
Decoding a VCR Controller Code

Ken Shirriff1

Curt Welch2

Andrew Kinsman3

ADDRESSES: (1) 6406 Hillegass, Oakland, CA 94618
Email: shirriff@sprite.Berkeley.EDU

(2) 3126 Windwood Farms Dr., Oakton, VA 22124
Email: curt@kcwc.com

(3) 5441 Holtz Rd., Palmyra, NY 14522
Email: kinsman@ssd.Kodak.Com

ABSTRACT

The VCR Plus+ is a remote control for programming video cassette

recorders. It uses an encrypted 1 to 8 digit number that encodes the chan-

nel, start time, length, and day of the month of the television show to be

recorded. This paper describes a procedure for decoding the 1 to 6 digit

codes.

Keywords: Cryptography, VCR

November 6, 1993



Decoding a VCR Controller Code

Ken Shirriff1

Curt Welch2

Andrew Kinsman3

ADDRESSES: (1) 6406 Hillegass, Oakland, CA 94618
Email: shirriff@sprite.Berkeley.EDU

(2) 3126 Windwood Farms Dr., Oakton, VA 22124
Email: curt@kcwc.com

(3) 5441 Holtz Rd., Palmyra, NY 14522
Email: kinsman@ssd.Kodak.Com

INTRODUCTION

The VCR Plus+ is a video cassette recorder controller designed to simplify VCR

programming. To record a show, you just enter a code number into the VCR Plus+ con-

troller, and the VCR Plus+ looks after controlling the VCR. The 1 to 8 digit code

numbers, called PlusCodes, are printed in many TV listings. Details of the coding

method, invented by Henry Yuen and Daniel Kwoh, have not been revealed [1]. How-

ever, the PlusCode system has several cryptographic flaws that allow the code to be bro-

ken. This article explains how 1 to 6 digit codes can be decoded; we were unable to

decode the 7 and 8 digit codes.

The code numbers are assigned so common, prime-time shows usually have short, 1

to 4 digit codes, while less common shows have longer numbers. This Huffman-style

encoding scheme [2] minimizes the average length of the code numbers used. Each code

number contains the day of the month, channel, start time, and duration of the show to be

recorded. The start time and duration are in steps of 5 minutes.

After the user enters codes into the VCR Plus+, the VCR Plus+ remembers these

codes up to a month and signals the VCR at the right time. The VCR Plus+ controls the

VCR by using the infra-red remote control signals. The VCR Plus+ knows how to



- 2 -

control common VCRs, and is told by the user what kind of VCR is being used. When it

is time for the show to start, the VCR Plus+ signals the VCR to change to the proper

channel and to start recording. At the end of the show, the VCR Plus+ signals the VCR

to stop recording. The VCR Plus+ uses an internal user-programmed table to convert the

encoded channel number to the VCR’s channel number, in case channels are numbered

differently in the local area. The VCR Plus+ has an internal clock with the current year,

date, and time; it uses this to keep track of when to start recording.

Note: VCR Plus+ and PlusCode are trademarks of the Gemstar Development Cor-

poration. Gemstar claims copyright and patent protection on the PlusCode numbers and

software to create them. The decoding process in this paper is described for crypto-

graphic research purposes only.

The numbers are decoded using a fairly complex technique, which is shown in Fig-

ure 1. In overview, the entered code number is multiplied by a fixed key to generate an

intermediate number. The bottom three digits are divided by 32. The quotient gives the

day of the month for the code. The remaining top digits are processed to generate an

offset and new top digits. The new top number is converted to binary and the bits are

separated into bits used for the channel and bits for the table index. The offset, the

remainder from the bottom three digits, and the day multiplied by the month are all

added to produce a sum. The sum is converted to binary and the bits are separated into

channel bits and table bits. All the channel bits are combined to yield the channel of the

show. The table bits are combined and are used to index into a scrambled table of start

times and durations to yield the starting time and duration of the show.

DETAILS OF THE DECODING METHOD

There are two basic concepts used in the decoding; we call them no-carry multipli-

cation and length looping. No-carry multiplication is ordinary long multiplication with

all carries discarded. We will denote this operation by (×). For example, 123 (×) 456 =



- 3 -

628 (+) 5050 (+) 48200 = 43878, where (+) indicates addition with carries discarded. It

can be verified that no-carry multiplication is commutative and associative. No-carry

multiplication is very similar to convolution of vectors modulo 10.

Length looping is used to generate mappings that preserve the length of the input.

For example, suppose we have a one-to-one mapping M4 on numbers up to 4 digits long,

so M4 converts each input number from 0 to 9999 to a new, unique number from 0 to

9999. Now suppose we want to make M4 into a new mapping that operates on numbers

that are exactly 4 digits long; that is, it bijectively maps numbers from 1000 to 9999 onto

1000 to 9999. The length_loop procedure used to generate the new mapping is

given in Figure 2. The concept is to apply mapping M4 to the 4 digit input number. If

the result is too short due to a leading zero, repeat by applying M4 to the result. This

loop is continued until the result is the proper length. The length_loop procedure

works analogously for inputs of any length i, using mapping Mi.

It can be seen that length looping results in a new one-to-one mapping. Suppose the

mapping isn’t one-to-one, so there are two inputs x and y that yield the same result.

Since M4 is one-to-one we can step backwards from the common result and show that

either x=y or the loop would have terminated earlier. It can also be seen that the length

loop must terminate: if it doesn’t, some value must appear twice. However, since M4 is

one-to-one we can work backwards and show the initial value must appear twice. How-

ever, that would terminate the loop unless the initial value has a leading zero, which is

prohibited.

We will now explain the decoding method of Figure 1 in more detail. In Step 1 of

the decoding procedure, the number is no-carry multiplied by the decoding key, the result

is truncated to the original length, and length looping is used to prevent leading zeros.

This algorithm is shown as the key_mult routine in Figure 2. The previous discussion

on length looping shows that Step 1 is a one-to-one mapping from the input code to a

new code of the same length. For an i digit input, the base mapping Mi consists of no-



- 4 -

carry multiplication by 68150631 followed by truncation to i digits. Each mapping Mi

can be shown to be one-to-one since the key 61850631 has inverse 9371 under 8 digit

no-carry multiplication. (The encoding process uses no-carry multiplication by 9371.)

Steps 2 and 3 determines the date from the multiplied number. The bottom three

digits from Step 1 are split off and used in Step 2. One is subtracted from the bottom

digits and the result is divided by 32. Adding one to the quotient yields the day of the

month. The remainder is used in Step 5.

After the bottom three digits are split off for Step 2, the remaining top digits are

processed in Step 4. Step 4 computes the modified top number and the offset; details of

this step are given in the offset and map_top procedures of Figure 2. The

modified top number is computed from the original top number by a one-to-one length-

preserving mapping that uses the day and year. (Only the last two digits of the year are

used.) The base mapping is done by the procedure map_top in Figure 2. The

offset routine in Figure 2 applies length looping to the map_top mapping to yield

the new, mapped top. Inside the length loop in Step 4, the offset is also computed. The

previous proofs about length looping can be used to prove the resulting top number map-

ping is one-to-one and preserves the length.

The number formed from the new mapped top digits is converted to binary, and the

bits are labeled t 8c 5t 7c 4t 6t 5t 4c 3t 3c 2, where t bits are used for the table index and c bits are

used for the channel. If the input code is 1 to 3 digits long, Step 4 is not used; the

mapped top number and offset are both 0.

In Step 5, the remainder from Step 2, the month plus one times the day, and the

offset from Step 4 are added modulo 32. The result is converted to a 5 bit binary number

and the bits are denoted t 2c 1t 1c 0t 0.

In Step 6, the channel bits from Steps 4 and 5 are combined into a 6 bit binary

number. Adding 1 to the channel bits yields the channel corresponding to the code.



- 5 -

Finally, in Step 7, the table bits from Steps 4 and 5 are combined into a 9 bit binary

number. The resulting table number is used as the index into a table holding combina-

tions of start times and durations for shows. The entries in this table are in a shuffled

order. The most common times and durations tend to be near the beginning of the table,

allowing common shows, such as half-hour prime time shows, to be encoded with short

codes. The first part of the table consists of 192 entries, combining the 48 half-hour start

times and the 4 durations of 30, 60, 90, and 120 minutes. This part of the table starts out

with entry 0 as 6:30 pm - 30 minutes, entry 1 as 4:00 pm - 30 minutes, entry 2 as 7:30 pm

- 30 minutes, and ends with entry 191 as 11:00 am - 90 minutes. Following these 192

scrambled entries are the entries for longer durations in sequential, decreasing order.

These entries start with 48 entries of 150 minutes duration, counting down: 11:30 pm,

11:00 pm, 10:30 pm, down to 12:00 am. These entries are followed by the 180, 210, 240,

270, and 300 minute durations in the same counting down order.

EXAMPLES OF THE DECODING METHOD

For an example of the decoding method, consider the code number 3316 in May,

1991. No-carry multiplying 3316 and 68150631 and truncating to 4 digits yields 8296,

which is separated into bottom digits 296 and top digit 8. Dividing 296-1 by 32 yields

quotient 9 and remainder 7. Incrementing the quotient yields day = 10. The offset loop

with day 10 and year 91 gives offset = 8, and mapped top = 8. Then (7+ 10 × (5+1) + 8)

mod 32 = 11. Converting 11 to binary, i 2c 1i 1c 0i 0 = 01011. From the mapped top digits

t 1c 3t 0c 2 = 1000 binary. Extracting the channel bits yields 0011 binary, and adding 1

yields channel 4. The table bits are 10001 binary or 17. Entry 17 of the table has start

time 9:00 pm, and duration of 2 hours. Therefore, PlusCode 3316 in May, 1991

corresponds to a 2 hour show on channel 4 at 9:00 pm on May 10th.

For another example, consider code number 21362 in March, 1992. No-carry multi-

plying yields 36322. Dividing 321 by 32 yields quotient 10 for day 11 and remainder 1.

The offset loop gives offset = 1 and mapped top 28 or 1000010 binary. Adding (1 + 11 ×



- 6 -

(3+1) + 1) mod 32 = 14 or 01110 binary in Step 5. The binary numbers yield channel

bits 10111 giving channel 24 and table bits 0000010 for table entry 2, which is 30

minutes at 7:30 pm.

HOW WE DETERMINED THE CODE

To determine the coding method, we examined the 1 digit codes and the associated

date/channel/time in various months. From these codes, we figured out Steps 2, 3, 5, and

6. We also figured out the first 8 entries in the table for Step 7. Note that 1 to 3 digit

codes don’t use Step 4 and 1 digit codes are unaffected by Step 1. It is a serious flaw in

the PlusCode system from a cryptographic standpoint that so much could be simply

determined from the 1 digit codes. The main problem is that the encoding for 1 digit

codes is very simple, yet it reveals most of the steps used: the complex Steps 1 and 4

drop out for the 1 digit codes, and only 8 table entries are used in Step 7.

Next we examined a number of 2 and 3 digit codes. The information we got from

the 1 digit codes revealed what 3 digit codes must be going into Step 2. From this, we

determined there must be an initial processing step and constructed a table showing what

must be happening in this first step. Eventually we discovered that no-carry multiplica-

tion by 631 would explain the first step, with a few exceptions. The exceptions turned

out to have a leading zero, and we thus discovered the length looping process.

Once we had determined these facts, it was simple to determine the entire eight

digit multiplication key, digit by digit. The day could be determined from the last 3

digits of any 1 to 8 digit code, as long as length looping didn’t occur. For each input

length from 4 to 8, we tried codes with the 9 possible leading digits and noted which one

decoded to an unexpected day. We knew that the key multiplication of the exceptional

code must have yielded a leading digit of 0, so simple algebra revealed what the

corresponding digit of the key must have been. In this manner, we quickly obtained the

entire 8 digit key. It is another cryptographic flaw of the PlusCodes that the key can be

obtained so easily.



- 7 -

It was significantly more difficult to decode the 4 digit codes: these codes use the

complex Step 4 and use more table entries. By examining 4 digit codes, we first

discovered that the bottom 3 digits are processed separately and an offset depending on

the top digit was added in Step 5. Next, we determined the new table entries by holding

the code constant and varying the month; this stepped through the table indices from Step

5. We examined the 9 possible top digits to see how they affected the channel and table,

and figured out the formula for the mapped top digit. We also figured out how the bot-

tom 4 bits of the mapped top digit were separated into channel and table digits.

The offset was the hardest thing to determine in the 4 digit codes. We figured out

that the offsets were a function of the year, the day modulo 10, and the thousands digit.

However, even after determining the whole offset table for 1991, the formula was still

mysterious. We determining the offset table for other years and noticed a simple pattern

from one year to the next. Studying this pattern revealed that the offset was computed by

summing map_top over multiple years.

The 5 and 6 digit codes were harder than the 4 digit codes. Since we could pick

codes that would use any desired table entry, we quickly stepped through the start and

duration table and determined its contents. It is another cryptographic flaw with the

PlusCode system that it is so easy to read out the table. Next, we could determine the

modified top digit formula and bit order by examining a sequence of top digits and seeing

what changed. The 5 and 6 digit offset formula was very hard to determine. However,

the problem was that we were computing the offset and the modified top digits

separately. After combining both these functions into a single loop, the extension of the

offset formula to 5 and 6 digits was straightforward.

We haven’t determined how the 7 and 8 digit codes work. The decoding method

seems to change significantly. For instance, the offset and modified top formulas do not

depend on the day as they do for shorter codes. The offset apparently does not depend on

the year at all, while the modified top depends on the exact year, not the year modulo 16.



- 8 -

ACKNOWLEDGEMENTS

We would like to thank the participants in the cryptography discussion on the

Usenet computer network for their comments. We would especially like to thank the

Electronic Frontier Foundation for their legal assistance.

REFERENCES

1. Churbuck, D., Success Formula, Forbes, May 27, 1991, p. 334.

2. Huffman, D. A., A Method for the Construction of Minimum-Redundancy Codes,

Proceedings of the IRE 40, 9 (September 1952), 1098-1101.

BIOGRAPHICAL SKETCH

Ken Shirriff is currently working towards a doctorate degree in computer science at

the University of California, Berkeley.

Curt Welch is an independent consultant, currently working for the David Taylor

Research Center.

Andy Kinsman is an computer engineer at Kodak.



7

6

5

4

321

top
mapped

channeladd 1c5c4c3c2c1

duration
start timelookup int8t7t6t5t4t3t2t1t0

t2c1t1c0t0
addday × (month+1)

digits
top

t8c5t7c4t6t5t4c3c2t3
loop
offset

quotient3 digits
bottom

dayadd 1subtract 1(×) 68150631code

(mod 32)

remainder

offset

loop divide by 32

table

Figure 1. An overview of the method to convert a numeric code into the day of the month,
channel, start time, and duration.



function length_loop(value,i,Mi)
(value = input value, i = number of digits, Mi = mapping on i digits.)
do

value = Mi(value)
while (value < 10ˆ(i-1))
return value

end

function key_mult(value)
digits = # of digits in value
do

value = (value (×) 68150631) mod 10ˆdigits
while (value < 10ˆ(digits-1))
return value

end

function map_top(day, year, top, digits)
year = year mod 16
d2,d1,d0 = digits of top
f0 = 1
f1 = (year+1) mod 10
f2 = ((year+1)*(year+2)/2) mod 10
f3 = ((year+1)*(year+2)*(year+3)/6) mod 10
if digits = 1 then

n0 = (d0*f0 + day*f1) mod 10
n1 = 0
n2 = 0

else if digits = 2 then
n0 = (d0*f0 + d1*f1 + day*f2) mod 10
n1 = (d1*f0 + day*f1) mod 10
n2 = 0

else if digits = 3 then
n0 = (d0*f0 + d1*f1 + d2*f2 + day*f3) mod 10
n1 = (d1*f0 + d2*f1 + day*f2) mod 10
n2 = (d2*f0 + day*f1) mod 10

end if
return n2*100 + n1*10 + n0

end

function offset(day, year, top)
digits = # of digits in top
off = sum of the digits in top
do

for i = 0 to (year mod 16) do
off = off + (map_top(day, i, top, digits) mod 10)

end for
top = map_top(day, year, top, digits)

while (top < 10ˆ(digits-1))
off = off mod 32
return top, off

end

Figure 2. Three pseudocode procedures for the decoding process. The first procedure illus-
trates length-looping applied to a mapping M. The second procedure uses no-carry multiplica-
tion and length-looping to perform Step 1 of the decoding. The third procedure is the mapping
function for the top digits. The last procedure computes the mapped top digits and the offset,
for Step 4 of the decoding.




