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The Bionic Handling Assistant is one of the largest soft continuum robots and very special in be-
ing a pneumatically operated platform that is able to bend, stretch, and grasp in all directions. It
nevertheless shares many challenges with smaller continuum and other softs robots such as parallel
actuation, complex movement dynamics, slow pneumatic actuation, non-stationary behavior, and a
lack of analytic models. To master the control of this challenging robot, we argue for a tight inte-
gration of standard analytic tools, simulation, control, and state of the art machine learning into an
overall architecture that can serve as blueprint for control design also beyond the BHA. To this aim,
we show how to integrate specific modes of operation and different levels of control in a synergistic
manner, which is enabled by using modern paradigms of software architecture and middleware. We
thereby achieve an architecture with unique overall control abilities for a soft continuum robot that
allow for flexible experimentation towards compliant user-interaction, grasping, and online learning of
internal models.

Keywords: Continuum Robot, Soft Robot, Control Architecture, Middleware, Compliant
Interaction

1. Introduction

In recent years, an increasing number of continuum robots have surfaced in various forms and
fields. Prominent examples include artificial salamanders [1], hexapods [2], snakes [3], worms [4],
and smaller quadrupeds [5]. These platforms showcase the interplay of morphology and com-
putation [6] and explore the benefit of highly flexible continuum robots for future applications,
like minimal invasive surgery [7]. They also provide a way to implement the understanding-by-
building paradigm towards analysis of biological systems, e.g. to understand an octopus tentacle
[8] or movements of a fish [9].

The Bionic Handling assistant (BHA, Fig. 1 left) has been designed by Festo as a robotic
counterpart to an elephant trunk. It has gathered strong interest in the robotics community as
well as the general public because it belongs to a new class of continuum soft and lightweight
robots based on low-cost and rapid 3D manufacturing with polyamide. It comprises several
continuous parallel components and is pneumatically operated at low pressures, which makes
the BHA inherently safe for physical interaction with humans [10, 11]. The BHA’s main body
embodies three segments!, each consisting of three triangular arranged air chambers, i.e. in total
nine. These extend in length relative to the applied pressure. The robot has therefore no fixed
joint angles and each segment rather starts to bend whenever the three chambers assume different

*Corresponding author. Email: matthias@ams.eng.osaka-u.ac.jp
L An additional gripper segment is also available, but neglected for this work
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Figure 1. The bionic handling assistant BHA (left). The segments and respective length sensors of the BHA (right).
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lengths. An active depression of the chambers is not possible. Solely the internal tension of the
extended body drives the structure back into its default shape. The BHA is equipped with
pressure sensors inside the air valves. Potentiometers inside the base measure the lengths of
cables across the outer robot structure and therefore provide geometric information about the
robot’s shape (Fig. 1, right).

Up to the presented work, no comprehensive automatic control has been introduced for the
BHA despite the big potential of its unprecedented movement flexibility. The reason is likely that
the BHA comprises substantial challenges for any control scheme including high dimensionality
and redundancy, very slow actuator dynamics, restrictive and unknown actuation ranges, and
non-stationary system behavior due to friction and visco-elasticity.

Related work that tackles the control of soft robots mostly focus only on single aspects rather
than complete control architectures like learning the dynamics of an octopus tentacle [12] or
even fall back to manual control [13]. These robots share a lot of challenges with the BHA,
e.g. Shepherd emphasized that “... the response to actuation of elastomeric structures having
embedded PNs! is highly nonlinear and thus predictive modeling of their actuation is currently
empirical. The development of motion control systems for these robots will require the use of
nonlinear models and may require neural-net-like learning methods.” ([13], p. 20403). And in
fact, it was shown in other work that for modeling the inverse kinematics of soft robots, machine
learning can be beneficial in comparison to classical Jacobian gradient based methods [14].

While these studies address isolated control problems of soft robots, no comprehensive ap-
proach towards entire architectures that combine several control skills and facilitate the de-
velopment of high level use cases has been presented so far. The contribution of this paper is
to tackle this architectural problem. Referring to our prior work on isolated problems on the
BHA [15-17], we now describe the challenges induced by the special hardware properties of
soft robots and argue that well designed software architectures are indispensable for effective
implementations of higher level functionality. We therefore show how modern software engineer-
ing paradigms allow for flexible experimentation with low-level components and higher-level use
cases and provide a step forward to leverage the full potential of continuum robot applications.
We argue and show that a carefully selected hybrid combination of classical control methods and
machine learning throughout control levels can achieve fast reaction times and high precision for
real world applications. Further, we use this architectural perspective to point out synergy effects
between different control skills that amplify the utility of those skills within a larger context.
While we demonstrate our proposal based on the BHA, we also believe that many of the under-
lying elements are applicable to other robots as well. After describing the control architecture
and some of the functional building blocks, we will come back to this issue and finally elaborate
on general conclusions.

Pneumatically Actuated Pneumatic Networks (pneu-nets) [13]
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2. Overview of the control architecture

2.1 Challenges and requirements

The Bionic Handling Assistant (BHA) is a prominent, award winning?, continuum soft robot. It
displays typical challenges in soft robotics. The most significant challenge is induced by its novel
actuation principle of co-activaion of three low-pressure pneumatic actuators in each segment
that cause continuous deformations in shape. This is complementary to revolute or prismatic
joints that drive classical robots. Classical rigid body mechanics and respective control schemes
can therefore not be transferred easily from traditional robotics. Neither standard serial kine-
matic chains, nor parallel but rigid mechanisms model the BHA well. In the BHA, continuous
deformations are caused by parallel actuation, but mediated through flexible material and mor-
phology in a highly nonlinear and difficult to predict manner. This setting calls for new and
advanced algorithms to cope with the resulting redundancy, with non-stationarity due to the
semi-fluid properties of the material, and the slow dynamics of the pneumatic actuation.

More technical, but for soft robotics very typical challenges include the lack of software in-
frastructure for control, simulation, or even task-level operation. It is neither provided by the
producer FESTO nor does the futuristic and experimental hardware allow application of stan-
dard tools. For instance, due to the lack of a kinematic description in standard DH-parameters,
no off-the-shelf simulation and visualization tools can be used. On the hardware level, the BHA
provides heterogeneous I/O channels combining pressure sensing and control via a CAN bus with
length sensing via an analog-digital converter PCI card. In our lab, we also integrate external
end-effector position sensing via a VICON motion tracking system that communicates with yet
a different proprietary network protocol. Finally, beyond just controlling the robot we target to
leverage the full potential of the BHA for safe interaction with humans in different use-cases and
applications which request stability, robustness and repeatability of experimentation.

The challenges translate to a multitude of requirements for a comprehensive control architec-
ture for the BHA. It needs: abstraction of sensory data sources of different temporal resolution
that are read from hardware sensors or internal models; different hardware abstraction levels
that include pressure control, posture control, and end-effector control; the integration of mul-
tiple models that depend on each other and share data across several abstraction levels; the
hierarchical combination of controllers over several layers of abstraction; realtime and online
capabilities for interactive scenarios; high modularization to allow a flexible reconfiguration for
different use cases. We address these requirements in form of the control architecture depicted
in Fig. 2 and by means of efficient software and middleware tools realizing the control flow, the
structural modules and their communication, possibly across different processes.

2.2 How to Control the Bionic Handling Assistant

All components of the control architecture are assigned to three levels. The bottom level (Fig. 2,
bottom) is related to hardware specific implementations and the BHA robot itself. This level
is described in detail in Sect. 3.1. It schematically visualizes the implementation details related
to the hardware protocols (denoted with Real Plant) and the kinematic simulation of the BHA
(denoted with Virtual Plant). The involved components of this level are hardware-specific, deal
with the peculiarities of proprietary software modules, and can be distributed across several
computing machines. The next level (Fig. 2, middle) provides a robot specific interface and
hides the complexity of the underlying low level by means of hardware abstractions. It is further
described in Sect. 3.2. A central component of this level is the Control Interface Library that
allows both a seamless swapping between the simulation and the hardware of the BHA and
a parallel operation as use cases require. Important roles play the learned Inverse Equilibrium

2BHA won the prestigious German “Zukunftspreis” (future award) in 2010.
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Figure 2. Schematic view of the system architecture. The BHA (real plant) and its kinematic simulation (virtual plant)
are connected via the control interface library to the use cases. This software and system architecture provides a profound
basis for experimentation and development of diverse applications.

Model (IEM) and the learned Inverse Kinematics Model (IKM), as shown in Fig. 2. They are kept
externally and can be loaded at runtime, which makes them available in higher and lower level
components and allows for offline or online learning. This renders the overall architecture much
more flexible and enables to utilize hybrid control schemes across levels and applications. The
top level of abstraction contains the software components representing the actual Use Cases for
experimentation and application development, see Sect. 5. They communicate with the unified
interfaces at the second level and are thereby independent of hardware details, can flexibly
recruit and load learned models, and deploy the actual BHA, the kinematic simulation, or
both. In Sect. 5, we elaborate some of our more complex applications comprising Visualization
(Sect. 5.1), an Active Compliant Control Mode (Sect. 5.2), and the exploration and learning of
an Inverse Kinematics Model by means of Goal Babbling [16].

2.3 Software architecture and middleware

The overall architecture is modular and relies on software abstractions to facilitate software
and application development. It uses the Robot Control Interface (RCI) [18] which provides a
set of domain-specific abstractions to represent common features of compliant robotics systems.
These abstractions comprise for instance a synchronized robot interface that supports sensory
readout and command transmission. The flexibility of RCI, which abstracts from the low-level
signals, is also used to bundle actuators segment-wise, as the elongation of one single actuator
is meaningless for the posture of one segment (see Fig. 1).

For implementation of functional components and integrating RCI entities into the appli-
cations, we leverage the Compliant Control Architecture (CCA) [18]. CCA is an event-based,
middleware-agnostic component architecture for robotics research and focuses on control of com-
pliant hardware and machine learning. The library serves as technology mapping for platforms
modeled in RCI and as component architecture for implementing applications. This leads to
independent software components that can be flexibly combined in component circuitry. Com-
munication between components is realized by the Robotics Service Bus (RSB) middleware [19].
RSB is very lightweight, fast, and can be used with a very small footprint of source code, i.e.
it does not create a significant “lock-in” of source code that would prevent using the same code
without RSB.
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There are several advantages of this strategy: processing-intensive applications can be dis-
tributed; a central software instance to operate the robot can be running while other applications
(high-level applications, visualization, logging) can be turned on and off flexibly as it is needed;
the network interface permits vast changes of the implementation without requiring other com-
ponents to change. This backbone of software engineering provides the basis for the realization
and seamless integration of the functional blocks that are shown in Fig. 2 and described below.
Due to the modular structure of the software framework, each component of the low-level control
is available by a unified interface and can be reused for other control modules as required. This
is demonstrated in the Use Case scenarios in Sect. 5. We proceed by describing in more detail
the functional components in the different levels of the architecture and their interactions.

3. Functional building blocks

3.1 Bottom Layer and Hardware Abstraction

The lowest level of the system architecture provides an abstraction of the underlying hardware.
It allows to control the actuators and to access the sensors without knowledge about the specific
hardware implementation. It thereby provides the means to address the BHA (Real Plant) and
its kinematic simulation (Virtual Plant) through identical interfaces.

3.1.1 Real Plant

This functional module deals with the immediate actuation and sensors of the actual BHA.
The only immediate actuation on the BHA is pressure control, which is integrated in two valve
units manufactured by Festo. They comprise eight compact Piezo valves each and control the
BHA’s pneumatic actuators. Both valve units with their pressure controllers are connected to a
PC via CAN-Bus with a proprietary protocol. Our software abstracts from that CAN interface
and provides generic methods to read current pressures and set control targets.

The length sensors that sense the BHA’s shape can be read via an analog/digital PCI card
with high frequency. Since the cables span the entire length from the BHA’s base to the end
of each actuator (see Fig. 1), the values along the robot are automatically subtracted to obtain
the outer length of each separate actuator. The sensor readings are Kalman-filtered for noise
reduction before being dispatched through the software. Additionally, we use an external Vicon
motion tracking system [20] to determine the 3D spatial location of the robot’s end-effector. The
Vicon software [20] sends data with 200Hz via a proprietary data protocol on a TCP network
connection. In order to utilize this data, we use a converter that broadcasts the data via the
RSB middleware in a computationally very efficient binary format.

3.1.2 Virtual Plant

An essential part of the overall system is a useful kinematics model in order to support higher
level use cases for the BHA robot is a useful kinematics model. However, the simulation of
a continuum robot such as the BHA cannot be solved by classical approaches and standard
software tools cannot be applied. While a model of the BHA dynamics is clearly out of reach, we
have developed in previous work [15] an approximate kinematic model ignoring pressures and
solely operating on the lengths of virtual air chambers. To this aim, we followed the constant
curvature approach that is based on torus segments in order to allow continuous deformations.
Fig. 1 (left) shows how the three actuators in each main segment cause a deformation between
two rigid segment bases (shown in red). The three measured lengths of these actuators can
be used to estimate the coordinate transformation between two platforms, which can then be
chained in order to get the complete forward kinematics from base to end effector. For each
particular deformation in three dimensions, a segment of the robot can be modeled by a torus
segment. Fig. 3(left) shows this relation with the overall torus in light green and the robot
segment in dark green. The only free parameters of the segment model are the segement radii.



March 30, 2015

Advanced Robotics SIARCR

09 r

0.8 -

0.7 r

z[m]

0.6 -

0.5 -

0.4

03 . . . . . . . . .
04 -03 02 01 0 01 02 03 04 05 06
x[m]

Figure 3. Kinematic simulation: Segment model including geometric parameters (left), posture example along with visual-
ization based on the simulation model (center), and evaluation of the model quality for exemplary movements (right).

We estimated these radii according to a best-fit solution by recording ground-truth data from
different movements.

The development of the kinematic model is required for a 3D visualization of the robot,
however, without millimeter accuracy. To this aim, length measurements from the BHA can
be taken to predict and visualize the Cartesian movement of the robot (Fig. 3 (center)). Our
implementation of the constant curvature model including the visualization is available as open

sourcel .

3.2 Medium Level Control Interface Library

The core element of the control architecture is the Control Interface Library, as shown in Fig. 2.
The library unifies the interfaces of BHA simulation and BHA hardware and provides the basic
control algorithms. It provides the sensing of the current lengths L™, pressures p, predicted
pressures for target lengths p and the end-effector position EF'E relative to the robot base. Based
on the abstractions to access the hardware, we can command target pressures p?s to Festo’s
valve units as most direct form of control. Still, pressures only describe forces acting on the
robot structure which does not allow for a robust postural control of the robots shape. Hence, it
is pivotal to actively control the posture of the robot, i.e. the lengths of the actuators through
commanding target lengths L. This invokes either a standard PID length controller or a
more sophisticated hybrid length controller, which additionally employs an external and learned
feedforward model. This controller is described in more detail in Sect. 4. Each high level module
of the framework integrates the Control Interface Library and is able to connect to the underlying
setup via the Control Server, given in Fig. 2.

The Control Interface Library is pivotal to the overall architecture by fully utilizing the power
of the RSB middleware. It automatically instantiates an RSB structure called Informer that
broadcasts information throughout the network to all components and applications that have
subscribed to it. The library broadcasts all available sensory data, as well as all motor com-
mands currently active on the robot. Since this is fully automatic, the information is available
in the middleware whenever and however the robot is operated. Hence, tools e.g. for logging or
visualization can be started and stopped at any time. Additionally the robot’s low-level control
can be accessed via the Control Server that receives commands via RSB. The entire broadcast
as well as the control server utilize a flexible text/XML format for exchange. This allows to
distinguish semantically different values of the same measure (e.g. measured vs. desired) and to
fluently add additional information.

Lhttp://www.cor-lab.org/software-continuum-kinematics-simulation
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3.3 External Models and Learning

External models play a special role in our architecture. As emphasized before, there is no simple
way to model actuators, kinematics or dynamics in classical terms or with standard tools. We
therefore opt to apply machine learning methods, as proposed also in [13] and much of our
previous work [16, 17, 21, 22], in particular for learning internal models. We keep these models
separate and loadable, as they may be re-trained, re-calibrated or even re-learned online. The
models can then be utilized in several parts of an application. Two such models, which are of
crucial importance in any control architecture, are depicted in Fig. 2. On the right hand side, an
inverse model for the actuator dynamics is pre-learned offline as described in more detail in Sect.
4 because of its importance even for the lower-level length control. From the point of view of
architecture design, it is important to see that this model is exploited from the Control Interface
Library to operate in parallel to the basic PID control loop to speed-up pneumatic actuation.
Yet, it is as well used in the compliant control application as detailed in Sect. 5.2.

In a similar vein, a learned inverse kinematics model is displayed on the left hand side of Fig. 2,
which can be loaded and exploited, e.g. for grasping applications. But it can also be explored,
learned and modified online, for instance to cope with a changing redundancy resolution that is
necessitated by the non-stationarity of the BHA [16]. Again, the software architecture allows for
the flexible use of this model and its embedding in different applications. Both non-stationarity
and redundancy resolution are typical problems for soft robots, which often require to apply
learning methods and therefore we believe that the solution to separate these models from the
control library could be useful also for other platforms.

3.4 Higher-Level Control and Applications

The tools introduced so far provide the necessary components for application development.
Three such applications will be functionally described in detail in Sect.5. Applications and
use cases can flexibly recruit components, models, the hardware and the simulation, and all
quantities broadcasted by the control library. Relying on the middleware communication, an
arbitrary number of such applications can run simultaneously, for instance to perform high level
tasks and experimental evaluations. Components that implement task-specific behaviors can be
connected or disconnected at runtime. Fig. 1 and 3 already emphasize this flexibility by showing
the combination of a basic control loop running on the real BHA and the visualization of the
robot in the background through the kinematic simulation. In this case the real and the virtual
models are running in parallel.

Human-Robot-Interaction, grasping tasks and other applications require an interaction with
the physical environment and rely on realtime capabilities of the underlying control framework.
Although specific scenarios typically involve many components, the utilized software architecture
is able to deal with the data flow in real time. The timed Control Interface Library can be
configured with millisecond precision to satisfy control and platform demands. For our control
tasks a high-level discretization time frame of 20ms is sufficient. The distribution of components
over several computing machines, which is supported by the middleware RSB [19], can contribute
to the relaxation of temporal constraints.

4. Hybrid Actuator Dynamics Control

A reliable and fast controller of the BHA’s actuator lengths that determine the robot’s shape is an
indispensable prerequisite for higher level control skills and applications. In principle, the length
control can be accomplished with standard proportional integral derivative (PID) schemes. The
fundamental problem is that these feedback control approaches can be applied only with low
gains in case of slow plant dynamics, which consequently results in very slow movements. This
is in particularly the case for the BHA due to its pneumatic actuation and the visco-elastic
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mechanics, however, the BHA shares this issue with many other soft robots with pneumatic or
cable driven elastic actuation.

A classical approach to achieve fast control in such cases is to combine feedback and feedforwad
control. The feedforward controller provides anticipative commands and can significantly reduce
control delays. However, feedforward requires an inverse model of the plant’s dynamics. For
the BHA, such an inverse model would map actuator lengths 1 and their derivatives land 1 to
pressures p and pressure changes p in the actuators according to the pneumatic dynamics [23]:

p(t) = £(1(t), 1(1),1(¢), (1)) (1)

Although the inverse model does not have to be very accurate because the feedback part of
the control law compensates errors, there is no analytic model available for the soft BHA. This
context qualifies learning as an essential tool for modeling.

4.1 Fast Control with an Inverse Equilibrium Model

The fundamental challenge for learning is the generation of sufficient data. Eq. (1) describes very
high dimensional interactions that can not be fully explored on the real robot because of the expo-
nential increase of exploration costs with the increasing dimensionality of the configuration space,
i.e. here the lengths. We therefore consider a simplified model of the robot’s dynamics, which is
restricted to the mechanical equilibrium points 1* of the robot’s dynamics. Equilibrium points
are achieved by applying a constant pressure p* until convergence of the lengths for a single seg-
ment. In such equilibrium states, neither lengths nor pressures of the pneumatic actuators change
over time: p = 1 =1 = 0. The formulation of the inverse dynamics in Eq. (1) then simplifies to

g

PID —fbc

slow, accurate | _fb

I_des._
where P denotes the inverse equilibrium model that
represents the direct relation between length 1* and
pressures p*. The inverse equilibrium model pro-
vides a direct estimation of air chamber pressures in
a mechanical equilibrium and can therefore serve as
a feedforward control signal. Fig. 4 depicts the BHA
plant with its slow dynamics, the low-gain PID feed-
back controller, and the inverse equilibrium model. 1 [BHA - Plant pdes‘
The BHA receives pressure commands, which are etk Gy |
computed by superimposing the PID and the feed-
forward control signals. The feedforward controller Figure 4. Control loop with a learned inverse
computes pressures from desired lengths by means of equilibrium model and a feedback controller. The

the inverse equilibrium model. PID control is based model leads to a fast estimation of the pressure
. K configuration p! for the chamber lengths L%¢%.
on the difference of the desired and sensed length

values. The PID controller corrects errors of the feedforward control signal in the feedback loop.

4.2 Learning an Inverse Equilibrium Model

Despite these simplifications, the learning is still difficult: first, data sampling for learning is
limited because the time until the physical deformations of the robot have reached a mechanical
equilibrium can take up to 20 seconds for a single data point. Second, the underlying dynamics
of the BHA result in non-linear behavior which requires a model with appropriate complexity in
order to capture the structure of the data sufficiently. Third, data is very noisy due to hysteresis
effects induced by the visco-elasticity of the robot’s soft material.
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Machine learning approaches which are trained on such sparse and noisy data without addi-
tional efforts are prone to overfitting, whereas well-behaved extrapolation is a strong requirement
from the BHA. To achieve this generalization from sparse data, we employ the constrained ELM,
which is able to embed prior knowledge about the physical behavior of the BHA to prevent strong
overfitting. The learning scheme is called Constrained Extreme Learning Machine (CELM, [24])
and comprises a feedforward neural structure with three layers of neurons. Due to the special
form of this approach, learning reduces to a linear optimization problem and the prior knowl-
edge can be incorporated by introducing linear inequalities to the optimization program. For
learning an inverse equilibrium model of the BHA, the following prior knowledge is considered:
(i) maximum and minimum pressure of the actuators, and (ii) that the ground-truth behavior
per axis is strictly monotonous, because higher pressure in one actuator physically leads to an
extension of this actuator.

4.3 Experimental Results

For training of inverse equilibrium models, a data set of pressure-length pairs is recorded.
It captures the relation between the geometric length of the actuators for each seg-
ment and the corresponding pressures in a mechanical equilibrium. A pressure grid
comprising 5 X 5 x 5 = 125 samples repeated five times is available for learning.
Experiments on the robot show the benefits of the

learned inverse equilibrium model for length con- 10 T === --- - ¢
trol. For a quantitative evaluation, we measure
the time until convergence of the lengths to dif-
ferent target values up to accuracy €. Fig. 5 shows
the mean convergence time for repetitively ap-
proaching five random length configurations with
the BHA. Length control with simple PID con-
trol requires a much longer convergence time than
with CELM model.

Note that the data recording and substitu-
tion of different models for the length control is
strongly supported by the system architecture.
Learning an inverse equilibrium model is essential for agile motion control of the BHA and
represents a building block that is heavily used by other BHA applications (see Fig. 2).

Converge time [s]

—— CEM
— — —none
4 F

0.05 0.1 0.15 0.2 0.25 0.3 0.35
Threshold € [cm]

Figure 5. Convergence time of two different length
controllers: simple PID (none) vs. feedforward control
with inverse equilibrium model (CELM).

5. Use Cases

This section exhibits three exemplary use cases as depicted in the top level of Fig. 2. These
illustrate how to orchestrate modularization, interface unification, data sharing and extensibility
towards real applications. Use cases address for instance high level control or task learning, novel
technology demos, exploration of novel learning schemes, or user evaluation and can be easily
developed and integrated into the framework. Thereby the development of new use cases can
utilize the overall well-structured software organization together with the development tools
offered by the middleware and component architecture.

5.1 Use Case 1: Visualization

One of the simpler but most prominent use case is the visualization of the BHA’s current state
and its control values. It illustrates a central element of our overall strategy how to perform
development and experimentation on this platform. The basis for the visualization is the constant
curvature model of the BHA as mentioned in Sect. 3.1.2. A torus model is used to render each
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segment of the robot (based on the current length measurement) in a 3D environment. The
same environment can also be used to render various objects or coordinates that arise in other
use cases such as learning (see Sect. 5) or object manipulation. Additional windows show the
pressure and length values of the nine main actuators. If a motor command is active on any
of those, the “raw” target as well as its filtered and clamped value is shown in relation to the
measured sensory values. The utility of this tool largely roots in the automatic creation of a
RSB Informer and the connection to the Control Server (see Fig. 2) by any BHA application
as previously described. Due to this informer the to be displayed values are available within
a unified interface supported by the middleware whenever a BHA application is running. The
visualization tool hence can be started and stopped as a separate process when it is needed and
there is no need to restart the visualization when the BHA application is stopped or restarted.

Fig. 3 (center) shows an example posture of the robot during dataset recording and its visu-
alization generated by the constant curvature model. Note that this experiment underlines the
effectiveness of how we integrated the kinematics simulation into the system architecture: the
visualization actually requires to run the virtual plant, i.e. the kinematic simulation, as a parallel
and independent module, which estimates the most likely posture with regard to the data from
the BHA in real time and then feeds the graphical interface with the simulated posture.

The evaluation [15] of the model on the example data in Fig. 3(right) shows the comparison
of ground-truth data (blue) and model predictions (red). With the estimated segment radii,
the average accuracy is 0.0102m. Related to an approximate (average) robot length, this cor-
responds to a relative error slightly above 1%. Neither the assumption of circular shapes, nor
the assumption of equal radii within segments hold exactly on the real robot. However, it is
noteworthy to see that the model reaches 1% relative error, while constant curvature models
have dramatically failed for other robots, and even expensive, 'geometrically exact’ models have
only reached 1.5 — 5% relative error [25], [26]. The 1% error holds only for the prediction of
postures that are known to be possible (e.g. actually measured). We found that prediction from
"hypothetical’ postures is much more difficult because it needs to be tested whether they are in
range, and need to be projected to the closest possible one if they are not. Due to the specific
geometry of the BHA even slight errors in this process can cause large mispredictions, e.g. 10em
sideward deviation of the end-effector for only lcm mispredicted ranges on the lowest segment,
see also the details in [15].

5.2 Use Case 2: Actively Compliant Actuator Control

To leverage the potential of the BHA for human-robot interaction, kinesthetic teaching, i.e.
physical guidance of the BHA towards desired postures is a means of choice. In comparison to
kinesthetic teaching on stiff robots [27-29], a flexible robot structure as in the BHA allows for
mechanical deformation of its body due to its softness. The detection of a deformation, e.g. caused
by a human tutor, can then be utilized to initiate a modification of the control variables such
that the robot complies with the deformed configuration by actively controlling its actuators. We
have shown that this idea can be used to implement an active compliance control mode without
explicit force sensing [17]. To achieve this goal, the learned inverse equilibrium model of the robot
is used to detect deflections from the equilibrium by comparing the measured pressures of the
chambers with the expected chamber pressures for the current lengths. The control target lengths
are then adjusted accordingly such that the current configuration becomes the new equilibrium
point of the robot. This morphology-driven external force detection principle reduces the required
computational effort and control complexity in comparison to classical approaches based on a
full inverse dynamics model and accurate force sensing.

Fig. 6 shows the interconnection of the active compliance mode application with the previously
described system infrastructure. The figure highlights additional software components in red
while the already existing components are depicted in gray. The application requires a realtime

10



March 30, 2015

Advanced Robotics SIARCR

Resting End
Phase . i Configuration |

107 bar]

Prediction Error

20 i H 1 1 1 H !
0

30 40 50 60
Time [s]

Figure 7. Active posture control in human-robot interaction. The graph on the bottom shows the prediction error ||p —

P|l/ dim(p) between the actual and estimated pressure during human-robot interaction. The dashed line marks the threshold
T. The prediction error exceeds T' during the manipulation phase and falls below T' during the resting.

--------------------------------------- : communication pipeline to the inverse equilib-

v / \ rium model, because comparisons between mea-
b-pl >T des- 6'_ sured p and predicted pressures p according to
s o el > i H the learned model must be performed online. The
— integration of this control mode into the software
- PID  fbc framework benefits from the high degree of mod-
"2 slow, accurate o° ularization and the common interfaces unified by
K the Control Interface Library (see Fig. 2). Fur-
thermore, it re-uses the external model and there-
real des. fore minimizes the need for redundant implemen-

L__BHA- Plant) P tation of certain models.

noisy, delayed

Fig. 7 shows the actual use case in a sequence
Ip of two manual reconfigurations of the BHA by a
Figure 6. Active compliant control mode of the BHA human tutor. The start conﬁguration of the BHA
achieved by application of a learned inverse equilib- is relaxed, the pneumatic actuators are deflated.

rium model of the pressure-to-length relation in a me-

chanical equilibrium. After eleven seconds, the human operator starts

to push the robot to the right side which deflects
the robot’s state from the mechanical equilibrium point. This instantly induces an increasing
prediction error (see Fig. 7, bottom) as the actual pressure and predicted pressure to not coincide
anymore. When the error exceeds a given threshold, the set-point of the length controller is
updated to the current length sensor values. The length controller then adopts the pressures
accordingly such that the current robot configuration becomes the new equilibrium point of the
system. This tracking of the robot posture enables the user to easily change the posture of the
BHA. After a short time span, the robot again reaches a mechanical equilibrium such that the
error falls below the threshold. During this time, the arm stays fixed until a second manipulation
phase is started by the user. The manipulations ends after the desired end posture is reached.
The BHA stably stays in this position.

The experiments show that the proposed system architecture allows an easy implementation,
execution, and testing of an active compliance mode that deals with the realtime constraints of
kinesthetic teaching without the need of complex internal models of the actuator. Such human-
robot interaction modes offer new fields of application for continuum robots in research and
practical applications.
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Figure 8. The learned inverse kinematics model can be used to follow moving objects with the end-effector and grasp them
(left). During learning and exploration, we use the visualization based on the kinematic simulation extensively to show the
robot in relation to its internal, self-generated goals (right). Also, we use the simulation to predict in realtime for the entire
space of goals (red) how well the model performs (blue).

5.3 Use Case 3: End-Effector Control with Goal Babbling

The BHA is designed to manipulate objects with its end-effector which has three flexible fingers.
Unlike other continuum robots it does not possess the mechanical flexibility to wrap around
objects with its entire structure in order to lift them, but has to fully rely on a versatile control
and usage of its end-effector. Given the length controller, the task reduces to solve the inverse
kinematics, i.e. to find the right actuator lengths in order to reach for Cartesian coordinates.
One way of solving the inverse kinematics problem is to use the approximate forward kinematics
(see Sect. 3.1.2) and invert a local linearization analytically, or to use a numerical approximation
of the inverse. However, there occur systematic errors due to the inherent model inaccuracies
which can lead to large end-effector deviations in the order of tens of centimeters.

We therefore demonstrated earlier that direct learning the inverse kinematics of the BHA by
goal babbling [21] leads already to very accurate approximations. This strategy was inspired from
infant developmental studies and mimics how infants attempt early goal-directed movements [30],
which structures exploration in a goal directed manner, scales to at least 50 dimensions, and
achieves human-competitive learning speed [31]. The approach thereby does not explore and
utilize all possible redundancy resolutions or shapes that bring the effector to the same position.
It rather explores one consistent redundancy resolution in a highly efficient way which enables
the application of the algorithm on high-dimensional morphologies of real-world robots like the
BHA. A novel combination of the learned inverse kinematics model with a feedback I-controller
further increases the accuracy of the end-effector controller to a remarkable accuracy of a median
error below one centimeter [16].

We discuss goal babbling here from point of view of the system architecture, because many
different components need to interact in this scenario. First, fast access to the already learned
model is crucial, because the exploration is done online and executes and re-adapts the learned
model in every single time-step. Second, an efficient goal-directed exploration respecting real-
time constraints requires an effective and fast length controller as implemented with the inverse
equilibrium model integrated into the central Control Interface Library. Finally, the visualiza-
tion enabled to show the relation between the current robot movement, the goal coordinates,
and the robot’s workspace which was indispensably helpful during the development of both the
learning and the control. We also utilized the high computational efficiency of the forward kine-
matics approximation to predict in realtime how well the learner performs throughout the entire
workspace (see Fig. 8) by means of massive sampling of the inverse model at the goal positions
and substituting the approximation for the forward execution of the BHA.

Due to the modularization abilities of the proposed software framework, the learning of the
inverse model, the evaluation and a technical demonstration are separated into multiple appli-
cations. This allows to learn multiple models and a to switch between them. Once more this use
case exploits the flexibility provided by keeping the learned model external and loadable at run-
time. Fully integrated, the exploration loop can run online, learn the inverse kinematics module
by recruiting most of the described elements of the overall architecture. The learned model can
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then be reused in other applications, for instance for tracking and grasping (see Fig. 2).

6. Conclusion

Soft robots are a promising approach to human-robot-interaction due to their inherent safety
and natural movement behaviors. Potential applications include manufacturing as well as home
automation. However, many of the rather experimental platforms that are available today have
not been shown to reliably and consistently perform higher level tasks, let alone the problem of
how complex the programming of such tasks would be. Nevertheless, advances in understanding
and control of compliant actuators strongly support the development of artificial limbs and
improve rehabilitation quality [32], [33]. They also pave the way towards support devices like
lightweight powered exoskeletons [34], which could ensure the mobility for older people suffering
from amyotrophia or support employees in heavy industries.

Implementation of higher level functionalities raises many questions that go beyond basic
control strategies and understanding of mechanics, which we tried to address in this paper. Al-
though each component of our system can be considered separately, the composition of modules
to complex robot frameworks with advanced functionalities requires an elaborated and struc-
tured architecture. We emphasized the benefits of the proposed framework by several examples
and are convinced that such a structured working environment is an essential requirement to
successfully cope with complex robotic systems in general, and soft robots in particular. Look-
ing back to the requirements and the lack of portable models from rigid body movements, we
believe that continuum robots in particular demand flexible software integration to incorporate
new concepts, e.g. for compliant interaction, and for learning their internal models.

Soft robots naturally address and implement morphological computation: the mechanics and
the bodily physics provide means for embodiment of seemingly sophisticated function. We pre-
sented a striking example of this by realizing actively compliant actuator control by utilizing the
robot’s passive compliance together with a learned model. Here none of the classical complicated
mechanisms of impedance control are involved. There is no need for force sensing, no complete
inverse dynamics model, no computed torque control, and no impedance regulation. While the
accuracy of the presented control mode is limited, it still provides an interesting blueprint for the
exploitation of morphological computation. In our scenarios, model learning and hybrid control
approaches are able to tackle the problems of inaccuracies caused by the infeasibility of modeling
all physical properties of such complex systems and material fatigue of soft materials.

In either case, the full potential of the “softness” is finally leveraged through engineering a
control architecture, which relies on powerful tools from software engineering and middleware,
together with a mix of classical modeling and machine learning. Our approach for the BHA
certainly is not the only possible architecture, but it displays a number of general principles:
hardware and software abstractions are important, where useful units may be defined across
sensors or actuators, e.g. by decomposing the BHA rather into segments than single actuators;
learned modules should be flexibly usable and possibly kept separable from the inner control
loops while being heavily employed by them; physical features of the robots may be exploited
by re-thinking and approximating classical control in hybrid control schemes; online and real-
time learning is a key to cope with non-stationarity. A very important lesson we learned is that
exploiting the power of soft robotics, morphological computation, and novel actuation does not
mean to dispense with careful control architecture design. Quite the opposite is the case: the
demand to integrate novel combinations of control and learning, together with the challenges
posed by mechanical properties of the robot rather calls for creative, but well engineered solutions
if soft robots shall ever be lifted beyond simple experimentation to perform well defined tasks.
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