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Abstract

One-way functions are used in modern crypto-systems as doortraps because

their inverse functions are supposed to be difficult to compute. Nonetheless

with the discovery of reversible computation, it seems that one may break a

one-way function by running a reversible computer backward. Here, we argue

that reversible computation alone poses no threat to the existence of one-way

functions because of the generation of “garbage bits” during computations.

Consequently, we prove a necessary and sufficient condition for a one-to-one

function to be one-way in terms of the growth rate of the total number of

possible garbage bit configurations with the input size.
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All presently known classical cryptographic schemes are based on the one-way func-

tion hypothesis. That is, there exist one-to-one functions that can be computed in times

polynomial in the number of bits of their input arguments (and hence “efficient”) while

computation of their inverses cannot (and hence “inefficient”). For example, the difficulty

of eavesdropping in the well-known RSA public key cryptography is based on the observa-

tion that multiplying two numbers can be done efficiently while no known algorithm based

on classical computers can factorize a composite number N into primes in a time which is

polynomial in logN [1]. Thus, the existence of one-way functions is an important issue of

crypto-security.

It has been shown that calculations can be done with reversible machines containing

only reversible primitives [2–5]. One may be tempted by this reversibility to believe that

one can invert a one-to-one function just by running a reversible computer backward. If this

were true, the computation of the inverse function would be as efficient as the computation

of the function itself. Such a naive argument seems to suggest that reversible computation

rules out one-way functions and threatens the security of public key cryptography. In this

article, however, we argue that reversible logic does not exclude the possibility of one-way

functions. Their robustness relies on our ignorance of the values of the “garbage bits” in

computations. The key issue is how the total number of possible garbage bit configurations

produced in a reversible computation of a function grows with the input size. We define

an efficient (in a time polynomial in the input size) reversible algorithm for computing a

function to be controllable if the total number of garbage bit configurations is polynomial in

the size of the input. It is then straight-forward to show that, given a one-to-one function

f that can be computed efficiently, a necessary and sufficient condition for it to be one-way

is that it cannot be computed by any controllable algorithm.

Computation as it is currently carried out by electronic digital computers destroys in-

formation. For example, the so-called AND gate has two inputs and one output. When the

output is 0, we lose information because the input can be (0, 0), (0, 1) or (1, 0). Erasure of

information is a dissipative process which costs energy. Incidentally, this observation leads
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to the first correct understanding of the Maxwell’s demon [6].

However, Bennett [2,7] has shown that all logic operations can be performed reversibly

by adding extra redundancy in both the input and the output. Thus, in principle, one can

build a computer without internal power dissipation. Consider the Toffoli gate (also known

as controlled-controlled-NOT gate) [3,4] which has three input and three output lines. The

first two lines (a and b) act as control and pass through the gate unchanged. The value of

the third output line (co) depends on the third input line (ci) and the control lines (a and

b), and is given by

co =















ci if a = 0 or b = 0

NOT(ci) if a = b = 1
. (1)

The Toffoli gate is clearly reversible: The input can be deduced from the output by running

the latter through another Toffoli gate. Moreover, any logic operations can be implemented

by an appropriate arrangement of the Toffoli gates. For example, by presetting the third

input line to be zero, the third output bit will implement the logical AND operation on the

first two input bits.

The above example illustrates two general features of reversible computations. First, to

simulate an irreversible logic operation, one is required to preset some of the input bits at

some particular (and fixed) values. Second, reversible systems produce not only what you

want in the output (the logical “AND” between a and b in the third output bit), but also

some “garbage bits”. These garbage bits are, however, important. As noted before, the

function AND is many-to-one. The garbage bits contain the information we need to run the

computer in reverse. Actually, the Toffoli gate has shown to be able to perform universal

computation in the sense that every function which is computable by the Turing machine is

also computable (equally efficiently) by a reversible Turing machine [3,4]. Moreover, we can

confine the growth the garbage bits as follows [2,8]:

Theorem 1: (Bennett) The number of garbage bits in a reversible machine can be made

equal to the number of input bits.
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Proof: We represent Bennett’s algorithm schematically as

INPUT + PRESET1 + PRESET2

−→ OUTPUT +GARBAGE+ PRESET2

−→ OUTPUT +GARBAGE+OUTPUT

−→ INPUT + PRESET1 +OUTPUT . (2)

First we run the machine forward, giving us the OUTPUT and the GARBAGE. Then we

can copy down each of the output bits reversibly using a controlled-NOT gate [8]. Finally,

we run the machine backward. In this way, PRESET1 are the internal registers used as

temporary storage whose values are unaltered after the process, PRESET2 are the preset

bits used by the controlled-NOT gates, and INPUT in the output lines are regarded as

“garbage bits”. ✷

Remark 1: Any function f that can be computed efficiently by a universal Turing machine

can also be computed efficiently by a reversible Turing machine (with a possible slowdown

by a constant factor) [2,3]. Now Theorem 1 shows that f can be computed efficiently by

an algorithm which produces the same number of garbage bits as the number of input bits.

Thus, we can always design a reversible algorithm to calculate a given computable function

f with the number of garbage bits required at most equals the number of input bits.

Remark 2: One must distinguish careful between internal registers (PRESET1) and garbage

bits. The internal registers are used only as temporary storage and they are unchanged at

the end of a computation. On the contrary, the garbage bits take unknown values at the end

of a computation. We remark that the number of internal registers needed for a reversible

computation can be reduced by an elegant hierarchical “pebbling argument” due to Bennett

[9,10]. This space-efficient simulation is obtained by breaking the original computation into

segments and then doing and undoing these segments in a hierarchical manner. Moreover,

the increase in running time is insignificant. However, this pebbling argument does not

reduce the number of garbage bits.
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In some cases, it may be possible to further reduce the number of garbage bits. If the

function that we are evaluating is one-to-one, the desired output already contains all the

information needed to deduce the input. No garbage bit is needed to account for the missing

information. (The computer may still use some internal registers as scratch space during a

calculation. We only need to make sure that those internal registers are restored to their

initial values at the end of the calculation.) Given a function f , this machine will take the

input x to y = f(x) without garbage bits; i.e., INPUT −→ OUTPUT. The computation of

a one-to-one computable function f without garbage bits was discussed by Bennett [2]:

Theorem 2: (Bennett) Let f be an invertible function. If f and f−1 are both computable,

then there exits a reversible algorithm to compute f without producing any garbage bits.

Proof: Since every function computable using a Turing machine is also computable using

a reversible Turing machine, we may assume the existence of reversible algorithms in com-

puting f and f−1, each of them may produce some garbage bits. We now construct a new

reversible algorithm which sends INPUT to OUTPUT without any garbage bits as shown

below:

INPUT + PRESET1 + PRESET2

−→ OUTPUT +GARBAGE1 + PRESET2

−→ OUTPUT +GARBAGE1 +OUTPUT

−→ INPUT + PRESET1 +OUTPUT

−→ INPUT +GARBAGE2 + INPUT

−→ INPUT +GARBAGE2 + PRESET2

−→ OUTPUT + PRESET1 + PRESET2 . (3)

This corresponds to running the f machine forward, (reversibly) copying the output down

using a number of controlled-NOT gates, then running the f machine backward. After that

we run the f−1 machine forward and then reversibly erase the input (again by means of

a series of controlled-NOT gates [8]). Finally, we run the f−1 machine backward. Note
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that PRESET1 and PRESET2 can be regarded as internal registers providing scratch space

during the calculation. ✷.

Remark 3: Suppose we have efficient algorithms to compute both f and f−1, then it is easy

to verify that the above “zero garbage-bit algorithm” to compute f is also efficient.

Reversible computation gives rise to a paradox: a reversible machine seems to given a

short cut to compute the inverse of a function. By running the machine backward, it takes y

into f−1(y) = x. Thus, one may be tempted to believe that the computations of f and f−1

are equally efficient. If this were true, there would be no one-way functions and all classical

cryptographic systems would be in danger. In view of the widespread usage of public key

crypto-systems, it is crucial for us to resolve this paradox. (This question is brought forward

again [11] after the recent polynomial time factorization algorithm using quantum computer

by Shor [12]. And cryptography by quantum mechanical means may be the only secure

method [11,13–15]. We shall return to this point later in this article.)

The resolution of the above paradox lies in the fact that in general there is no efficient

way to reduce the garbage (without an efficient way of computing the inverse function and

we shall elaborate on this point in the proof of Theorem 3). The value of each garbage bit

may be 0 or 1 depending on the input. However, the values taken by the various garbage

bits may well be correlated so that when there are k garbage bits, the total number of

all possible configurations of the garbage bits is in general less than or equal to 2k. For

a given OUTPUT, there is only one such combination which is correct in the sense that

the appropriate input (INPUT) and preset bits (PRESET) can be obtained by running

the machine backward. That is, OUTPUT + GARBAGE −→ INPUT + PRESET. (If

the function is many-to-one, then there are multiple possible garbage bits combinations

which are “correct” in general. Each of them corresponds to a pre-image of the function.)

To efficiently compute the inverse function, we must be able to control the growth of the

number of possible garbage bit configurations. This leads us to the following definition.

Definition 1: An efficient reversible algorithm to compute f is said to be controllable if and
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only if all the potential values of the garbage bits are known and the total number of possible

garbage bit configurations scales like a polynomial function of the number of input bits.

Remark 4: The number of different possible garbage bit configurations depends greatly on

the reversible algorithm. The trick by Bennett [2] that we have described in Theorem 1

above is in general not effective enough to control the growth of the number of possible

garbage bit configurations. The pebbling argument discussed in Remark 2 is not useful

neither.

With the concept of a controllable algorithm in mind, we can prove a theorem which

measures the difficulty in computing an inverse function.

Theorem 3: Given a one-to-one function f which can be computed efficiently, then the

following statements are equivalent:

(a) f is not a one-way function;

(b) there exists an efficient algorithm to compute f(x) without generating any garbage

bits;

(c) there exists an efficient algorithm to compute f(x) with the number of garbage bits

that scales as the logarithm of the input bit length; and

(d) f(x) can be computed by a controllable algorithm.

Proof: (a) ⇒ (b) is just a direct application of Theorem 2 and Remark 3. Besides, it is

easy to see that (b) ⇒ (c) ⇒ (d). To show the equivalence of the above four statements, it

remains to prove that (d) ⇒ (a).

We fix the OUTPUT to be the configuration that represents y. Then x = f−1(y)

is obtained in the following way. First, we set the garbage bits to one of the possible

configurations before running the machine backward. It is clear that if the values of the

preset bits agree with the ones we have used when we run the machine forward, then the

input bit configuration is in the pre-image of OUTPUT under the function f . Since f is

one-to-one, we can conclude that the input bit configuration corresponds to x = f−1(y).

Thus, we test if the values of the preset bits agree with the ones we have used when we run
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the machine forward. If they agree, then reading out the INPUT will give us the value of

x, and we are done. If not, we run the machine forward again, and then (reversibly) replace

the garbage bits by another possible configuration (by means of a table). This process

is repeated until the preset bits agree with the ones we have used. Since all the potential

garbage bit configurations are known and their total number is at most a polynomial function

of the input bit length, the above reversible algorithm is efficient. Thus, f is not a one-way

function. This completes the proof. ✷

Remark 5: An efficient algorithm for f−1 is obtained provided that we can find an efficient

way to “control” the growth of the number of garbage bits. Besides, Theorem 3 tells us

that finding an efficient way to control the growth a garbage bits is as difficult as finding

an efficient way to compute the inverse function itself. In other words, Theorem 3 states

that, given a one-to-one function that can be computed efficiently, a necessary and sufficient

condition for it to be one-way is that it cannot be computed by any controllable algorithm.

Therefore, reversible computation does not rule out one-way function. It only makes its

definition more precise.

Remark 6: Even if the garbage bit configuration is known, the method use in Theorem 3 to

compute the inverse function is only as efficient as computing the function f itself. Other

algorithms (if any) have to be used if we demand an algorithm of computing f−1 which is

more efficient than computing f .

It is instructive to give an example of a function that can be computed by a controllable

algorithm.

Example 1: Consider the reversible algorithm of sending x to x + 1 mod 2n as shown in

Figure 1. Obviously, the algorithm is efficient. The number x is encoded in the binary

representation (an−1an−2 · · · a1a0), and ci (i = 1, 2, . . . , n − 2) are the garbage bits use to

keep track of the carries. Since a0 can be used as a carry for the least significant digit, there

is no need to invoke c0. It is straight forward to see that the possible values for the output

garbage bits are (cn−2cn−3 · · · c1) = (00 · · ·00), (00 · · ·01), (00 · · ·11), . . . , (11 · · ·11). Thus
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the total number of possible garbage bit configurations grows linearly with the number of

input bits n and hence the algorithm is controllable.

Remark 7: Similarly, it can be shown that the reversible algorithm of adding two numbers

modulo 2n (i.e., a + b + PRESET −→ (a + b) + b + GARBAGE) requires O(n2) garbage

bits. The total number of possible garbage bits configurations grows as O(n2), and hence

the algorithm is controllable. Thus, once a + b and b are given, a can be found efficiently.

It is difficult to give examples of functions that are efficiently computable only by al-

gorithms that are not controllable because showing their existence would be equivalent to

proving the (still un-proven) one-way function hypothesis.

We remark that reversible computation is quite common in microscopic chemical reac-

tions. DNA copying in nature may be regarded as a special form of reversible computation.

Extensive works have been done recently to explore the power of massive parallelism in DNA

computation [16,17].

In recent years, a new quantum theory of computation has been developed [8,18,19]. A

quantum computer can follow many distinct computation paths simultaneously and produce

a final output depending on the interference of all of the paths. In particular, the Shor’s

efficient quantum algorithm to factor large composite numbers [12] challenges the existence

of one-way functions and threatens the security of public key crypto-systems. It has been

suggested that perfect security can be achieved only by quantum cryptography [11,13–15].

Unlike classical cryptography which is based on the unproven one-way function hypothesis,

quantum cryptography is unbreakable because it relies on the “no-cloning theorem” of non-

orthogonal states in quantum mechanics. Nevertheless, quantum cryptography requires

quantum coherence which is technologically difficult to maintain over long distances. For

example, a quantum particle transmitted from the Voyager spacecraft back to the Earth

will undoubtedly lose its coherence due to interactions with solar wind on its way. In the

foreseeable future, the widespread usage of classical cryptography is likely to continue. It

is, therefore, important to examine the robustness of the one-way function hypothesis. And
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we have shown in this article that this hypothesis is consistent with the classical reversible

computers.

A simple remark is in order. For a quantum computer to speed up computation, it is

crucial for the various computational paths to interfere with each other. In other words,

new quantum algorithms are needed to exploit the massive “quantum parallelism”. If we

are to run a classical algorithm (devised for classical reversible computers) in a quantum

computer, it is well-known that there will be no speed up. (Compare with Remark 6) For

such an algorithm, the best thing we can do is to prepare some superpositions of garbage bits

configurations and run the quantum machine backward. Then we make a measurement on

the preset bits to see if they agree with the ones we will use when we want to run the machine

forward. On average, the number of trials we have to perform before an agreement is made

scales exponentially with the number of garbage bits. Thus, this method is inefficient in

general.
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FIGURES

FIG. 1. An reversible algorithm for adding unity modulo 25. Algorithm for adding unity modulo

2n can be constructed in a similar way. The number is encoded as (a4a3a2a1a0). The ci are the

garbage bits, which is used to keep track of the carry. Standard reversible logic notations are used

where ⊕ denotes negation, and • denotes a controlling bit. For example, the first and the second

operations in this figure are the controlled-controlled-NOT and controlled-NOT gates respectively.
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