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Abstract

In the ElGamal signature and encryption schemes, an element x of
the underlying group G = Z×

p = {1, . . . , p − 1} for a prime p is also
considered as an exponent, for example in gx, where g is a generator of
G. This ElGamal map x 7→ gx is poorly understood, and one may wonder
whether it has some randomness properties. The underlying map from G
to Zp−1 with x 7→ x is trivial from a computer science point of view, but
does not seem to have any mathematical structure.

This work presents two pieces of evidence for randomness. Firstly,
experiments with small primes suggest that the map behaves like a uni-
formly random permutation with respect to two properties that we con-
sider. Secondly, the theory of Sidon sets shows that the graph of this map
is equidistributed in a suitable sense.

It remains an open question to prove more randomness properties, for
example, that the ElGamal map is pseudorandom.

1 Introduction

In the ElGamal signature scheme [5] with parameter n, we take an n-bit number
d and a cyclic group G = 〈g〉 of order d. In ElGamal’s original proposal, p is an
n-bit prime number, G = Z×p = {1, . . . , p − 1}, d = p − 1, and Zd = {1, . . . , d}
is the exponent group. More commonly, one takes Zd = {0, . . . , d − 1}, but
both are valid set of representatives. We let g be a generator of G, so that
G = {gb : b ∈ Zd}. The object of this paper is to investigate randomness
properties of the ElGamal map from G to G with x 7→ gx, where x ∈ Zd on the
right hand side. Since gx determines x uniquely, this is a permutation of G. If
we consider x ∈ Zd on the left hand side, it is the discrete exponentiation map
in base g.

A secret global key a ∈ Zd and session key k ∈ Z×d are chosen uniformly at
random, and their public versions A = ga and K = gk in G are published. The
signature of a message m ∈ Zd is (K, b) with b = k−1(m− aK) ∈ Zd.

The private key is easily broken if discrete logarithms in G can be calculated
efficiently; see Figure 1. For more details, see von zur Gathen [7], Sections 8.2
and 9.8.
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Figure 1: Public group and exponent group in ElGamal Signature scheme

The Decisional Diffie-Hellman (DDH) problem is to decide whether, given a
triple (x, y, z) ∈ G3, there exist a, b, c ∈ Zd so that x = ga, y = gb, and z = gab;
then (x, y, z) is a Diffie-Hellman triple.

If such triples are indistinguishable from uniformly random triples, for uni-
formly random a and b, then the ElGamal encryption scheme is indistinguish-
able by public key only attacks. The results of Canetti, Friedlander, Konyagin,
Larsen, Lieman, and Shparlinski [1], indicate that the most significant and least
significant bits of each element in DDH triples are indeed distributed uniformly.
Do pairs (x, gx), for uniformly random x, exhibit a similar behavior?

This paper first gives some experimental evidence in favor of this. We take
some small primes, just above 1000, and consider two parameters of permu-
tations: the number of cycles and the number of k-cycles for given k. Their
averages for random permutations are well-known, and we find that the average
values for the ElGamal function are reasonably close to those numbers. Sec-
ondly, we use the theory of Sidon sets to prove an equidistributional property
with appropriate parameters; see also Cobeli, Vâjâitu & Zaharescu [4] for a
different approach to show equidistribution.

Martins & Panario [11] study similar questions, but for general polynomials
that need not be permutations, and for different parameters. Konyagin, Luca,
Mans, Mathieson, Sha & Shparlinski [8] consider enumerative and algorithmic
questions about (non-)isomorphic functional graphs, and Mans, Sha, Shparlinski
& Sutantyo [10] provide statistics, conjectures, and results about cycle lengths
of quadratic polynomials over finite prime fields. Kurlberg, Luca & Shparlinski
[9] and Felix & Kurlberg [6] deal with fixed points of the map x 7→ xx modulo
primes.

2 Experiments in Fp
The pictorial representation in Figure 2 shows the cycle structure of the per-
mutation x 7→ gx in Fp with p = 1009 and g = 11, the smallest generator.
Each circle corresponds to a cycle, whose length is proportional to the circle’s
circumference. Next, Figure 3 shows together 12 permutations in Fp using the
12 smallest generators of Fp.

In the following subsections, we take the cycle structures for all φ(1008) =
288 generators of F1009, and then of all generators for the first fifty primes larger
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Figure 2: Representation of the cycles generated with g = 11 in F1009

than 1000. We calculate the averages for the number of cycles and the number
of k-cycles and compare them to the known values for random permutations.

Figure 3: Graphical presentation of permutations of gx in F1009
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2.1 Number of cycles in permutations

We study in detail the number of cycles in the permutations. The number of
permutations in Sn with c cycles equals the Stirling number s(n, c) of the first
kind, and thus is the coefficient of xc in the falling factorial xn = x · (x −
1) · · · (x − n + 1). Figure 4 shows the distribution of the number of cycles for
uniformly random permutations of n elements, that is, the fraction s(n, c)/n! (in
percent) for n = 1009 and 1 ≤ c ≤ 20, as a continuous line. In the same figure,
the experimental statistics for 288 permutations chosen uniformly at random
are presented as dots. This was done in order to calibrate our expectations.
Theory and experiments match quite well.

Figure 5 shows the same continuous line, but now the dots represent the
counts for the 288 generators of F1009. The result looks quite similar to Figure 4.
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Distribution of number of cycles (random)

Expected value for random permutations

Figure 4: Distribution in percent of number of cycles for 288 random permuta-
tions in S1009.

2.2 Number of k-cycles in permutations

Given a random permutation of elements, the number of cycles of length k is
on average 1/k [12]. In Figure 6, we give the average number of cycles of length
k for all 288 generators of the multiplicative group in dots. The experimental
results are reasonably close to the theoretical values.

For the specific case k = 1, the average number of fixed points in random
permutations is 1. The results in Figure 6 are very close, by a small error margin.
Therefore, to better illustrate this property, Figure 7 shows the average number
of fixed points for all generators in the multiplicative group for all prime numbers
from 2 to 2111. As expected, the average of fixed points is closely distributed
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Figure 5: Distribution of number of cycles in ElGamal functions on F1009
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Figure 6: Average number of k-cycles in in ElGamal functions on F1009

to the theoretical value. We also note that by increasing p, the average of fixed
points in the experiments gets closer to the expected theoretical value.

3 Sidon sets

A subset A of an abelian group G (written additively) is a Sidon set if for every
y ∈ G\{0} there exists at most one pair (a, b) ∈ A2 such that y = a−b. Clearly,
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Figure 7: Average number of fixed points for all generators of Fp with 2 ≤ p ≤
2111

for any set A there are exactly #A pairs (a, b) ∈ A2 for which 0 = a− b, where
#A is the cardinality of A.

Let p be a prime, g ∈ Z×p a generator of the multiplicative group Z×p , and
identify Zp−1 = {0, 1, . . . , p − 2} and Zp = {0, 1, . . . , p − 1}. We consider the
additive group G = Zp−1 × Zp (using the additive structure of both factors),
and the subset

S = {(gx, x) : x ∈ Zp−1}. (3.1)

Thus S is the graph of the discrete logarithm function modulo p, since S =
{(y, logg y) : y ∈ Zp \ {0}}, and, after swapping the coordinates, the graph of
the ElGamal function.

The following result is well known; see Cilleruelo [2], Example 2. We include
a proof for the sake of completeness.

Lemma 3.1. The set S in (3.1) is a Sidon set in Zp × Zp−1.

Proof. For some (u, v) 6= (0, 0) in Zp × Zp−1 and c1, c2 ∈ Zp−1, suppose that
(gc1 , c1)− (gc2 , c2) = (u, v). Then

c1 − c2 ≡ v mod p− 1,
gc1 − gc2 ≡ u mod p.

(3.2)

In particular v 6≡ 0 mod p− 1, since otherwise u ≡ gc1 − gc1 ≡ 0 mod p which
contradicts the assumption.

From the first equation in (3.2) we know that

gc1−v ≡ gc2 mod p,
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hence in the second equation we have

gc1
(
1− g−v

)
≡ u mod p.

Since (1− g−v) 6≡ 0 mod p by the above, we conclude that

gc1 ≡
(
1− g−v

)−1
u mod p,

and thus the pair (c1, c2) is uniquely determined by (u, v).

Lemma 3.2. Let ϕ be a nontrivial character of G = Zp × Zp−1 and S be the
set in (3.1). Then ∣∣∣∑

a∈S
ϕ(a)

∣∣∣ < (3(p− 1))1/2.

Proof. Any nontrivial character ϕ of G satisfies
∑

x∈G ϕ(x) = 0. Thus, for the
set S − S = {x ∈ G : x = a− b for some a, b ∈ S} we have∑

x∈S−S
ϕ(x) = −

∑
x/∈S−S

ϕ(x). (3.3)

Since |z| = (z · z)1/2 for a complex number z and ϕ(x) = ϕ(−x) for every
x ∈ G, where z denotes the complex conjugate of z, it follows that∣∣∣∑

a∈S
ϕ(a)

∣∣∣2 =
(∑

a∈S
ϕ(a)

)(∑
b∈S

ϕ(−b)
)

=
∑
a,b∈S

ϕ(a− b)

=
∑
y∈G

ϕ(y) ·#{(a, b) ∈ S2 : y = a− b}. (3.4)

Since S is a Sidon set by Lemma 3.1, we know that

#{(a, b) ∈ S2 : y = a− b} =

 #S if y = 0,
1 if y ∈ S − S \ {0},
0 otherwise.

Thus ∣∣∣∑
a∈S

ϕ(a)
∣∣∣2 = #S − 1 +

∑
y∈S−S

ϕ(y)

= #S − 1−
∑

y/∈S−S

ϕ(y)

≤ #S − 1 +
∣∣∣ ∑
y/∈S−S

ϕ(y)
∣∣∣. (3.5)

Luckily, we have a complete description of the set S−S, since every pair (a, b) ∈
S2 is uniquely determined by the difference a− b unless a− b = 0, for which we
have exactly #S = p− 1 options; hence

#(S − S) = (#S)2 −#S + 1 = (p− 1)2 − (p− 1) + 1 = #G− 2#S + 1 (3.6)
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since #G = p(p− 1). Clearly we have from (3.6) that∣∣∣ ∑
y/∈S−S

ϕ(y)
∣∣∣ ≤ #G−#(S − S) = 2#S − 1. (3.7)

Combining equations (3.4), (3.5) and (3.7) we have∣∣∣∑
a∈S

ϕ(a)
∣∣∣2 ≤ 3#S − 2,

which concludes the proof.

The following classical result is only included here for the sake of complete-
ness.

Lemma 3.3. Let n and N be positive integers with 1 ≤ N < n. Then, for any
integer h ∑

0≤a<n

∣∣∣ ∑
h≤x<N+h

exp(2πiax/n)
∣∣∣ < 5n log n.

Proof. Without loss of generality we will assume that h = 0, since

|
∑

h≤x<N+h

exp(2πiax/n)
∣∣∣ = |

∑
0≤x<N

exp(2πia(x+ h)/n)
∣∣∣

=
∣∣∣ exp(2πiah/n)

∑
0≤x<N

exp(2πiax/n)
∣∣∣

=
∣∣∣ ∑
0≤x<N

exp(2πiax/n)
∣∣∣.

The contribution of a = 0 to the sum is precisely N < n.
Observe that for a given 1 ≤ a ≤ n− 1 the sum∑

0≤x≤N

exp(2πiax/n) = 1 + exp(2πiax/n) + · · ·+ exp(2πiax/n)N−1

is in fact a geometric progression with ratio q = exp(2πia/n) 6= 1 thus

∑
0≤x≤N

exp(2πiax/n) =

∣∣∣∣qN − 1

q − 1

∣∣∣∣ ≤ 2

|q − 1|
.

We have

|q − 1| = | exp(2πia/n)− 1| = | exp(πia/n)− exp(−πia/n)| = 2| sin(πa/n)|.

Then

| sin(πa/n)| = | sin(π(a− n)/n)| ≥ 2 min{a, n− a}
n
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because sin(α) ≥ 2α/π for 0 ≤ α ≤ π/2. Therefore∑
0≤a<n

∣∣∣ ∑
0≤x<N

exp(2πiax/n)
∣∣∣ ≤ N +

∑
0<a<n

n

min{a, n− a}

≤ N + 2n
∑

1≤a≤n/2

1

a
. (3.8)

The proof follows from (3.8) and the inequality∑
1≤a≤n/2

1

a
< 1 + log(n),

which holds for any integer n ≥ 2.

Theorem 3.1. Let S = {(gx, x) : x ∈ Zp−1}. For any box B = [h + 1 .. h +
N ]× [k + 1 .. k +M ] ⊆ Zp × Zp−1 we have∣∣∣∣#(S ∩B)− #B

p

∣∣∣∣ ≤ 50p1/2 log2 p.

Furthermore, if #B ∈ ω(p3/2 log2 p), then #(S ∩B) ∼ #B/p.

Here,
ω(f) = {g : R→ R+ : g(x)/|f(x)| → 0 if x→∞}

for some f : R→ R+.

Proof. By the orthogonality of characters and separating the contribution of the
trivial character ϕ0 = 1, we have

#(S ∩B) =
1

p(p− 1)

∑
ϕ

∑
a∈S

∑
b∈B

ϕ(a− b)

=
#B

p
+

1

p(p− 1)

∑
ϕ6=ϕ0

∑
a∈S

∑
b∈B

ϕ(a− b).

Thus∣∣∣#(S ∩B)− #B

p

∣∣∣ =
1

p(p− 1)

∣∣∣ ∑
ϕ6=ϕ0

∑
a∈S

∑
b∈B

ϕ(a− b)
∣∣∣

≤ 1

p(p− 1)

∑
ϕ6=ϕ0

∣∣∣∑
a∈S

ϕ(a)
∣∣∣∣∣∣∑

b∈B

ϕ(b)
∣∣∣

≤ 1

p(p− 1)

(
max
ϕ6=ϕ0

∣∣∣∑
a∈S

ϕ(a)
∣∣∣) ∑

ϕ6=ϕ0

∣∣∣∑
b∈B

ϕ(b)
∣∣∣. (3.9)

The characters of G act as follows:

ϕ((x, y)) = exp
(
2πi
(
sx
p + ty

p−1
))
, for some (s, t) ∈ G.
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Hence we have∑
ϕ 6=ϕ0

∣∣∣∑
b∈B

ϕ(b)
∣∣∣ ≤( ∑

0≤s<p

|
∑

h<x≤h+N

exp(2πisx/p)|
)

×
( ∑
0≤t<p−1

|
∑

k<y≤k+M

exp(2πity/(p− 1))|
)
,

which implies, by Lemma 3.3, that∑
ϕ6=ϕ0

∣∣∣∑
b∈B

ϕ(b)
∣∣∣ < 25p(p− 1) log2 p. (3.10)

By Lemma 3.2,

max
ϕ 6=ϕ0

∣∣∣∑
a∈S

ϕ(a)
∣∣∣ <√3(p− 1),

which combined with (3.10) in (3.9) concludes the proof.

One can show, with a bit more of work, see Cilleruelo & Zumalacárregui [3],
that in fact ∣∣∣∣#(S ∩B)− #B

p

∣∣∣∣ ∈ O(p1/2 log2
+(|B|p−3/2)

)
,

which extends slightly the asymptotic range for #B, where our “big-Oh” nota-
tion, for a real function f : R→ R+, O(f) denotes the following set of functions:

O(f) = {g : R→ R| ∃ C > 0 with |g(x)| ≤ Cf(x) for sufficiently large x} ,

and log+(x) = max{ln(x), 1} for x ∈ R+. The implied asymptotics are for
growing p. In fact, in [3] this result was obtained for a much larger family of
dense Sidon sets.

Igor Shparlinski has pointed out to us that one can obtain similar asymptotic
results with the exponential sum machinery. However, that method is unlikely
to yield explicit estimates, without “O”-term.

4 Conclusion

We have shown, both experimentally and theoretically, some randomness prop-
erties of the ElGamal function over Zp for a prime p. Many questions along
these lines remain open:

• stronger results, perhaps even pseudorandomness,

• other groups for G, for example, elliptic curves,

• similar questions about the Schnorr function, where G is a “small” sub-
group of a “large” group Zp.
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