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Abstract

Necessary physical contact between an operator and a force feedback haptic device creates a

coupled system consisting of human and machine. This contact, combined with the natural human

tendency to increase arm stiffness to attempt to stabilize its motion, can reduce the stability of the

system. This paper proposes a method to increase stability on demand while maintaining speed

and performance. Operator arm stiffness is not directly measurable, so controllers cannot typically

account for this issue. The causes of arm end-point stiffness are examined as related to system

stability, and a method for estimating changes in arm stiffness based on arm muscle activity was

designed to provide a robotic controller with additional information about the operator. This was

accomplished using EMGs to measure muscle activities and estimating the level of arm stiffness,

which was used to adjust the dynamic characteristics of an impedance controller. To support this

design, the correlation between EMGs and arm stiffness was validated experimentally. Further

experiments characterized the effects of the designed system on operator performance. This showed

increased stability and faster, more accurate movements using the compensating system. Such a

system could be used in many applications, including force assisting devices in industrial facilities.
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1 Introduction

Industrial settings are increasingly utilizing robotics and automation to streamline difficult jobs. How-

ever, some situations make the use of automated robots difficult due to the high cost of automation in a

flexible manufacturing environment. Vehicle assembly lines are one example of this situation, where the

placement of a vehicle component, such as a door, must be done within tolerances, but the location of

the vehicle itself may vary since it may be carried on a moving line. In this case, it is still more efficient

to have a human accomplish the task. However, components such as a car door can be heavier than a

worker can lift. For this reason, force assistive devices can be useful in aiding the completion of this and

other similar tasks. While teleoperated systems could also be used, a remote operator and added system

components, including sensing, increase cost and complexity, and result in slower task completion in a

production environment. Therefore, a system that the operator could directly interact with is preferred.

Haptic controllers are a popular method because operators find touch to be a very intuitive way for

controlling a robotic device. However, requiring physical contact between the operator and the robot

introduces force feedback and creates a coupled operator-robot system. Various studies have shown that

the natural response of a human operator under this coupling results in reduced stability if not properly

controlled. This instability can increase task completion time and decrease performance, making the job

of the robot operator more difficult. To avoid such situations, human operators will commonly stiffen

their arm to try to control any oscillation of the device. This creates a stiffer coupled system, which leads

to more instability. Since generic robot controllers can’t directly measure the level of operator stiffness,

most cannot adjust to such changes. A system that could access information about the operator and

their method for interacting with the robot could adjust accordingly, and thereby increase stability,

bolster operator and load safety, and make the task of the operator easier.

As a proposed solution, this research aims to develop a method that will allow a haptic robot

controller to adjust to changes in the manner in which the operator is interacting with the robot by

expanding the information available about the operator to the controller. Figure 1 shows a conceptual

illustration of how the system should operate. The designed system will measure a variety of metrics that

have been shown to be indicative of how the operator is intending to move the device, and incorporate

them into a model of the operator. This model will then estimate the operator’s current motion, which

can be used to adjust the gains of the robot’s controller to assist the operator. Modeling the operator

in this way allows the robot to actively adjust to changes in the way the operator moves, ensuring

stability and ease of use. The results of this research could be used in the design and control of various

human-machine interfaces with applications to many areas of robotics, such as industrial assembly lines

robots or space robots.
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Figure 1: Conceptual drawing of a haptically controlled robotic device with a controller that adjusts

based on estimated operator intention

2 Background

2.1 Haptic Stability

Haptic systems, which require physical human robot interaction, create a coupled and bilateral system

in which the device responds to the force applied by the operator and the operator adjust the applied

force based on the device’s motion. Some haptic systems attempt to resist the motion of the operator

so as to provide a virtual environment for them to feel [1, 2, 3, 4], while many attempt to amplify the

motion of the operator so as to enable increased capabilities [5, 6, 7, 8]. Force assisting devices are the

primary concern for this research, but some studies relative to other types of haptic devices may also be

applicable. In all cases, the device is controlled based on the measured force applied by the operator.

Devices using force control have been shown to become unstable under contact with stiff environments

or the presence of a time delay, both of which are often present under contact with a human operator

[9, 10, 11]. Human reaction times can be orders of magnitude larger than the typical period of a single

control loop, and the demonstrated human reaction under instability is to increase contact stiffness.

In addition, sensor time delays introduce further sources of instability into the system. Introducing

compliance into the robotic system can mitigate this issue, but this inherently decreases performance of

the system, a trade off which has been well documented [12, 9, 10, 11]. Since the goal of the designed

system is to increase performance, introducing a measure of compliance to the robot system would not

be beneficial.

Stability of human-robot interaction using haptic systems has been analyzed using both root-locus

methods [11] and Lyapunov theory [10]. These studies provided useful stability bounds, which were

highly dependent on the stiffness of the human operator. However, these studies do not account for

deliberate stiffening of the human operator’s arm, and therefore are not sufficient for this design, which

requires further stability analysis. The stability of teleoperation systems is often viewed from the

perspective of passivity, and this has been extended to haptic devices as well [9, 1, 13, 14, 15, 16]. While

this could provide a useful condition for the stability of a system, force assisting devices are by nature

not strictly passive [8]. Several more recent studies have combined these two methods in a way that

could be applicable to analyzing haptic force assistive systems [2, 3]. Studies have explored the design

of robust controllers for interacting systems and teleoperation [17, 18, 12, 19, 16], but require a priori
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knowledge of the range of the system parameters.

2.2 Operator Arm Stiffness

Under typical control situations, an operator’s arm stiffness is not directly measurable. Stiffness is

defined as the change in force over a change in distance from a given neutral point, and while the

applied force is readily measurable with sensors, the change in distance is not. This is because as the

operator moves, the neutral point moves as well. In addition, there are several different stiffnesses related

to the motion of the human arm: a) muscle stiffness - the resistance of a single muscle to changes in

length; b) joint stiffness - the resistance of a joint to changes in joint angle; and c) end-point stiffness -

the resistance of the entire arm to changes in end-point location. End-point stiffness is of most interest

for the design of the robotic controller, but it is affected by both individual muscle stiffnesses and joint

stiffnesses.

The basis of much of our understanding of human muscles comes from Hill’s work, which models mus-

cles primarily as springs with a force generation component, as well as Bernstein’s discussion of human

motor control [20]. Muscles accomplish a variety of functions, acting as force generators and brakes to

allow human locomotion [21], but their spring properties are of particular interest in understanding arm

stiffness. It has been well established that muscles resist a change in length when contracting [22, 23].

Studies on their elastic properties have found that the spring constant of muscles is a nonlinear function

of both generated force and length [24]. In addition, muscle stiffness can be separated into an intrinsic

static component and a reflex-based component [25, 26, 27, 28]. The static component acts much like

a traditional spring under a displacement, instantly supplying a force tending towards returning to the

pre-displacement length. The reflex component of stiffness comes from the nervous system’s reaction

to an unintended change in muscle length, causing the muscle to generate more force to return to the

pre-displacement length. This component is not instantaneous, but takes a small amount of time to

respond. Under dynamic situations, large velocities can further change the intrinsic stiffness of the

muscle [29]. In general, however, a muscle generating a larger force will exhibit a higher stiffness.

Since muscles can only provide contractive force, joints in the body normally have two or more

opposing antagonistic muscles. Increases in joint stiffness have been linked to simultaneous activation

of these muscles, or cocontraction [30, 31]. This leads to an increase in both force and stiffness of each

muscle without a net change in torque on the joint. Since a change in joint angle would lead to a

change in the length of both muscles, this thereby increases the stiffness of the joint. This has been

experimentally verified on many joints, including, the ankle, wrist, the trunk [32, 33, 34, 35, 36, 37, 38].

From a mechanical point of view, arm end-point stiffness is simply the result of several springs in

series, since the stiffness of each joint affects the overall stiffness of the end-point [39]. Therefore, any

increase in joint stiffness will cause an increase in end-point stiffness. For this reason, cocontraction

of antagonistic muscles in the arm will lead to higher end-point stiffness. An important consideration,

however, is that the moment arm of a particular muscle on a given joint changes as the arm posture
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changes, so the stiffness of a joint will vary based on posture [40], affecting the end-point stiffness of

the entire arm [41]. Several studies have shown that people generally can not control end-point stiffness

independently of force and position [39, 42, 43], which implies that an estimate of end-point stiffness is

indicative of either involuntary reactions to the environment or an intended voluntary applied force and

motion. In general, these studies found a roughly linear increase in end-point stiffness with voluntary

force.

The nonlinear effects of muscle activity on the motion and stiffness of a muscle are demonstrated in

Hatze’s thorough model of muscular motion [44, 45]. In his work, a complete force model of a muscle

is developed as a function of muscle activity and activation rate, in which the the length and force

of a muscle vary in a complex nonlinear fashion based on these two parameters. Similarly, the model

presented by Zajac illustrates this nonlinearity [46]. Both authors show how the elastic properties of

a muscle are influenced by the dynamic motion of the muscle. Since force and length vary based on

muscle activity, and stiffness has beens shown to be a nonlinear function of these two [24], it might

be questioned how a linear approximation of muscle stiffness could be useful. However, both Hatze

and Zajac go on to discuss a simplified model which can linearly approximate a muscle’s motion for a

specific region away from the extremes of length and force, which corresponds to muscle activations of

up to approximately one third of the maximum activation. In this region, therefore, it is reasonable to

approximate a muscle with a linear spring.

Numerous studies have evaluated the response of humans to unexpected perturbations or instability

when trying to control an object. It has been demonstrated that the brain attempts to correct for

an inability to maintain a desired target by increasing arm stiffness, which is a result of increased

cocontraction [47, 48, 32, 49, 50, 51, 36], and has a similar response when trying to resist movement

[52, 53]. Also, the reverse has been demonstrated during smooth movements or when not trying to resist

motion, which result in lower stiffness with less cocontraction [47, 32]. Therefore, for the purpose of

designing a system to detect the body’s reaction to unstable situations, it should be possible to measure

the level of cocontraction in the operator’s arm and use it as an indication of stiffness level.

Other studies have endeavored to measure the dynamic characteristics of human joints [54], and

often the human arm can be modeled as a mass-spring-damper system for the purposes of haptic

control interfaces and human robot interaction [10, 55, 11]. Estimating stiffness requires a measure of

muscle activity, so that cocontraction levels can be calculated [56, 57, 53]. Electromyogram (EMG)

measurements have frequently been used to record muscle activity, and have been used for stiffness

estimates [58, 59]. Alternatives have been proposed, such as introducing small vibrations into the

motion of the device to obtain an indirect measure of arm stiffness [60]. This technique shows promise,

but has some drawbacks for the types of systems this research is looking to control. Most importantly,

introducing additional vibrations into a force amplifying system is undesirable. As the focus of this

research is on the control techniques of using the estimated stiffness, the actual method by which stiffness

is measured is flexible. Therefore, future work may be able to take advantage of such alternative sensing

techniques to further simplify the design.
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Figure 2: The 51 arm muscles included in the

musculoskeletal model [65]

Figure 3: The 9 arm joints included in the mus-

culoskeletal model with important muscles [65]

3 Method

3.1 Muscle Activity

Prior work by Ueda and Ding [61, 62, 63, 64, 65, 66, 67] involved developing a computer model of the

human musculoskeletal system in the upper body and arms. Figure 2 and Figure 3 show the complete

model of the arm. Several candidate muscle groups that could provide the necessary cocontraction

information were identified using this model by comparing the effect of various muscles on the wrist and

elbow joints to determine the best antagonistic pairs to use. Each muscle’s contribution to the torque

on the arm joints can be represented using the moment arm matrix, A, such that the joint torques,

τ , may be calculated if the muscle forces, f , are known. Equation (1) gives this relationship, where

A is M × N , τ is of length M , and f is of length N for a human musculoskeletal model that has M

joints and N muscles. For this model, M = 9 and N = 51. The contribution of a single muscle is

given by its moment arm vector, aj , which is the corresponding column of A. The angle between two

muscles’ moment arm vectors can be found by taking the inner product as shown in Equation (2). Two

completely antagonistic muscles would directly oppose one another, resulting in an angle of 180◦.

τ = Af (1)

α = cos−1
〈aj1 ,aj2〉
||aj1 || ||aj2 ||

= cos−1
aT
j1
aj2

||aj1 || ||aj2 ||
(2)

In reality, each muscle contributes to the torque on multiple joints, so very few muscle pairs yield such

direct antagonism. However, several good candidate pairs emerge from the primary muscles of the wrist

and elbow. Ultimately, one pair from each was chosen, with the first being the biceps brachii (BB) and

triceps brachii (TB) in the upper arm and the second being the flexor carpi ulnaris (FCU) and extensor

carpi ulnaris (ECU) in the lower arm. Each of these is shown in Figure 3 The moment arms of the

BB/TB pair are compared visually in Figure 4(a) and yield an angle of 163◦. It can be seen that these

two muscles primarily affects joint 6, while also significantly affecting joint 3. In both cases, the effect
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(a) Upper arm (b) Lower arm

Figure 4: Comparison of the moment arms for each antagonistic pair (See Figure 3 for joint numbers)

of TB is opposite and nearly equal to that of BB. BB also has some effects on joints 4, 5, and 7, which

explains why the angle is not a perfect 180◦. Conveniently, both BB and TB are close to the skin and

easily measured using surface electrodes. Similarly, the FCU/ECU pair are compared in Figure 4(b)

and yield and angle of 100◦. This pair does not exhibit the same level of perfect antagonism as TB and

BB, but it is still clear that they act in opposite direction from each other. Both muscles have the same

not insignificant effect on joint 9, which leads to an angle that is farther from 180◦ than the previous

pair. However, neglecting this joint and considering only the first 8, an assumption that will be justified

by the design of the hardware, the muscles give an angle of 127◦, which is a significant improvement. An

alternative antagonistic pair in the wrist, the Flexor Carpi Radialis (FCR) and Extensor Carpi Radialis

(ECR) provides an angle of only 96◦, which improves to only 114◦ when neglecting joint 9, and any

other candidate muscles are not close enough to the skin to obtain accurate EMG readings with surface

electrodes [68, 69].

3.2 Stiffness Compensation

To measure the level of cocontraction, one pair of electrodes was placed on each of four muscles chosen

(TB, BB, FCU , ECU), and an additional ground electrode was placed on the elbow. The EMG

signals were used to calculate a measure of cocontraction for each antagonistic pair (Elbow, E; Wrist,

W ). The raw EMG signal for a given muscle, Ej(t), j = TB,BB,FCU,ECU , was filtered and rectified,

resulting in the processed signal E∗j (t). To calibrate this, the maximum voluntary force (MVF) of each

muscle, EMV F
j (t), was measured by having the user generate the maximum force in their arm through

an isometric contraction, and then was processed in the same manner. The processed signal was then

normalized by its MVF as given by (3) to give the percent effort of a muscle, E%
j (t). Finally, the

cocontraction of each muscle pair, Ck(t), k = E,W , was found by taking the minimum level that both

muscles of the pair were contracted to, as shown by (4).
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Figure 5: Average of classified stiffness levels for experimental data, error bars show standard deviation

of classified points.

E%
j (t) =

E∗j (t)

EMV F
j

(3)

CW (t) = minE%
FCU (t), E%

ECU (t)

CE(t) = minE%
BB(t), E%

TB(t)
(4)

Using the cocontraction level calculated, the stiffness, S, of the operator’s arm was classified into

discrete levels. This method was chosen because the noise in the EMG readings made a continuous

stiffness scale difficult to implement. Testing indicated that a simple classification of the stiffness as

high or low gave the best results for the initial design. This was done using a simple adjustable threshold,

tk, for each pair of muscles based on (5), allowing the system to be tuned to the differences in each user.

This evaluations was completed by calculating the stiffness of subjects using the device while force and

position were controlled, with a mean value of ko = 2.8 kN/rad and the range 0.4 kN/rad ≤ s ≤ 8.4 kN/rad

encompassing 95% of the data (It was not characterized by a normal distribution). Figure 5 shows the

distribution of stiffness points as classified based on the measured cocontraction. Classifying with more

than two levels using evenly distributed thresholds gave little significant difference between the higher

levels, and the best performance was obtained with only two levels.

S =

high if CW (t) ≤ tW and CE (t) ≤ tE

low if CW (t) > tW or CE (t) > tE

(5)

To avoid excessive oscillation between states, the state only changed when the cocontraction level

crossed the threshold for some finite amount of time. EMG measurements are highly amplified because

of the very small voltages that are measured in human muscles, which causes a high level of noise. The

signals were therefore filtered as described above, adding to the time that the signal must exceed the

threshold to be registered and helping reduce chatter.
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Figure 6: s domain block diagram of impedance controller and operator system

3.3 Haptic Device

Many haptic systems use impedance control, which generates an assistive force so as to mask the actual

system dynamics and allow the operator to feel a desired system with an arbitrary set of dynamic

characteristics [70]. Modeling the operator as a system with mass, mo, damping, bo, and stiffness, ko,

applying a force, fo, and the haptic device as having mass, mh, damping, bh, and stiffness, kh, and

capable of measuring the applied force, fm, then (6) is the equation of motion of the contact point of

the operator with the device and (7) is the equation of motion of the device itself. The control force,

fh, is determined based on the desired mass, md, damping, bd, and stiffness, kd, as given by (8). From

these follows the derivation of the equation of motion in (9), which demonstrates how the controller

can mask the device’s dynamics. This makes the load on the user lighter and allows easier operation,

which, when combined with haptic feedback, can give a very natural feeling to operating the robot. An

impedance controller incorporates an outer force controller that finds the change in position, xd, that

the desired system would exhibit under the applied loading, with an inner position controller loop that

attempts to drive the error, e, between this and the device position, x, to zero. Often, the stiffness of

the desired system is set to zero, which would result in the transfer function for the outer block as given

by (10). The inner block can be any position controller, such as a PD controller with proportional gain

Kp and derivative gain Kd.

fo − fm = moẍ+ boẋ+ kox (6)

fh + fm = mhẍ+ bhẋ+ khx (7)

fh = (md −mh) ẍ+ (bd − bh) ẋ+ (kd − kh)x (8)

fo = (mo +md) ẍ+ (bo + bd) ẋ+ (ko + kd)x (9)

Xd(s)

Fm(s)
=

1

mds2 + bds
(10)

Figure 6 shows the complete system, including controller, device, and operator characteristics. To

account for the fact that the measured force may not exactly equal the actual force applied to the

handle, a feed forward element is included to transmit the applied force to the device. The impedance

controller takes the measured force to calculate the desired motion, xd, which is passed to the position

controller. The motion of the device and operator are coupled, and the operator dynamics close the

force loop, creating additional feedback.
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Figure 7: One degree of freedom haptic feedback device

Table 1: Controller Parameters

Kp 2500 Nm/rad Kd 200 Nms/rad

bdh 1 Ns/m mdh 1×10−4 kg

bdl 1×10−8 Ns/m mdl 4×10−5 kg

A simple one-degree-of-freedom haptic paddle [71, 72, 73, 74, 75, 76] was produced for the purpose

of implementation and testing, shown in Figure 7. This design was chosen for versatility and low cost,

and was scaled up for increased force capability. A cable drive system ensured compliance to the forces

applied by the a human operator while also amplifying the force produced to the motor. The device

generates up to 100 N of force with a frequency response of up to 10 Hz.

Two sets of impedance characteristics were experimentally determined based on the desired motion

of an industrial force assisting robot for each stiffness case, shown in Table 1. Low arm stiffness should

allow quick and easy motion with little resistance, so the mass and damping were set to be small.

High stiffness should give less oscillation and allow more precise motion by the operator, so damping

and mass were higher. The gains of the PD position controller did not change based on the stiffness

classification. Based on the classifier output, either the high or low characteristics, bdh and mdh or bdl

and mdl respectively, were chosen for the impedance controller’s desired characteristics, bd and md, as

given in (11). The whole system is shown in the block diagram in Figure 8. The position of the device is

controlled solely by the force applied to the device as with a standard impedance controller. However,

additional data in the form of the arm stiffness is used to adjust the way in which the controller performs.

EMG data does not directly affect the output of the device, as that would cause a bilateral interaction,

with a change in force of the device affecting the muscle activity that is used to calculate that force.

 bd
md

 =


[
bdl mdl

]>
if S = low[

bdh mdh

]>
if S = high

(11)
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Figure 8: Block diagram of the complete control system

4 Evaluation

4.1 Stability analysis

Based on Figure 6, the characteristic equation of the system can be derived. Due to the nature of the

contribution of the operator stiffness, ko, it cannot be isolated to be the loop gain of a unity-feedback

system. Therefore, the analysis is based on the closed-loop poles and zeros of the system, with ko varied

to determine its effect on stability. The characteristic equation given by (12) - (16) gives Figure 9, which

shows theses poles and zeros using both the low and high stiffness case parameters with zero operator

stiffness. The trajectories indicate the movement of the poles as stiffness increases. When the operator

stiffness is zero, all poles and zeros lie in the left half plane. As stiffness increases, the two real poles lying

close to zero move leftward towards the zeros lying on the real axis. However, the two complex poles

move into the right half plane and approach infinity, demonstrating the destabilizing effect of increased

operator arm stiffness. Increasing the damping characteristic of the impedance controller, bd, as was

done for the high stiffness case, moves the complex poles to the left, while increasing the mass, md, slows

the rate at which they move, keeping the system stable for higher stiffness values. The square in Figure

9 show this for a fixed ko = 4.0 kN/rad, which based on the data collected, is a typical value for high

stiffness. In addition, force sensor data must be filtered, introducing a delay into the controller when

converting to a discrete time system for implementation, adding an additional destabilizing influence.

X(s)

Fo(s)
=

A(s)

B(s)C(s) + koD(s)
(12)

A(s) = mds
2 + (bd +Kd) s+Kp (13)

B(s) = mds
2 + bds (14)

C(s) = mhs
2 + (bh +Kd) s+Kp (15)

D(s) = 2mds
2 + (2bd +Kd) s+Kp (16)

Using the haptic device it was possible to reproduce the conditions under which the system grew

unstable as operator arm stiffness increased. Figure 10 plots the magnitude of device oscillation while

the operator attempts to hold the device steady. The time delay for the force feedback and the stiffness

of the operator’s arm were independently varied to characterize the stability of the device. As either
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Figure 9: Zeros and closed-loop poles: All in left

half for zero stiffness; Increased stiffness moves

complex poles into right half (trajectories); In-

creased damping moves poles left (squares, poles

for fixed ko = 4.0 kN/rad)

Figure 10: Larger oscillations (higher RMS error)

as time delay and stiffness increase (red - large

oscillations, blue - no oscillation)

variable increased, the magnitude of the uncontrollable oscillation grew, as indicated by the red bars

near the back of the plot. With no time delay and minimal stiffness, the device was much more stable,

as indicated by the dark blue bars near the origin. This shows that the increased stiffness and time

delay combine to prevent the system from remaining stable. Future work will incorporate the time delay

concerns into the analytical model of the system to characterize its contribution to instability further.

This simple pole-zero analysis, using the operator stiffness as the variable gain, demonstrates the

contact instability in such devices, which is corroborated by experimental results. Passivity based

analyses could provide sufficient criteria for stability, but tend to be very conservative, whereas the

traditional pole-zero method is not. It is possible for a system to fail to meet passivity criteria and

still remain stable. In addition, since force assistive devices are not strictly passive, such an analysis

may break down for situations with contact induced instabilies that are not well modeled, as has been

demonstrated by Li in his work with passivity and force assisting devices [15, 8]. Therefore, satisfying

these conservative criteria or implementing a robust controller would result in a compromise in the

desired performance of the system.

4.2 EMG Validation

The use of EMG signals was experimentally validated to ensure this methodology, which is simplified

from what previous studies have done, is justified. The stiffness, kθ, can be calculated from (17) if

the base of a spring was fixed and the position, xe and applied force, fe, of the end were known. By

controlling these values, only the EMG signal must be measured. The assumption of linearity can be

maintained for consistent posture and low velocity [40, 41]. This procedure was developed based on that

used by several other studies [56, 57, 58, 59, 53, 42, 43, 39, 77].

fe = kθxe (17)
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Participants held the device handle while position and force were controlled independently. Stiffness,

the desired independent variable, was directly calculated by recording their difference from the control

inputs and modeled as an intermediate variable, while th EMG signal for each muscle was recorded. It

was expected that the EMG signals and stiffness would covary throughout the experiment. To verify

this exhaustively, several stiffness values were tested. Therefore, the force was varied at twenty levels

evenly spaced from 5 N to 100 N, and the handle position at three levels of −20◦, 0◦, and 20◦.

Since stiffness was the main value of interest, the individual combinations of force and position were

not expected to influence the results significantly. However, the human arm is not necessarily a linear

system, and it is possible that human muscles could exhibit other unexpected tendencies. The most

exhaustive design that fully crossed the levels of force and position was used, leading to sixty cases.

Each person’s size and strength varied, introducing extraneous variables that complicated comparisons

between individuals. For this reason, each experiment participant was asked to perform multiple trials

of the experiment, covering all of the sixty cases. It was expected that each participant’s results would

follow the same general trend.

Participants held device as shown in Figure 11. They were asked to hold the device stationary in

the given position, then it applied a force against them. This required them to stiffen their arm to

continue to hold the device in place, as recorded by the EMG sensors. Learning effects associated with

the task were expected to be insignificant due to its simple nature. The data was analyzed to look for

correlations between stiffness and EMG signal. This experiment was performed following an approved

Institutional Review Board (IRB) protocol.

A multiple regression/correlation (MRC) technique was used as in Cohen [78] to look for a relation-

ship between cocontraction and arm stiffness. Another MRC was calculated using all four EMG signals

as predictors instead of the two cocontractions for completeness. For both, the nominal values of device

position and generated force were included to measure their influence on the relationship. To avoid

measuring voluntary forces applied by the participant, only the first 200-300 ms of each trial was used

for the analysis. The values of the multiple correlation coefficient, R2, (indicating the quality of the fit)

and the zero-order correlation coefficients for each predictor, r2i ’s, (indicating predictor i’s influence on

the predicted variable’s variance) were found. The results were expected to indicate a statistically sig-

nificant relationship between cocontraction and stiffness and comparable results between EMG signals

and stiffness, with no significant contribution to the variance of stiffness from position or force. The

Figure 11: A participant performing the experiment
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Table 2: Variance for Cocontraction

Variable r2i

Cocontraction (E) 11.7%

Cocontraction (W) 11.1%

Nominal Angle 0.2%

Nominal Force 28.7%

Table 3: Variance for EMG

Variable r2i

EMG (BB) 11.6%

EMG (TB) 16.0%

EMG (ECU) 8.0%

EMG (FCU) 12.9%

Nominal Angle 0.2%

Nominal Force 28.7%

data from all participants was anonymized and processed using MATLAB, while SPSS and G*Power

3.1 [79] were used for statistical analysis.

The number of participants was chosen based on the desired power, 1−β, of the resulting statistical

analysis, which indicates the chance of statistical errors, β. Often chosen as 1 − β = 0.95, leaving

a 5% chance of errors, a value was chosen for this experiment due to the very large amount of data

collected (well in excess of 200 points). Trial data was filtered down to 10 points, which reduced noise

without masking the main effects in the signal, giving 600 data points per subject. 1 − β = 0.9999

required approximately 1,500 data points, resulting in a 1 in approximately 10,000 chance of error and

requiring at least three participants. A total of four subjects participated, giving roughly 2,000 points.

All participants were male ranging in age from 20 to 26. Due force sensor limits, trials with very high

forces were not accurately read, reducing the number of usable data points to approximately 1,200,

giving 1− β = 0.9976 and a required critical F = 4.69 for statistical significance of the regression.

The MRC method resulted in a cocontraction/stiffness relationship utilizing a logarithmic transfor-

mation that achieved R2 = 0.338. Table 2 lists the variance of the stiffness partitioned amongst the

predictor variables, indicating the degree to which each predictor contributed to a change in stiffness.

The regression resulted in F = 75.8. The EMG/stiffness relationship with a similar transformation

resulted in R2 = 0.377 and F = 59.8, and the corresponding partitioning of the variance of the stiffness

is shown in Table 3. Both regressions were statistically significant. Initial results not utilizing a logarith-

mic transformation provided a poorer fit, and since the fundamental form of the relationship between

muscle activity and arm stiffness was unknown, data transformations such exponential and logarithmic

were tested, with logarithmic providing the best fit.

The results indicated a statistically significant relationship exists that allows the use of measured

EMG signals as a predictor of the operator’s arm stiffness. The fit using the cocontraction provided a

slightly poorer fit than the raw EMG data, indicating that further analysis should be done about how to

characterize cocontraction from muscle activity. The starting position of the device accounted for only

0.2% of the variance, as expected. However, the nominal force of each trial had a much larger effect on

the regression than anticipated.
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(a) Movement between two

targets

(b) Contact with rigid surface

Figure 12: Comparison of response without compensation, top, and with compensation, bottom (high-

light indicates high stiffness)

4.3 System Validation

In Figure 12(a) and Figure 12(b), the top graph shows the motion of the device using a standard

impedance controller, and the bottom graph shows the same motion with the new system, with the

yellow highlight indicating the system has detected higher operator arm stiffness and is compensating

for it. First, the haptic device was moved back and forth between two target positions. The graph

showing the compensating controller illustrates the increased stability and smoother motion without

sacrificing the ability to move the handle rapidly over long distances, whereas without compensation,

stopping at the target and reversing directions smoothly was more difficult. Next, the device was held

against a rigid surface. Without compensation, the device oscillates rapidly under the stiff conditions.

However, with the compensation, the device can be easily held against the rigid surface. The root mean

square error (RMSE) of the distance from the surface for went from 2.22×10−2 rad to 9.90×10−3 rad

with the compensation, a decrease of 60%.

Evaluation of the compensating controller required testing the effects on both stability in a stiff

situation and operator performance in a typical usage scenario.

Haptic devices are difficult to hold against a rigid surface due to the reaction force of contact between

the two. When an operator attempts to do so, the device repeatedly bounces off the surface and becomes

unstable. It was expected that the operator would stiffen their arm to hold the device against the surface,

so the damping coefficient would increase when the compensation was on, stabilizing the system when

needed. Participants were asked to hold the device against a fixed rigid surface with and without the

compensating controller, and the device position was recorded over time. To measure the stability of
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Figure 13: Mean and variance of RMSE data for

compensation on and off: Participants showed a

significant decrease with compensation on

Figure 14: Compensation on RMSE as fraction

of compensation off shows decrease for all partic-

ipants

the system, the root-mean-square error (RMSE) of the distance to the surface was calculated for each

attempt, which was expected to be minimal for a goal of maintaining contact with the surface. Each

participant was oriented with the EMG measurement system and haptic device, and then had the EMG

measurement system connected. After using the device for a short time to minimize learning effects,

participants were asked to place the handle of the device against a rigid surface and hold it in contact for

five seconds. This was repeated several times with the compensation both on and off. The results were

analyzed by the ANOVA method to find statistically significant differences between controller states.

The number of participants was chosen based on the desired power, 1−β, of the resulting statistical

analysis, which indicates the chance of statistical errors, β, with a typical target power 1 − β = 0.95.

This required a minimum of 16 participants to obtain statistically significant results. The experiment

included 20 participants, with 12 males and 8 females ranging from age 19 to 37, resulting in 1−β = 0.965

and a required critical F = 1.29 for statistical significance. This was performed followed an approved

IRB protocol.

As demonstrated by Figure 13, participants were able to reduce the average RMSE with the com-

pensation on. The ANOVA analysis resulted in F = 55.72 and p ≤ 0.05, demonstrating statistical

significance.

To mimic a real-world usage scenario involving large force assisting devices, participants were asked

to accomplish a pick-and-place task by using the haptic device to control a simulated lifting arm. The

operator pressed a button to lower the arm and pick up an object, then move the arm to a target and

put the object down. Figure 15 shows the simulation. The task was performed for both controller

states, and the distance of the object’s initial location to the target was varied. To assess performance,

the speed and accuracy of the operator’s object placement were measured. It was expected that this

experiment would show an improvement in both with the compensation on. Participants were given the

goal of picking up the object and placing it as close to the center of the target as possible. After being

given free time to use the device, the participant performed the task several times with the controller

both on and off. The data was processed similarly to the first task and an ANOVA analysis was again
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(a) Simulation parts

(b) Pick (c) Move (d) Place

Figure 15: The simulated lifting device, shown in each phase of the task

used.

Due to the variations in each person’s interpretation of the provided instructions, participants’

execution of the task varied widely. All participants were given the same instructions but interpreted

them differently and executed the task to different tolerances, which made comparing speed and accuracy

between subjects difficult. Therefore, statistical significance was not obtained. However, a less rigorous

analysis was used on each participant individually, which provided only 10 data points per analysis.

While less than the amount required for statistical significance, it showed helpful trends in the data.

Figure 16(a) and Figure 16(b) show the results for a participant whose results were typical, showing

faster and more accurate placement.

5 Discussion

The results of the first experiment clearly demonstrate the viability of using EMG signals in the con-

troller design, and are consistent with published literature [58, 59]. The correlations would likely be

insufficiently accurate for calculating exact values of end-point stiffness. However, the designed system

relies only on detecting changes in stiffness. Therefore, the statistically significant results justify the use

of the EMG signals, as an increase in cocontraction will always correlate to an increase in stiffness. The

quality of this correlation could likely be enhanced with less noisy muscle activity measurements.

Further analysis of the collected data indicated that the operator’s strategy for choosing the appro-

priate stiffness level for a given situation was not straightforward. It would be expected for a person
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(a) Quicker

placement

(b) More accurate

placement

Figure 16: General comparison of results of simulation with compensation on and off

to choose a stiffness level that is just high enough for the applied force, but the data showed that the

stiffness level for a given applied force was inconsistent. While the strategy that a human uses to choose

the appropriate stiffness level is unknown, it is clearly more complicated than balancing the applied

force with minimum effort.

The rigid wall scenario illustrates the system’s ability to increase stability on demand. The compen-

sating controller provided significantly increased stability during rigid surface contact, decreasing the

magnitude of oscillations. On average, the magnitude was decreased by more than 50%, with the best

case showing a decrease of 75%, as demonstrated in Figure 14.

Despite a lack of statistical significance in the results of the real world scenario, numerous helpful ob-

servations were made during the experiment, and trends were observed for participants individually. In

addition to generally faster and more accurate placement, the experiment demonstrated the usefulness

of the system and also made evident several concerns that future work must address. Several partici-

pants made observations that when the compensation was turned off, the device became more difficult

to stabilize. One participant observed that the experiment “was getting harder” after this occurred.

Another participant commented with compensation on that the device was “moving more smoothly.”

In general, most participants noticed the difference between the two cases. Therefore, despite the lack

of statistical significance, the visible trends and operator observations demonstrate an improvement.

Figure 17 shows that the cocontraction clearly increased while the participant held the device steady

to pick up the object or place the object down. However, it demonstrates a flaw in the system where

the operator, sensing the increased stability, relaxes when the compensation turns on, causing the com-

pensation to turn off, resulting in the operator stiffening again. This chatter is undesired and made

accomplishing the task more difficult. Figure 18 shows the number of state transitions across all trials

of all subjects of the simulation task. An ideal task would have less than 10 transitions, with ideally one

transition at the beginning and end of both pick and place. However, only 10% of all trials have less

than 20 transitions, with some exhibiting more than 120 transitions in an approximately 10 second span.

Eliminating this chatter would be possible with a more advanced operator model to identify phases of
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Figure 17: Cocontraction increased while the participant steadied the robot during the task (Highlight

indicates compensation effect)

Figure 18: Histogram of number of state transitions in simulation task trials showing excessive transitions

indicative of chatter in most trials

the task from the time history of stiffness estimates.

6 Conclusion

Instability of haptic force feedback devices under human contact can lead to undesired oscillations in the

combined human and machine system. The discussed compensating controller is a novel design for force

amplifying systems that can successfully increase the system’s stability on demand, allowing for higher

performance than similar systems with low fixed gains but while retaining stability when necessary.

This was accomplished by estimating changes in arm end-point stiffness based on cocontraction levels

measured using EMGs, which was justified based on experimental validation. The gains of the device’s

impedance controller were adjusted based on this estimate. Under low stiffness situations, the parameters

were chosen to maintain low damping and allow for fast movement. However, when stiffness increased,

the gains were adjusted to increase damping and allow the device to easily be held steady. Experiments

showed that the system demonstrated improved stability in stiff situations and improved performance

under real world usage scenarios. Future work into a more advanced model capable of providing more

accurate information would benefit the system and further increase performance gains. In addition, as

the primary focus of this work is on the controller, other techniques for obtaining stiffness estimates
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may prove useful.
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