi-

ciency) while penalizing the deviations from the maximum fill-rate by parameter θ (equity). Con-

straint (1a) states that the total allocation across the agencies cannot exceed the total supply.

Constraint (1b) sets the upper-bound on the allocation to each agency as the capacity of that
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agency to process food. The deviations from the maximum fill-rate for each agency is set by con-

straint (1c). Constraint (1d) defines the fill-rate for each agency. Finally, constraints (1e) and (1f)

set the upper-bound and lower-bound for each decision variable in Model 1.

Using βi facilitates accounting for both efficiency and equity in our model. Specifically, since

βi = xi
Di

, maximizing βi leads to maximizing xi and thereby minimizing the waste across the

network in terms of food waste both at the food-bank and at the agency levels. Additionally,

when all the agencies have exactly the same fill-rate such that β1 = β2 = · · · = βn, the allocation

is perfectly equitable. As the disparity among βi’s increases, the system becomes more and more

inequitable. Therefore, θ is introduced in Model 1, indicating the degree of penalty for the deviation

β − βi.

Our paper focuses on quantifying the equity-efficiency trade-off within the context of food-bank

operations (Bertsimas et al. 2011, 2012). In our setting, θ = 0 indicates that the sole priority of

the firm is efficiency, i.e., the center of the efficiency circle in Figure 1. On the other hand, when θ

is the arbitrarily large value M , it means that the sole priority of the firm is equity, i.e., the center

of equity circle in Figure 1. Finally, when 0 < θ < M , it means that the firm chooses to operate

with a combined approach towards efficiency and equity, i.e., the line connecting the centers of the

two circles in Figure 1. The values 0 and M are chosen hypothetically at this point. The tightest

values for the range of θ as θL and θU , which will replace 0 and M , respectively, will be discussed

in Section 4.

4. Model Analysis

In this section, we discuss some properties of our model. The goal of our analysis is to develop

the tightest upper and lower-bounds for θ in Model 1 which are denoted by θU and θL respectively.

We use bold face letters to indicate vectors. Additionally, all missing proofs for our theorems can

be found in the appendices.

Parameter θ in Model 1 gives the degree of penalty applied to the deviation β − βi, where βi

is the fill-rate of agency i and β represents the maximum fill-rate across all the agencies. When

θ = 0, the objective function of Model 1 degenerates to
∑

i∈I βi. This means that the first priority

of the firm is efficiency. Under such a condition the model will try to maximize the total food

allocation, because the more food distributed to the agencies results in higher value for βi’s. On

the other hand, when θ is the arbitrarily large value M , the objective function of Model 1 changes to
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∑
i∈I βi−M

∑
i∈I(β−βi). Since M is arbitrarily large, obviously the second term M

∑
i∈I(β−βi) is

greater than the first term
∑

i∈I βi ≤ n, as long as there exists a βi strictly less than β. This implies

that the objective function value is negative if for any i the inequality βi < β holds. Therefore the

arbitrarily large value M will force the optimization problem to find an optimal solution such that

β1 = β2 = · · · = βn = β, which eliminates the effect of M .

To summarize, we have θ ∈ [0,M ], where 0 and M represent perfectly efficient and perfectly

equitable policies, respectively. However, in real application, the food-bank administrators may

have concerns on using M . Particularly, the concern arises with respect to the arbitrary nature of

M . In what follows, we give a closed-form solution for finding θU which conveniently enables the

food-bank administrators to set the upper-bound to this value instead of M . In fact, we rigorously

show that the value of θU is at most n− 1, that is one less than the number of agencies. Next, we

discuss the related definitions which culminate in the closed-form solution for θU in Theorem 1.

Definition 1. Let D̃i = min{Ci, Di} and β̃i = D̃i/Di. D̃i and β̃i are called the effective demand

and the maximum possible fill-rate of agency i respectively.

By Definition 1, it is convenient to combine constraints (1b) and (1d) and exclude xi from our

model. Model 1 can be rewritten as the following concise form in which βi and β are the only

decision variables. Our analysis will use this concise form hereafter. What’s more, when there is no

confusion, β = (β1, · · · , βn) and (β, β) are interchangeably called the solution to Model 2 because

β = maxi∈I βi which can be calculated using β.

Max
∑
i∈I

[βi − θ(β − βi)] (2)

s.t.



∑
i∈I

βiDi ≤ S (2a)

βi ≤ β̃i ∀i ∈ I (2b)

βi ≤ β ∀i ∈ I (2c)

β ≤ 1 (2d)

Definition 2. Given a feasible solution β = (β1, · · · , βn), βi is called a binding variable if βi = β̃i.

Definition 3. Let βEQ = (βEQ
1 , · · · , βEQ

n ) be the optimal solution of Model 2 under the criterion of
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perfect equity, such that βEQ
i = βEQ (∀i ∈ I) and

∑
i∈I β

EQ
i = nβEQ ≥∑i∈I βi−M

∑
i∈I(β−βi)

for any feasible solution (β1, · · · , βn) and an arbitrarily large value M . βEQ is called the perfectly

equitable fill-rate.

Based on the definition of βEQ, now we can rigorously define the upper-bound of θ as follows.

Definition 4. θU is called the tightest upper-bound of θ if both of the following conditions hold:

(a) For any θ ≥ θU , βEQ is the optimal solution.

(b) For any θ < θU , there exists a feasible solution β dominating βEQ such that∑
i∈I β

EQ
i = nβEQ <

∑
i∈I βi − θ

∑
i∈I(β − βi)

Next, we discuss a special case where the solution βEQ can be found superior in both equity and

efficiency. We call the problem setting under such case as utopian, rigorously defined in Definition

5.

Definition 5. Given the optimal solution βEQ under the criterion of perfect equity, βEQ is called

utopian if the total supply is depleted, i.e.,
∑

i∈I xi = βEQD = S.

When supply is completely exhausted, food waste is zero. This implies that efficiency is at its

maximum (100%). When simultaneously all the agencies have the same fill-rate, perfect equity

is also achieved. Therefore, we call this kind of optimal solution utopian, indicating perfection of

both performance measures. This case is not interesting, because: (i) it is hardly true in real life.

Although our model assumes that information on capacity and demand at the agencies is perfectly

known by the decision-maker prior to allocation of the supplies, capacity is variable in day-to-

day operation of the food-banks, depending on the performance of the food-bank in recruitment,

placement, and retention of volunteers (Clary et al., 1992; Agostinho and Paço, 2012). Additionally,

in most situations, the capacity in an agency is much less than the demand, resulting in a very

small fill-rate. (ii) given a problem, it is straightforward to check whether the problem is utopian.

If a problem is utopian, there is no need to solve the linear programming model since we give the

closed-form solution of βEQ and the condition under which it is utopian in Theorem 2.

Theorem 1 gives the closed-form of θU when the problem is not utopian:
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Theorem 1. Assume βEQ is the optimal non-utopian solution of Model 2 under the criterion of

perfect equity. Letting mU denote the number of unbinding variables in {βEQ
1 , · · · , βEQ

n }, θU is

calculated as follows.

θU =
mU

n−mU
(3)

Proof

We prove Theorem 1 by parts. If mU = 0, it means that all the decision variables are binding

such that β̃i = βEQ
i = βEQ. On the other hand, by the constraints (2b) and (2c), the objective

function value of Model 2 is
∑

i∈I [βi − θ(β − βi)] ≤
∑

i∈I βi ≤
∑

i∈I β̃i =
∑

i∈I β
EQ
i . Hence, βEQ

is the optimal solution for any θ ≥ θU = mU

n−mU = 0.

Now, let’s consider mU > 0. We prove this by the definition of θU (Definition 4). Notice that

βEQ is not utopian, so
∑

i∈I β
EQ
i Di < S.

i. Given a θ < mU

n−mU , there exists a β 6= βEQ that dominates βEQ.

Denote by A = {i | β̃i = βEQ}, the set of binding indices. We can construct a solution β by

a sufficiently small variable α > 0 such that βi = βEQ for any i ∈ A, βi = βEQ + α for any

i ∈ I/A, and β = βEQ + α. Since α is sufficiently small, it is trivial that (β, β) is a feasible

solution of Model 2. On the other hand, letting | · | be the cardinality of a set, we have

∑
i∈I

[βi − θ(β − βi)]−
∑
i∈I

βEQ
i

=
∑
i∈I

[βi − θ(β − βi)− βEQ]

=
∑
i∈I

[βi − βEQ]−
∑
i∈I

θ(β − βi)

=|I/A|α− |A|θα

=[mU − θ(n−mU )]α

>[mU − (n−mU )
mU

n−mU
]α = 0

Hence, we found a feasible solution β dominating βEQ, for any θ < mU

n−mU .

ii. Given a θ ≥ mU

n−mU , βEQ is the optimal solution.

Let (β, β) be any feasible solution. Because n−mU variables are binding and βi ≤ β̃i = βEQ for
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the binding variables (in set A), we have
∑

i∈I θ(β−βi) ≥
∑

i∈A θ(β−βi) ≥ (n−mU )θ(β−βEQ)

and
∑

i∈I(βi − βEQ) ≤ ∑i∈I/A(βi − βEQ) ≤ mU (β − βEQ). Consider the difference between

the objective function values as follows.

∑
i∈I

βEQ
i −

∑
i∈I

[βi − θ(β − βi)]

=
∑
i∈I

θ(β − βi)−
∑
i∈I

(βi − βEQ)

≥(n−mU )θ(β − βEQ)−mU (β − βEQ)

≥(n−mU )
mU

n−mU
(β − βEQ)−mU (β − βEQ) = 0

Hence, βEQ dominates any feasible solution β and is of course the optimal.

Combining the above two parts of proof, we show that θU = mU

n−mU is the tightest upper-bound

by the definition.

Q.E.D.

Theorem 2. Let βa = S
D , βb = min

i∈I
β̃i, and J = {j | β̃j = βb, ∀j ∈ I}. The following results

hold.

i. If βa ≤ βb, the problem is utopian and βEQ = βa.

ii. If βa > βb, then βEQ = βb and

mU = n− |J | (4)

where | · | represents the cardinality of a set.

Theorem 2 actually gives the closed-form of βEQ.

So far, we have discussed how to find the tightest upper-bound θU . Instead of an unknown

arbitrarily large “M”, θU conveniently enables the food-bank decision makers to know where exactly

in the spectrum of values of θ perfect equity begins. Similar to the case of the upper-bound on

θ, we next discuss how the decision-maker can adopt θL (the lower-bound of θ) to replace 0. θL

essentially marks where exactly in the spectrum of values of θ perfect efficiency begins. Before

proceeding to the closed-form of θL, we first characterize the nature of θL in Definition 6.
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So far, we have discussed how to find the tightest upper-bound θU . Instead of an unknown

arbitrarily large “M”, θU conveniently enables the food-bank decision makers to adopt polices that

contribute to increased equity. Similar to the case of the upper-bound on θ, we next discuss how

the decision-maker can adopt θL (the lower-bound of θ) to replace 0. Before proceeding to the

closed-form of θL, we first characterize the nature of θL in Definition 6.

Definition 6. Assuming ξ is the optimal objective function value when θ = 0, θL is called the

tightest lower-bound of θ if both of the following conditions hold:

(a) For any θ ≤ θL, if β = (β1, · · · , βn) is the optimal solution, then
∑

i∈I βi = ξ.

(b) For any θ > θL, if β = (β1, · · · , βn) is the optimal solution, then
∑

i∈I βi < ξ.

The reason that we do not specify the optimal solution for θ = 0 is because there may exist

multiple or infinitely many optimal solutions when efficiency is the sole criterion in the objective

function. For instance, let S = Ci = 50 for any i ∈ I = {1, 2, 3}, D1 = 20, and D2 = D3 = 50.

When θ = 0 the optimal solution is (β∗1 , β
∗
2 , β
∗
3) = (100%, x/50, 60%− x/50). x can be any value

between 0 and 30 so there exists infinitely many optimal solutions. However, the optimal objective

function value ξ is unique. This is why we use ξ to define the tightest lower-bound.

The unique optimal solution βEQ provided the clue to find the tightest upper-bound. Similarly, in

what follows we show that although the problem may not have a unique optimal solution for θ = 0,

there exists a dominant solution which facilitates our analysis. Specifically, we develop Algorithm

1 to find this unique optimal dominant solution. Intuitively, the rationale of the algorithm is

motivated by that of the greedy method. Specifically, when θ = 0, we only focus on the efficiency,

that is, maximizing the fill-rates βi’s. Considering βi = xi/Di, the agency with the smallest demand

Di should be filled first since the same amount of food supply generates a higher fill-rate. So we

divide agency set I into subsets denoted by Ii’s. In each subset Ii, all the agencies have the same

demand such that Dk1 = Dk2 = Di for any k1, k2 ∈ Ii. Assuming there are ñ different subsets,

we have I =
⋃ñ

i=1 Ii, which reduces n agencies to ñ groups. Without loss of generality, assume

D1 ≤ D2 ≤ · · · ≤ Dñ. Our algorithm attempts to fill the first group (subset) of agencies, then

the second, ..., until there is no food supply is left on-hand. Next task is to characterize the order

by which the agencies in the same group Ii are filled. Although the agencies in the same group

have identical demands, they differ in effective demand which is the minimum value of demand

and capacity for each agency. Therefore, we can further divide Ii into subsets Iij . In each subset
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Iij , all the agencies have not only the same demand but also the same effective demand such that

D̃k1 = D̃k2 = D̃ij for any k1, k2 ∈ Iij . Without loss of generality, assume there are ñi different

subsets in group Ii and D̃i1 ≤ D̃i2 ≤ · · · ≤ D̃iñi . When filling the agencies in the group Ii, however,

we do not fill Iij one by one in ascending order. This is because even if two agencies belong to

different subsets (i.e., different effective demands) in the group Ii they still have the same demand.

Hence, allocating all the supply exclusively to one subset Iij is identical to spreading the supply

over different Iij ’s simultaneously. However, the second approach is preferred as it favors equity in

addition to efficiency. This will benefit the solution when the penalty factor θ becomes positive to

penalize the inequity. This procedure is formally delineated in Algorithm 1. However, the summary

of how Algorithm 1 fills the subset Ii is given in the following three steps:

(i) Initialize j = 1

(ii) Denote by I ′j =
⋃ñi

k=j Iij the subsets not yet fully filled. Check whether the remaining supply

can increase the fill-rate of all the agencies in I ′j with the same amount β̃ij . If yes, allocate

food to all the agencies in I ′j to raise the fill-rates by β̃ij . If no, then distribute the remaining

supply and equally raise the fill-rates for all the agencies in I ′j .

(iii) Adjust S and β̃ij . If the remaining supply S reaches 0, stop; otherwise, j = j + 1 and go to

step (ii).

The optimal solution constructed by Algorithm 1 dominates all the optimal solutions solely fo-

cusing on efficiency. In other words, if we collect all the optimal solutions for θ = 0 in a set B, then

this unique optimal solution dominates the rest of solutions in B for a positive θ. This is formally

stated in Theorem 3.

Theorem 3. Let B be the set of all optimal solutions when θ = 0 and βEF = (βEF
1 , · · · , βEF

n ) the

dominant solution constructed by Algorithm 1. For any β ∈ B and θ ≥ 0, βEF dominates β such

that
∑

i∈I [β
EF
i − θ(βEF − βEF

i )] ≥∑i∈I [βi − θ(β − βi)].

Since the optimal solution βEF constructed by Algorithm 1 dominates all the other optima for

θ = 0, to find the tightest lower-bound, we only have to show that while θ becomes positive whether

βEF is still optimal. Based on this point and Definition 6, we present Theorem 4, presenting the

tightest lower-bound, the proof of which is similar to that of the tightest upper-bound.
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Algorithm 1 The Dominant Efficient Solution

Input: the subsets I =
⋃ñ

i=1 Ii and Ii =
⋃ñi

j=1 Iij ; the parameters S, Di, D̃ij , and β̃ij (i = 1, · · · , ñ;

j = 1, · · · , ñi).
Output: βEF = (βEF

1 , · · · , βEF
n )

Initialization: let βEF
i = 0 for any i ∈ I.

1: procedure Update(S, I, Di, D̃ij , β̃ij)

2: for i = 1 to ñ do

3: if S=0 then

4: break

5: else

6: for j = 1 to ñi do

7: I ′j =
⋃ñi

k=j Iik
8: if |I ′j |D̃ij ≤ S then

9: for ∀k ∈ I ′j do βEF
k = βEF

k + β̃ij

10: for k = j to ñi do D̃ik = D̃ik − D̃ij

11: S = S − |I ′j |D̃ij

12: else

13: for ∀k ∈ I ′j do βEF
k = βEF

k +
S/|I′

j |
Di

14: for k = j to ñi do D̃ik = D̃ik − S/|I ′j |

15: S = 0

16: if S = 0 then

17: break
return βEF

Theorem 4. Let βEF be the dominant optimal solution constructed by Algorithm 1, βEF =

max
i∈I

βEF
i and K = {i | βEF

i = βEF , i ∈ I}. Let Dm = min
i∈L

Di, where L = {i | βEF
i < β̃i, i ∈ I/K}

– the set of agencies not fully filled except those in K. If the problem is non-utopian and supply-

constrained such that S <
∑
i∈I

D̃i, the tightest lower-bound θL is calculated as follows.

θL =
mL

n−mL
,
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where,

mL =


|K| −

∑
i∈K

Di/Dm if L is not empty

|K| if L is empty

Proof

Because the problem is not utopian, it is easy to see n 6= mL. Hence, θL is well defined. We prove

this theorem by parts based on the Definition 6.

i. Given a θ > θL = mL

n−mL , there exists a feasible solution (β, β) such that
∑

i∈I βi < β0 and it

dominates (βEF , βEF ) created by Algorithm 1.

Denote K = {i | βEF
i = βEF , i ∈ I}, the set of agencies with the highest level of fill-rate; and

A = {i | Di = Dm, i ∈ L}, the set of agencies with minimum demand among those can be

further filled. Assume L is not empty. Denoting ρ =
∑

i∈KDi

Dm
, we construct a solution β by

a sufficiently small α > 0 such that βi = βEF
i − α for any i ∈ K, βi = βEF

i + αρ/|A| for any

i ∈ A and βi = βEF
i for any i ∈ I/(K ∪ A). Since α is sufficiently small and S <

∑
i∈I D̃i, it

is trivial that (β, β) is a feasible solution of Model 2. Therefore β = βEF − α, we have

∑
i∈I

[βi − θ(β − βi)]−
∑
i∈I

[βEF
i − θ(βEF − βEF

i )]

=
∑
i∈I

(βi − βEF
i ) + θ

∑
i∈I

[(βEF − β) + (βi − βEF
i )]

=(αρ− α|K|) + θ(αn+ αρ− α|K|)

=− αmL + αθ(n−mL)

>− αmL + α(n−mL)
mL

n−mL
= 0

When L is empty, we can construct a solution β by a sufficiently small α > 0 such that

βi = βEF
i − α for any i ∈ K and βi = βEF

i for any i ∈ I/K. The proof of this case is similar

to the one when L is not empty. Hence, we found a feasible solution β dominating βEF , for

any θ > θL. Moreover, considering the procedure how we construct βEF , α|K| > αρ because

Di < Dm for any i ∈ K. Therefore,
∑

i∈I βi < β0 =
∑

i∈I β
EF
i .

ii. Given a θ ≤ θL = mL

n−mL , βEF is the optimal solution.

When θ = 0, of course βEF is the optimal. If 0 < θ ≤ θL = mL

n−mL , assume L is not empty
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and consider any feasible solution β other than βEF . Because
∑

i∈I β
EF ≥ ∑i∈I β and the

difference between objective function values of βEF and β is

∆(β) = (1 + θ)
∑
i∈I

(βEF
i − βi) + θ

∑
i∈I

(β − βEF ),

if β ≥ βEF then βEF dominates β since ∆ ≥ 0. Now, consider the case β < βEF .

For a β, if ∃i ∈ K such that βi < β, we can always find a solution β′ with β′i = β but dominating

β, i.e., ∆(β′) ≤ ∆(β). To obtain βi, we have to first reduce βEF
i (which is equal to βEF ) to β

and then further reduce it to βi. However, the further reduction does not change β but only

saved the supply by Di(β−βi). Based on the way how Algorithm 1 constructs βEF , the saved

supply could at most increase the total fill-rates of β by Di/Dm(β − βi) which is less than or

equal to β − βi because Di ≤ Dk for any k ∈ L ∪ K. So the further reduction cannot reduce

the value of first term of ∆ and does not change the value of the second term. This implies

that a β′ without further reducing the fill-rate of agency i from β to βi dominates β. WLOG,

we assume βi = β, ∀i ∈ K.

Let K1 = {i | βi < βEF
i , i ∈ I} and K2 = {i | βi > βEF

i , i ∈ I}. Trivially, K1 ⊇ K notice that

β < βEF . Furthermore, because
∑

i∈K1
Di(β

EF
i −βi) =

∑
i∈K2

Di(βi−βEF
i ) by the assumption

that the problem is supply-constrained, we observe

∑
i∈K2

(βi − βEF
i ) ≤

∑
i∈K1

Di/Dm(βEF
i − βi) = ρ(βEF − β) +

∑
i∈K1/K

Di/Dm(βEF
i − βi),

where the second equality comes from the fact such that βEF
i − βi = βEF − β for any i ∈ K.

Hence, we have

∆(β) = (1 + θ)
∑
i∈I

(βEF
i − βi) + θ

∑
i∈I

(β − βEF )

= (1 + θ)[|K|(βEF − β) +
∑

i∈K1/K

(βEF
i − βi)−

∑
i∈K2

(βEF
i − βi)] + nθ(β − βEF )

≥ (1 + θ)[(|K| − ρ)(βEF − β) +
∑

i∈K1/K

(1−Di/Dm)(βEF
i − βi)] + nθ(β − βEF )

≥ (1 + θ)mL(βEF − β) + nθ(β − βEF )

≥ nmL

n−mL
(βEF − β)− nmL

n−mL
(βEF − β) = 0
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Therefore, βEF is the optimal solution. For the case when L, we have K2 = ∅. The proof of

this case is similar and more straightforward.

In sum, the above two parts together complete the proof.

Q.E.D.

Theorem 4 applies to the case where the total supply cannot satisfy all the agencies’ effective

demands. The case with sufficient supply such that S ≥∑i∈I D̃i, is similar to the utopian problem

and rarely realistic. In early 2020, the novel coronavirus (COVID-19) began to spread across the

United States, and one of the consequences was an economic recession that resulted in more food

insecurity – the lack of access to sufficient food because of limited financial resources. Feeding

America estimates that 45 million people (1 in 7), including 15 million children (1 in 5), may have

experienced food insecurity in 2020 (FeedingAmerica, 2021). If supply is abundant, food-bank

administrators can simply satisfy all the agencies at their maximum needs.

In summary, this section presents the tightest spectrum [θL, θU ] of policies for food-bank decision

makers to operate in. We also give the closed-form solutions corresponding to θU and θL. As a

result, the food-bank administrators can pick a policy (defined by a θ ∈ [θL, θU ]) according to their

organization’s preference towards efficiency and the equity. Next in Section 5, using real data from

Feeding America, we demonstrate the performance of our model against a benchmark from the

literature and provide critical insights for the food-bank decision-makers.

5. Computational Study and Insights

In this section, we summarize the performance of our model compared to that of Orgut et al.

(2016b) as our benchmark from the literature. We programmed both models in Python under

Google Colaboratory. We further demonstrate how changes in charitability as well as volunteer

levels in the society affect the equity-efficiency trade-off for the food-banks. Specifically, we provide

guidelines on the policies the society can adopt in order to facilitate the food-bank’s path towards

achieving higher levels of equity while sacrificing the least from their efficiency.

We use two performance measures of equity and efficiency defined as follows.

• Efficiency: the ratio of the total food distributed towards satisfying the demand to the total

21



available supply, calculated according to the following:

Efficiency =
S − (Agency Waste + Food-Bank Waste)

S
(5)

We define agency waste as the amount of food which has been sent to an agency, but not

distributed towards satisfying the demand. We would like to point out that agency waste

can happen only if the food-bank allocates food to a particular agency beyond its demand.

Our model avoids agency waste via model constraints; however, it is possible to have agency

waste in Orgut et al. (2016b). Similarly, food-bank waste is defined as the amount of food

that is left at the food-bank and not allocated to the agencies.

• Equity: the degree to which each agency serving the impoverished population receives its

fair-share of the supply S, calculated according to an equity measure.

In order to calculate the equity performance measure, we need to utilize a measure of equity.

However, to avoid divisions by zero, in the literature, various measures of inequity have been

utilized instead of equity. In this paper, we utilize some of the most widely used measures

of inequity for a given vector of real values E = (E1, E2, . . . , En) having the mean of Ē,

maximum of Emax, and minimum of Emin as follows.

Gini Coefficient =

∑
i∈I
∑

j∈I |Ei − Ej |
2n2Ē

(6)

Coefficient of Variation =

√∑
i∈I(Ei−Ē)2

n

Ē
(7)

Variance =

∑
i∈I(Ei − Ē)2

n
(8)

Mean Absolute Deviation =

∑
i∈I
∣∣Ei − Ē

∣∣
n

(9)

Range = Emax − Emin (10)

In this section, to calculate inequity we put our focus on Gini coefficient, the most widely used

measure of inequity in social welfare (Marsh and Schilling 1994). The rest of the measures used for

comparing our model to that of Orgut et al. (2016b) are reported in Appendix C.

Gini coefficient measures inequity as the ratio of the area between the line of perfect equity

and the Lorenz curve and the total area under the line of perfect equity, thereby it is a measure

between zero and one (Gini 1912). Therefore, to calculate equity in this section, we subtract the

22



Gini coefficient from one.

In order to compare the performance of the two models, we use the data from 2020 for a service

area in North Carolina. The agencies working with Feeding America serve a single meal per day,

every day throughout the month. To estimate the demand in pounds of food at each agency

(represented by Di in our model), we use 1.2 lb consumption per person per serving multiplied by

the number of poor persons served in the population. To calculate the capacity at each agency

(represented by Ci in our model), we use the Ci/Di ratios from Orgut et al. (2016b). The total

amount of food donations to be allocated to the 34 agencies in the area under study is 2,838,584 lb,

which is represented by parameter S in our model. These three parameters form our three nominal

parameters required to generate the test cases for our analysis.

To test the performance of the models against the variability in the data, using the nominal

demand vector, we generate a total of 2000 new demand realizations. Specifically, we use truncated

normal distribution to generate the demand vectors within two variation categories of high and low,

each containing 1000 random realizations. Keeping the means the same as the nominal demand

vector, we generate our low variability category to contain demand vectors with standard deviations

below 20% of that of the nominal, and our high variability category to have at least 180% more

standard deviations than that of the nominal. Additionally, we make sure that all our instances

satisfy the two criteria for non-triviality discussed in Section 4: (i) they are not utopian (from

Definition 5); and (ii) they are supply-constrained (from Theorem 4). Every point in Figures 4, 5,

6, and 7, along with the figures in the appendices are averaged over the 1000 demand realizations.

Next, we determine the range of the auxiliary parameters θ (for our model) and K (for Orgut

et al. (2016b) model). In detail, the lower-bound of θ in our model considers only efficiency as

the goal of the objective function and it is calculated using Theorem 4. On the other hand, the

upper-bound of θ only takes equity into account in our objective function and is calculated based

on Theorem 1 in our model.

To determine the corresponding range for K, we note that the mathematical formulation of the

problem according to Orgut et al. (2016b) is as follows.

Min P (11)
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s.t.



∣∣∣∣ xi∑
i∈I xi

− Di∑
i∈I Di

∣∣∣∣ ≤ K ∀i ∈ I (11a)

S −
∑
i∈I

xi − P = 0, (11b)

xi ≤ Ci ∀i ∈ I (11c)

xi, P ≥ 0 ∀i ∈ I, (11d)

where P represents the leftover food after the allocation of the donated supply S. We point out

that P represents Food-Bank Waste in Equation (5). In this model, parameter K is between 0 and

1 and controls the level of equity in the allocation of the total supply. Lower values of K impose

stricter (therefore higher) priority on equity and vice versa, wherein K = 0 is the lower-bound of

K and corresponds to absolute equity. On the other hand, higher values of K give more freedom to

the objective function to choose solutions with higher efficiency. In order to find the upper-bound

of K for Orgut et al. (2016b) model (denoted by KU ), we note that in perfect efficiency P = 0.

Therefore, from constraint (11b), we have
∑

i∈I xi = S. Thus, KU is the value of the objective

function to the following mathematical model:

Min KU (12)

s.t.



∣∣∣∣ xi∑
i∈I xi

− Di∑
i∈I Di

∣∣∣∣ ≤ KU ∀i ∈ I (12a)∑
i∈I

xi = S (12b)

xi ≤ Ci ∀i ∈ I (12c)

xi,K
U ≥ 0 ∀i ∈ I. (12d)

Finally, to show the difference between the models more clearly, we divided the length between

θL and θU as well as 0 and KU to 50 pieces. Therefore, every point in Figures 4 and 5 corresponds

to a value of θ (K) in our model (Orgut et al. (2016b) model). We point out that some of the

values of θ in our model yield identical equity and efficiency values, leading to reduced number of

points for our model in the figures. Figures 4(a) and 4(b) show the efficient frontiers of our model

and Orgut et al. (2016b) using one minus the Gini coefficient to calculate the equity level.
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(a) low demand variability
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(b) high demand variability

Figure 4: Efficient frontier using one minus the Gini Coefficient as the equity measure.

In both Figures 4(a) and 4(b), the points resulting in perfect efficiency (Efficiency=1) correspond

to K = KU in Orgut et al. (2016b) model and θ = θL in our model. On the other hand, the points

resulting in perfect equity (Equity=1) correspond to K = 0 in Orgut et al. (2016b) model and

θ = θU in our model.

Our first observation from both Figures 4(a) and 4(b)is that while efficiency drops in an expo-

nential manner as the value of K decreases from KU in Orgut et al. (2016b) model, the efficiency

in our model drops in an almost linear manner while θ increases from its lower-bound θL. This

results in the fact that for the same levels of equity (efficiency), our model yields much higher levels

of efficiency (equity).

We note that when K decreases from its upper-bound KU , both equity and efficiency of Orgut

et al. (2016b) model decrease simultaneously. This is because constraint (11a) is not strictly captur-

ing the concept of equity. Specifically, constraint (11a) penalizes the deviations from Di/
∑

i∈I Di,

giving the priority of demand fulfillment to the agencies according to the magnitude of their de-

mand. Di in constraint (11a) can be interpreted as the weight (importance) of agency i. Therefore,

agencies with larger demands will receive higher priority. When K = KU , since constraint (11a) is

relaxed altogether, the agencies with smaller demands are treated equally as the ones with larger

demands and receive some share of the supply, so equity is improved to some degree. However,

once K starts to decrease, constraint (11a) forces the model to focus more on the agencies with

larger demands, while the agencies with smaller demands are quickly neglected by the model. This
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leads to a decrease in equity. On the other hand, a decrease in K inevitably leads to a decrease

in efficiency by the definition of constraint (11a). Therefore, initially when K decreases from its

upper-bound KU both efficiency and equity decrease together.

As demand variability increases from Figure 4(a) to Figure 4(b), the gap between the efficient

frontiers of the two models increases. Specifically, while the variability increases, our model main-

tains almost the same equity-efficiency trade-off, making it robust against the variability in the

data.

Regardless of the level of variations in the demand realizations, the two extremes in both models

correspond to the cases with perfect equity (Equity = 1) and perfect efficiency (Efficiency = 1).

At perfect equity both models result in the same efficiency. This is expected, because although the

models have different objective functions, at perfect equity the solutions to the problems are unique,

resulting in the same amount of waste at both models. However, at perfect efficiency the models

may have infinitely many optimal solutions (please see our example in Section 4 corresponding

to Definition 6). In other words, since equity is not considered in the objective function under

perfect efficiency, there may be infinitely many perfectly efficient solutions (Efficiency = 1), but

with varying levels of equity. Among these solutions, our model chooses a dominant solution with

considerable improvements in equity compared to that of Orgut et al. (2016b), especially under

high demand variability.
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Figure 5: Utilization Equity (Utiloquity) vs Equity using one minus Gini Coefficient as the equity measure.

In our setting, volunteer retention is directly proportional to utiloquity across the network. In
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other words, as the utiloquity increases, both over-utilization and under-utilization decrease across

the agencies. Figure 5 shows the trade-off between utiloquity and equity for both low and high

demand variability. Similar to the case of equity-efficiency trade-off, we observed the same trend

as the variability in demand increases in equity-utiloquity trade-off, i.e., the gain from our model

compared to that of Orgut et al. (2016b) increases. Additionally, although equity and utiloquity

are conflicting objectives, for a given level of equity (utiloquity) our model achieves higher levels

utiloquity (equity), regardless of variability level in the data.

Our numerical experiments strongly suggest that, compared to our benchmark from the literature,

our model not only achieves higher levels of efficiency for the same levels of equity, but also for a

given efficiency it yields higher levels of equity both for the fill-rates and for the utilizations across

the network. Therefore all three players in the food-bank supply chain simultaneously benefit: the

food-bank, agencies, and the demand population.

To more concisely explain the equity-efficiency trade-off, in this section, we use a new measure

called the price of equity. The price of equity in non-profit operations is defined as the required

level of change in efficiency to achieve a unit of change in equity (Bertsimas et al. 2011). In other

terms, price of equity is the difference of the efficient frontier curve (presented in Figure 4).

Particular sources of data which are of interest to the managers of food-bank operations are the

supply at the food-bank level and capacity at the agency level and the dynamics they create in

the non-profit network operations. In this section, we quantify the effects of change in supply and

capacity levels on the price of equity under two levels of variability in demand realizations and

discuss some of our managerial insights.
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Figure 6: Price of Equity vs donated supply S for both low and high demand variability.
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Figure 6 shows the changes in price of equity as a function of available supply (denoted by S in

our model). As it is evident from Figure 6, higher availability of supply reduces the amount of

efficiency that should be sacrificed to achieve a single unit of increase in equity. In other words,

the more a society becomes charitable, the easier it is for food-banks to become equitable in their

distribution of food to the public. Another point of attention in Figure 6 is that the price of equity

reduces with a diminishing rate as the supply increases, which indicates that initial level of increase

in supply has the greatest impact in achieving a more equitable setting.

Referring back to the definition of price of equity, we repeat that it shows the units of efficiency

that need to be sacrificed in order to observe a unit change in equity. Figure 6 suggests that, at

least at low supply, achieving equity is more difficult than achieving efficiency (price of equity is

greater than one). In detail, price of efficiency can be defined as the reciprocal of the price of

equity. Therefore a general observation from Figure 6 is that achieving higher equity requires more

sacrifice from efficiency for the food-banks, especially when supplies are more scarce.

Our final observation from Figure 6 is that as the variability in demand increases, the food-bank

has to sacrifice more from its efficiency to achieve a single unit of equity for the same amount of

supply. In other words, as the disparity of wealth in the society increases, it would be more difficult

for food-banks to equitably distribute the supply they receive from the public.
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Figure 7: Price of Equity vs average capacity C (across the agencies) for both low and high demand variability.

In traditional econometric models for capacity planning, the cost-capacity function has a unique

minimizer. For instance, considering a traditional model for a warehousing system, cost of low

capacity is the opportunity cost for the customer demands that could have been served, but are
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lost because there is not enough capacity for holding inventory. On the other hand, cost of high

capacity is the idle space that is not used.

Similarly, Figure 7 shows the changes in price of equity when average capacity increases in the

network. Figure 7 suggests that there is a unique capacity at which price of equity is at its minimum.

Specifically, a low capacity network of agencies in our setting behaves similar to having low supply

which, as already discussed for Figure 6, causes the price of equity to rise. This is intuitively correct

as having low capacity to handle the donated food at the agencies limits the amount of supply they

can receive and process.

The cost of high capacity follows a similar behaviour. In detail, in our data from Feeding America,

capacity is always a percentage of the demand in the network. This fact is a common phenomenon

in practice as the capacity of the agencies typically falls short of their demand. Therefore, the cost

of high capacity is due to the fact that an increase in capacities results in higher effective demands

in the network (from Definition 1). When effective demand increases and supply stays constant, it

is as if the supply has become more scarce. Therefore, according to Figure 6, the price of equity

starts to rise after it meets its minimum in Figure 7.

In practice, Figure 7 demonstrates that contrary to the common belief, it is not always the case

that expanding the capacity of food-banks will lead to ease in meeting higher equity levels. In other

words, encouragement for volunteer involvement in food-bank operations and therefore enhancing

their capacities, comes at a secondary level of priority when compared to reduction of poverty in

the society. This is because, reducing poverty will lead to lower effective demands in the network

and extends the decreasing behaviour of price of equity as the result of increase in capacities (before

meeting the minimum) in Figure 7.

Our final observation from Figure 7 is that high variability in demand causes a shift in the price

of equity as a function of capacity. In other words, expansion of capacities in food-banks leads to

higher gains if the wealth is distributed more evenly in the society.

6. Conclusions

Food-banks strive to distribute donations they receive from the public, government agencies, and

grocery stores to the charitable agencies within their network in an equitable and efficient manner.

In this paper, we present a new model to the food-bank donation allocation problem under equity

and efficiency performance measures. Our model explicitly accounts for both efficiency and equity
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in the objective function and is capable of offering closed-form optimal solutions in perfect efficiency

and perfect equity, while providing high quality solutions for the spectrum in between.

Feeding America is one of the largest non-profit organizations, feeding the poverty population

through a network of 200 food-banks across North America. Using the real data from Feeding

America for their particular food-bank in North Carolina, we compare the results of our model

against a benchmark from the literature in terms of equity, efficiency, and utilization equity (called

by utiloquity in our paper). Our numerical study demonstrates considerable improvements in terms

of all three performance measures simultaneously when compared to the benchmark. This means

concurrently benefiting all three players in the food-bank supply chain: the food-bank, agencies,

and the demand population.

Our sensitivity analysis demonstrates several interesting observations regarding the changes in

price of equity when donated supply and agencies’ capacities change. In particular, our sensitivity

analysis demonstrates that the government should put its priority on helping the society to reduce

poverty before investing on capacity expansions in charity organizations like food-banks. This will

ensure that adding more capacity to the agencies associated with a food-bank will always lead

to decreasing the price of equity. Additionally, we observed that encouraging the society towards

charitability is always beneficial for the food-banks, however with a diminishing rate. Finally, our

experiments demonstrate that decreasing disparity of wealth in the society will lead to lower costs

for the food-banks to distribute public donations equitably to the poverty population.

Our research can be extended in multiple directions. In this work, we considered a deterministic

setting for our parameters of capacity and demand at the agencies. Consideration of uncertainty

for either one of these parameters or both can perhaps lead the researchers to further realistic

insights about the food-bank donation allocation problem. In another extension, we would like

to refer the readers to the role of perishability in the decisions a food-bank makes. Particularly,

food-banks typically receive close-to-expiry products from their donors and therefore integration of

time into our model will further advance the insights in the science of decision-making in non-profit

operations.
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Appendix A. Proof of Theorem 2

Proof

Here, we prove Theorem 2, the closed form of βEQ.

First, if βa ≤ βb, let βEQ = (βa, · · · , βa) and β = βa. It is trivial to verify that (βEQ, β)

is a feasible solution because βa ≤ βb ≤ β̃i for any i ∈ I. On the other hand, there does not

exists another βEQ > βa but satisfies the perfect equity criterion, because βEQD > βaD = S is

impossible. Hence, βEQ = βa.

Second, if βa > βb, then βEQ cannot be greater than βb. If βEQ > βb is true, then for any j in the

set J , we have βj = βEQ > βb = β̃j which violates the constraint (2b). Letting βEQ = (βb, · · · , βb)
and β = βb, it is trivial this solution is feasible. Since βb is the maximum possible βEQ, βEQ = βb.

The above two claims complete the proof.

Q.E.D.

Appendix B. Proof of Theorem 3

Proof

Denote Ii∗j∗ the first subset not fully filled, such that βEF
k Dk < D̃k for any k ∈ Ii∗j∗ ; other wise,

if S ≥∑i∈I D̃i, then we have an unique optimal solution βEF
i = D̃i/Di (∀i ∈ I) which means all

the agencies are filled at their maximum level – the effective demand.

First, letting B be the set of all optimal solutions when θ = 0, we show that for any optimal

solution β = (β1, · · · , βn) ∈ B, βk = βEF
k = 0 if k ∈ Ii and i > i∗; βk = βEF

k = D̃i/Di if k ∈ Ii
and i < i∗. In other words, the only difference part between the dominant solution βEF and

other β’s in B, if exists, is the fill-rates of agencies in the group Ii∗ . Denoting J1 =
⋃i∗−1

j=1 Ij and

J2 =
⋃n

j=i∗+1 Ij , because βEF
k = D̃i/Di ≥ βk for any k ∈ J1 and βEF

k = 0 ≤ βk for any k ∈ J2, we

have

∑
k∈J1

(βEF
k − βk)Dk +

∑
k∈Ii∗

(βEF
k − βk)Dk +

∑
k∈J2

(βEF
k − βk)Dk = 0

⇒
∑
k∈J1

(βEF
k − βk)Dk +

∑
k∈Ii∗

(βEF
k − βk)Dk =

∑
k∈J2

(βk − βEF
k )Dk

⇒
∑
k∈J1

(βEF
k − βk)Dk +Di∗

∑
k∈Ii∗

(βEF
k − βk) =

∑
k∈J2

(βk − βEF
k )Dk
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The first equation comes from the observation S <
∑

i∈I D̃i. When there is no penalty of inequity,

all the food supply will be shipped since the total effective demand is larger than the supply. On

the other hand, notice that βEF ,β ∈ B, so
∑

k∈I(β
EF
k − βk) = 0. However I = J1 ∪ Ii∗ ∪ J2, we

have
∑

k∈J1∪Ii∗ (β
EF
k − βk) =

∑
k∈J2(βk − βEF

k ). Therefore, if
∑

k∈J2(βk − βEF
k ) > 0, then

∑
k∈J2

(βk − βEF
k )Dk ≥ Di∗+1

∑
k∈J2

(βk − βEF
k ) > Di∗

∑
k∈J1∪Ii∗

(βEF
k − βk)

>
∑
k∈J1

(βEF
k − βk)Dk +Di∗

∑
k∈Ii∗

(βEF
k − βk)

gets contradiction. Hence, βk = βEF
k = 0 if k ∈ J2. Furthermore, if

∑
k∈J1(βEF

k − βk) > 0, we

have
∑

k∈J1(βEF
k − βk) =

∑
k∈Ii∗ (βk − β

EF
k ) and

Di∗
∑
k∈J1

(βEF
k − βk) >

∑
k∈J1

(βEF
k − βk)Dk = Di∗

∑
k∈Ii∗

(βk − βEF
k )

gets contradiction. Hence, βk = βEF
k = D̃i/Di if k ∈ J1 and

∑
k∈Ii∗ (βk − β

EF
k ) = 0.

Now, based on the results above, we have βk = βEF
k when k ∈ I/Ii∗ . On the other hand, by

how Algorithm 1 (Greedy method) constructs βEF , it is obvious maxk∈Ii∗ βk ≥ maxk∈Ii∗ β
EF
k .

Therefore, β ≥ βEF . When θ > 0, consider the difference between objective function values as

follows.

∑
k∈I

[βEF
k − θ(βEF − βEF

k )]−
∑
k∈I

[βk − θ(β − βk)]

=θ|I|(β − βEF ) + (1 + θ)
∑
k∈I

(βEF
k − βk)

=θ|I|(β − βEF ) ≥ 0

completes the proof.

Q.E.D.

Appendix C. Performance of the Models Under Other Measures of Inequity

In this section, we report the comparison between the two models based on the remaining four

measures of inequity:
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Coefficient of Variation =

√∑
i∈I(Ei−Ē)2

n

Ē
(C.1)

Variance =

∑
i∈I(Ei − Ē)2

n
(C.2)

Mean Absolute Deviation =

∑
i∈I
∣∣Ei − Ē

∣∣
n

(C.3)

Range = Emax − Emin (C.4)

In order to draw the efficient frontier we need to convert the measures to return equity. How-

ever, while Gini Coefficient returns a value between 0 and 1, the rest of the above-mentioned

four measures return a non-negative value which is not necessarily between 0 and 1. Therefore,

similar to Orgut et al. (2016b), we first standardize our data for each point in each measure

E = (E1, E2, . . . , En) to be between 0 and 1 in its standard form Ê = (Ê1, Ê2, . . . , Ên) according

to the following:

Êi =
Ei − EMin

EMax − EMin
(C.5)

Our equity vector then is calculated as 1− Ê.
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Figure C.8: Efficient frontier using Coefficient of Variation as the inequity measure.
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Figure C.9: Efficient frontier using Variance as the inequity measure.
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Figure C.10: Efficient frontier using Mean Absolute Deviations as the inequity measure.
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Figure C.11: Efficient frontier using Range as the inequity measure.
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Dos-Santos, Maria José Palma Lampreia. 2020. Equitable food distribution and sustainable development.

Zero Hunger. Encyclopedia of the UN Sustainable Development Goals .

Eisenhandler, Ohad, Michal Tzur. 2019. The humanitarian pickup and distribution problem. Operations

Research 67(1) 10–32.

FAO. 2018. Suit of food security indicators - prevalence of undernourishment. http://www.fao.org/.

36

http://www.fao.org/faostat/en/?#data/


FeedingAmerica. 2021. https://www.feedingamerica.org/.

Fianu, Sefakor, Lauren B Davis. 2018. A markov decision process model for equitable distribution of supplies

under uncertainty. European Journal of Operational Research 264(3) 1101–1115.

GFN. 2019. Waste not, want not - toward zero hunger. http://www.foodbanking.org/.
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