Multi-Contour Initial Pose Estimation for 3D Registration

Ernest C. H. Cheung and Chao Cao and Jia Pan

Abstract— Reliable manipulation of everyday household ob-
jects is essential to the success of service robots. In order
to accurately manipulate these objects, robots need to know
objects’ full 6-DOF pose, which is challenging due to sensor
noise, clutters and occlusions. In this paper, we present a
new approach for effectively guessing the object pose given an
observation of just a small patch of the object, by leveraging
the fact that many household objects can only keep stable on
a planar surface under a small set of poses. In particular, for
each stable pose of an object, we slice the object with horizontal
planes and extract multiple cross-section contours. The pose
estimation is then reduced to find a stable pose whose contour
matches best with that of the sensor data, and this can be solved
efficiently by convolution. Experiments on the manipulation
tasks in the DARPA Robotics Challenge validate our approach.
In addition, we also investigate our method’s performance on
object recognition tasks raising in the challenge.

I. INTRODUCTION

A robot will need to accurately determine the 6-DOF pose
of an object for achieving reliable grasp and manipulation
of everyday household objects. For instance, in the scenario
of the DARPA Robotics Challenge (DRC) [1], a humanoid
robot needs to manipulate a set of objects designed for hu-
man beings, including valves, steering wheels, door handles,
power tools, cordless drills, cutting tools, and fire hoses.
Figure [I] shows some of these tools. Before being able to
compute a stable grasp for these objects using techniques
such as friction cones [2], or form- and force- closures [3],
the robot must first provide an accurate estimation of the
object pose. Given a 3D object point cloud and a point
cloud observation of a scene containing the object, the pose
estimation is usually formulated as an optimization problem,
that is, by solving for the best rotation and translation be-
tween the two point clouds such that the distance between the
overlapping areas of these point clouds is minimal, given an
appropriate metric space. This procedure is also known as the
3D registration, which consistently aligns two overlapping
point clouds. Without any prior pose knowledge, the pose
estimation problem is difficult and most optimization tech-
niques may fail to find the optimal solution. This is mainly
because the function to be optimized is multi-dimensional
and has multiple local optimum solutions possibly close to
the global one. The noise in the sensor data (e.g., due to
LIDAR’s range uncertainty) and the occurrence of partial
observation due to occlusion also add up to the difficulties
of accurate pose estimation.

A lot of work have been done in 3D registration and the
most popular registration method to date is the Iterative Clos-

Authors are with the Department of Computer Science, the University of
Hong Kong, Hong Kong.

L)

p

Fig. 1. Examples of man-made tools used in the DARPA Robotics
Challenge (from left to right): a barrel-type drill, a fire hose standpipe,
a cutting tool and a gun-type drill.

hg
1
)

est Point (ICP) algorithm [4]. The ICP method has improved
a lot from its original form, including using non-linear opti-
mization methods, designing better point alignment features,
and finding good initial guesses for the registration. Our con-
tributions fall within the area of finding good initial guesses
for pose estimation, which brings the search process into the
convergence basin of non-linear optimization problems. In
particular, we leverage the fact that in most manipulation
scenarios, the target object is posed in a stable configuration
sitting on flat support surfaces, e.g., tables, shelves and floors.
This fact implies several simplifications to the 3D registration
that could greatly improve the efficiency and accuracy of
pose estimation. First, the points corresponding to the target
objects can be extracted easily by recognizing the planar
support plane and establishing a lower bound for the points
of interest. Second and even more important, most man-made
objects have only a small number of stable pose classes,
where a ‘class’ of pose means all the poses that have the same
support while sitting on a horizontal plane. For instance,
the drill shown in Figure [2] has four stable pose classes.
Within each pose class, the registration can be reduced to
a 3-DOF problem, i.e., the pose is restricted to the x-y
translation along the support plane and the yaw rotation about
the support normal.

Fig. 2. All four stable pose classes for a gun-type drill.

In this paper, we present a novel approach for efficient and
accurate 3D registration by using multiple contours extracted
from objects. For each pose class of an object, we slice the
object with a set of planes parallel with the support plane
associated with this pose class, and extract a set of K slice-

plane boundary contours. Given a partial observation of the
object during the robot’s execution, we first detect its support
plane and then also extract K contours by slicing the point
cloud using the support plane. By computing the similarity
between contours with convolution, we can find the pose
class that best explains the object’s partial view, and further
determine a good initial guess within this pose class. This
initial guess is then used by the ICP algorithm to obtain a
high quality pose estimation.

We investigate the performance of our method using a
rotating Hokuyo sensor mounted on a Carnegie Robotics
Sensor [5], which is used by the Atlas robot (Figure EI)
while executing the DRC tasks. From the experiment, we
show that our method can significantly improve the efficiency
and quality of the pose estimation, while comparing with
the state-of-the-art 3D registration approaches. In addition,
it is able to provide better performance for man-made objects
with symmetries, and is more robust to data uncertainty.

Fig. 3. The Hokuyo LIDAR sensor (right) mounted on the Carnegie
Robotics Sensor (middle) used in ATLAS (left).

II. RELATED WORK

Most techniques for pose estimation of a rigid 3D object
are correspondence-based, relying on the presence of features
on the object’s surface so that a rigid body transform can be
computed which minimizes the distance between correspond-
ing points. According to the underlying optimization method
used, these approaches can be categorized into two types:
global and local. The global approaches use various global
stochastic optimization techniques, including genetic algo-
rithms [6] and various evolutionary techniques such as scatter
search [7] or CMA-ES [8]. These methods are slow in com-
putational time and lack a rigorous guarantee of convergence.
Other work fall into the second category of local search, and
the most popular method is the Iterative Closest Point (ICP)
algorithm. As a non-linear local search algorithm, ICP suffers
from many problems commonly associated with local search,
including slow convergence and the tendency to fall into local
optima. Thus, many improvements from its original form
have been proposed, including using non-linear optimization
methods [9], [10], finding good initial guesses [11], [12],
and estimating better point correspondence by leveraging
more advanced point features [11], [13], [14], [15], and more
efficient ICP variants [16], [17]. However, many common
household objects — such as tools used in DRC — do not
have enough number of unique identifiable visual features to
lock down a pose.

There are some recent alternatives to the correspondence-
based pose estimation. Classification-based approaches such
as [18] classify object observations by viewpoints, and work
well when the object is perfectly segmented out of the
scene cloud, but these methods are sensitive to clutter and
occlusions. The generalized Hough transform [19] uses local
geometric information to vote for the object pose, and is
robust to occlusions, and it can be combined with Random-
Sampling-Consensus (RANSAC) alignment framework for
continuous search within the pose space [20].

III. DATA AND SYSTEM

In 3D registration, we match up the scene data with a set
of model data for different objects, where both the scene and
model data are in form of point clouds.

Fig. 4. Examples of model data (left) and scene data (right) used in our
experiments.

The point cloud model data for each object is built using a
Kinect sensor [21] and provides a complete geometry about
the object. For the scene data collected during the online
execution of the robot, we do not use Kinect sensor since its
range is too limited and cannot operate properly outdoors.
Instead, we use a rotating LIDAR mounted on the robot’s
head for online scene data collection, as shown in Figure @
The rotating LIDAR provides data in polar coordinates (the
range and the sweep angle), but the reference frame of the
LIDAR is rotating. After accounting for this transform, 3D
points can be obtained over a hemisphere. The range data is
acquired at the rate of 40,000 samples per second, per 0.25
degrees within a slice plane. The resolution of the scene
data depends on the LIDAR rotation rate, the duration of
data collection, and the distance between the object and the
sensor. Given that the accuracy of the LIDAR sensor is only
up to £30 mm for one frame, points over different frames
are accumulated over time to reduce the data uncertainty. In
addition, the data obtained by the LIDAR is only a partial
view of the entire scene, due to the LIDAR’s limited range
and occlusions. An example of the model data and scene
data for a drill object is shown in Figure [

Given the scene data from the LIDAR, we identify the
region of interest in the point clouds by first locating the
plane frame and then filtering out the points above the
plane. Next, we apply the Density-based Spatial Clustering
of Applications with Noise (DBSCAN) algorithm [22] to
separate the point clouds into individual objects.

Figure [I] illustrates all the target objects that will be used
in our experiment. These tools are likely to be used in the
DARPA Robotics Challenge, including a barrel-type drill, a
gun-type drill, a cutting tool and a fire hose standpipe.

IV. CONTOUR INITIAL POSE ESTIMATION

For fast 3D registration, we consider the special case
where the target object is stably posed on a flat surface,
e.g., tables, shelves, floors, etc. This is a common scenario
in most manipulation tasks, for instance, in DARPA Robotics
Challenge, the robot needs to use a tool placed on a table
or inside a shelf, or to retrieve a tool box placed on the
floor, or to turn a valve fixed on a wall. For these cases,
given the fact that the extraction of the flat surface can be
implemented efficiently, we can leverage such flat surface
to reduce the search space of pose estimation from a 6-
dimensional space to a set of 3-dimensional spaces. In
particular, we first compute a pose within each pose class
that best matches the partial view of the object, by only
considering the rotation angle about the normal of the support
plane and two translations along the support plane. After
finding the best poses for all the pose classes, we take the
one with the highest match score as the result for the pose
estimation.

Fig. 5. Contours for three different cross-sections of a gun-type drill.

In this section, we provide a brief review of our previous
work on Contour Initial Pose Estimation (CIPE) [23], that
is, while knowing the object’s pose class, how to find a pose
within this class that can best match the sensor’s observation,
by exploiting the object’s contour features. We leave the
problem about how to determine the optimal pose class to
Section

Given an object model and its stable pose classes, we
preprocess the model to extract a set of contour features.
In particular, we slice the model with a set of planes
parallel with the contact face associated with a pose class,
and compute slice-plane boundary contours. We call these
contours the model contours. Figure 5] shows the three model
contours extracted for a gun-type drill. The same operation
can be performed for the sensor data, by first extracting the
support flat surface from the point cloud and then slicing the
point cloud using the extracted plane. The obtained contours
are called the scene contours.

Given the extracted contours, the 3D registration problem
is reduced to determine the rigid body transform between the
model contours and the scene contours. We first compute the
curvature along these contours, and then perform convolution
between them with respect to the arc length, as shown in

Figure [6| The convolution result describes the similarity
between the model contour and the scene contour at different
arc length offsets, and thus we call it the contour similarity.
For instance, when the arc length offset is zero, the two
contours are aligned as shown in Figure [6] Due to the
definition of convolution, the value of contour similarity is
equivalent to the overlapping area (shown by the purple
region in Figure [6] of two curvature series. As the offset
increases, the overlapping area under the curves of the scene
and model curvatures increases and thus the convolution
results arrives at a local peak.

Contour Similarity
T T T

Curvature

-015 -01 -0.05 0 0.05 0.1 0.15 0.2 0.25 03 0.35
Arc Length (m)

| Scene Curvature Model Curvature s Convolution Resu\tsl

Fig. 6. Curvatures of the model contour (orange) and the scene contour
(blue) and their convolution results (green). Since the point with maximum
arc length (about 0.325 meter) and the point with minimum arc length (0
mm) are next to each other in the model contour, the model curvature has
been repeated for the purpose of obtaining convolution results with negative
offsets.

Fig. 7. Correspondence between the model contour (left) and the scene
contour (right).

The convolution result will contain several local peaks (as
the yellow arrows marked in Figure [6), which correspond
to the potential matches between the model contour and the
scene contour. Given the arc length offsets related with these
peaks, we can establish the point correspondence between the
model contour and the scene contour, as shown in Figure

Once the correspondence between the contours is estab-
lished, we can compute the transform between these two
contours by solving a linear system:

2y 10 0 0 oo xf
0 0 0 27 y* 1 To1 yi
gt oyt 10 0 0 o2 | _ | «% ’
0 0 0 zp¢ y3r 1 10 Y5
. T11
T12

)

where {(z7",y"), (25", y5*),...} are the 2D points in the
model contour and {(z3,y5), (5,45), ...} are the 2D points
in the scene contour, and {r;;} describes the 2D affine
transform between these two contours

xm
z® Too To1 T02 m
= . 2
(y® > (Tio Ti1 Ti2) yl @)
We then use QR transform to project the affine transform

into the space of rigid body transforms and the result is a
cos —sinf t,

sinf cos@ t,
to the ICP algorithm as the initial guess for refining the

relative pose between the point clouds of the object model
and the scene. We repeat the above process for each of the
convolution’s local optimum, and choose the pose with the
lowest registration error as the result of the pose estimation.

matrix Tip = . Tini¢ 1s then passed

V. MULTI-CONTOUR INITIAL POSE ESTIMATION

The performance of CIPE is promising as shown by our
previous experiments in [23], and it can provide higher pose
estimation accuracy than the state-of-the-art pose estimation
approaches such as [15]. However, CIPE may not be able
to provide enough accuracy while handling objects that are
highly symmetric. For instance, the gun-type drill as shown
in Figure [§ has two symmetric planes: one is the plane
along the direction of the drill borer (as shown by the red
plane in Figure [8) and the other is the plane perpendicular
to it (as shown by the green plane in Figure [§). Due to
the multiple symmetric planes, an incorrect registration may
produce smaller error than a correct registration according
to a partial observation of the object, as shown in Figure [§]
This problem can be even more severe when the scene data
is corrupted by noises.

Fig. 8. An incorrect registration (in white) for a highly symmetric object
from two different perspectives. The green and red planes are two symmetric
planes of the object.

In order to overcome this difficulty, we develop a new
approach which computes the contour similarity and per-
forms convolution based on more than one layers of contours,
and thus we call this method the Multi-Contour Initial
Pose Estimation (MCIPE). MCIPE is not a trivial extension
of CIPE, because we cannot simply add up the contour
similarities of different layers of cross-sections since these
contours are of different scales in length. Instead, we use the
angle of each contour point relative to the contour centroid
to establish the correspondence between different layers of

cross-sections. In this way, MCIPE can compute a contour
similarity which takes into account the information from
multiple cross-sections of the object.

The detail of the MCIPE algorithm is as follows. Given
the 3D point clouds M and S, for the model and scene
respectively, we consider the 2D contours generated by
slicing the point clouds with K parallel planes:

M; ={(z,y,2) : (2,y,2) € M A |z —hi| <€}
and
Si={(z,y,2): (z,9,2) € SA|z —hy| < e},

where ¢ = 1 to K, and K is the number of contours to
be considered. h; is the height of the cross-sections pre-
selected and e is the threshold while determining whether a
point belongs to a cross-section or not. The MCIPE algorithm
includes three steps:

1) For each pair of model contour M; and scene contour
Si, we perform the following computations:

a) For each point (x,y) on a contour, we compute
its arc length relative to an arbitrary but fixed
reference point. This results in a mapping from
any 2D point on the contour to the arc length. We
compute such a mapping for both M; and S;, and
the resulting arc length mappings are denoted as
Py, (x,y) and Pg,(z,y) respectively.

b) We compute M;(s) and S;(s) as the inverse
mapping of Py, (z,y) and Pg,(x,y), where s is
the arc length parameterization. In other words,
these two functions provide the arc length param-
eterization for these two contours.

c¢) We compute the signed curvature at each con-
tour point and generate the curvature functions
Kk, (z,y) and kg, (x,y) for two contours. Based
on the arc length parameterization, we can further
obtain the curvature functions parameterized by
the arc length: k,z,(s) and kg, (s).

d) For each point (x,y) on the model contour M;,
we use polar coordinate transform to compute
the angle of the contour point relative to the
model centroid, and the resulting angle function
is denoted as «;(z,y). Based on the arc length
parameterization, we can further compute the
angle function parameterized by the arc length:
a;(s).

e) We then perform convolution between rpyz,(s)
and kg, (s) to obtain the contour similarity func-
tion ¢;(s) of this cross section.

2) We select an arbitrary but fixed layer I (1 < I < K)
as the reference layer. For each other layer j, we first
align it with the [-th layer according to the angle
function. That is, we reparameterize the j-th layer
curvature functions as s = ozj_l o ay(s). After the
reparameterization, we can add the curvature functions

from all layers together as c(s) = c1(s)+3_;,; ¢;(s}),

which is a contour similarity taking into account the
information from all K layers.

3) We find all arc length offsets s; such that ¢(s) arrives
at local optimum at s;. For each si, we repeat the
following computation:

a) Use s to establish the correspondence between
M;(s) and S;(s), by matching M;(s + sj) with
Si (S)

b) Collect the registered points from all the layers
and denote the collections as M’ = J, M;(s +
si) and S" =, Si(s).

¢) Compute Ty by applying CIPE on M’ and 5.

d) Perform ICP on M’ and S’ using Ty, as the
initial guess and obtain T}.

4) After obtaining all T\, we choose Tyicipg as the one
with the minimal registration error. Finally, we perform
ICP on M and S using Tycipg as the initial guess and
generate the result for pose estimation.

Figure [shows how the contour similarities of two cross
sections of a yellow drill are summed up to generate the
multi-contour similarity as described in step 2).

The advantage of MCIPE is not merely about its ability
of overcoming the limitation of CIPE on symmetric objects.
In the context of obtaining T, and estimating the error (i.e.,
step 3 and 4), instead of using all the points in the model and
scene data M and S, MCIPE only considers the data from the
sampled layer contours, i.e., M’ and S’. In contrast, CIPE has
to perform ICP for the entire point clouds because a single
layer of contour points may not be enough for determining
the pose for symmetric contours. As a result, MCIPE is more
efficient than CIPE.

On the other hand, step 1 has introduced extra computa-
tional burden in MCIPE beside that of CIPE, because MCIPE
needs to consider more than one layer of contours. However,
this computation is highly parallelizable, and hence we use
multi-core processors or multiple machines to accelerate the
computation.

VI. POSE CLASS DETERMINATION

Both CIPE and MCIPE assume that the target object is
stably placed on a plane. Most objects have a small number
of stable pose classes. For instance, Figure [2 lists all the
possible stable pose classes for a drill.

In our previous work [23], we assumed that the pose
class of an object would be specified by the operator before
the robot uses CIPE to estimate the object’s pose for ma-
nipulation purposes. Such human assistance was considered
as low-cost because human being can easily identify the
pose class. However, such effort may become expensive
when the robot has to be operated under environments with
degraded network communication: for instance in DRC, the
network packages would have a high latency and may be
interrupted and lost during the communication. Such kind
of poor network environment may also happen during the
real life, e.g., in the disaster. As a result, it is preferable
that such human assistances can be replaced by autonomous

350

250

501 J \W Mv
50 0 50 100 150 2

-200 -150 -100

N
1=}
=}

Convolution Similarity
I
=

=
=3
=3

00
Angle(in degrees)

Ca

=] 2|

Fig. 9. The convolution similarities of two layers c¢1 and c2 are added
together to compute the multi-contour convolution similarity cg.

operations, especially when the robot needs to manipulate
more than one objects.

Given that most objects have limited number of pose
classes, we repeat MCIPE for each pose class to obtain a set
of candidate poses, and then determine the pose estimation
result as the pose with the minimal registration error. In
addition, by taking account of our assumption that the
object lies on a plane, we can further reduce the number of
candidate poses by using the height heuristic. For instance,
let’s consider the first and second pose class in Figure [2]
whose overall heights are smaller than other pose classes.
Thus, if the distance from a point in the scene data to the
support plane exceeds a given threshold, we can skip the
MCIPE computation for this pose class.

VII. EXPERIMENTS

A. Correctness of MCIPE

We compare the performance of MCIPE and CIPE using
the gun-type drill because it is a highly symmetric object.
In addition, we also apply MCIPE on the cutting tool and
the fire hose to validate its correctness. The pose estimation
results are shown in Figure[I0]and Figure[IT] We can observe
that for the MCIPE algorithm, the average error on the
estimated yaw angle is 3.237 degrees, and the position error
is always smaller than 10 mm. These results are smaller as
compared to those of CIPE [23].

We also observe that in CIPE, 3 out of 16 tests make an
estimation that is 180 degrees different from the actual angle,
which shows CIPE’s limitation while handling symmetric
objects. In contrast, MCIPE returns with correct guesses in
all the 16 tests for the gun-type drill as shown in Figure [I0]
and all the 32 attempts for the two other objects as shown in
Figure Since our previous work [23] has shown that the

accuracy of CIPE is significantly higher than the state-of-
the-art methods such as [15], we can conclude that MCIPE
is more effective than the state-of-the-art approaches.

200

150 4

100

-100

Estimated Angle {(in degrees}
=]

-150 1 s

-200 . L . L L .
-200 -150 -100 -50 0 50 100 150 200
Actual Angle (in degrees)

« CIPE ® MCIPE

Fig. 10. Comparison between the accuracy of the rotation angles computed
by MCIPE and CIPE on the gun-type drill. The « and y axes represent the
estimated and the actual angle of the drill.

= = N
w =) I S
o =) =

T T

-

=)

&

=]
T
-

e
5
=
T
.-

Estimated Angle (in degrees)
-

o

G

3
T

N

=)
=y
=3
=3

-150 -100 -50 0 50 100 150 200
Actual Angle (in degrees)

[e Firehose @ Cutting tool]

Fig. 11. The accuracy of the rotation angles computed by MCIPE on the
fire hose standpipe and the cutting tool. The = and y axes represent the
estimated and the actual angle of objects.

The efficiency of MCIPE is comparable to CIPE, and the
total time taken for the entire algorithm going through all
the layers is 200ms on average.

B. Pose Class Determination using MCIPE

For determining the pose class of an object, we perform
experiments on the gun-type drill and the barrel-type drill.
The results are shown in Figure [12] and [I3]

For the gun-type drill, we denote class I to class IV
corresponding to the poses illustrated in Figure from
left to right respectively. Of all the 32 test cases we have
experimented (with 8 test cases for each pose class), the
results show that all estimated poses will converge to their
actual pose class.

Figure shows the pose class determination results for
the barrel-type drill, which has two almost perfect symmetric
planes. We define class I as the standing pose, which is the
pose as shown in Figure[I} class II and class III are the poses
in which the drill lays down on the table in two different
ways.

With the presence of sensor noises, the point cloud data
alone may not be enough to determine the pose accurately,

Estimated Pose
|

Actual Pose

Fig. 12. Pose class determination results for the gun-type drill. The x and
y axes represent the estimated and the actual angle of the drill. I, II, IIT and
IV correspond to four pose classes.

and thus MCIPE estimated the pose incorrectly in some test
cases. The result shows that MCIPE estimates the pose class
wrongly for 14 out of 32 test cases in class II and III, and
also for 4 out of 16 test cases in class I, as shown by the red
and green dots in Figure respectively. Though MCIPE

Estimated Pose
.

| n n
Actual Pose

Fig. 13. Pose class determination results for the barrel-type drill. The x
and y axes represent the estimated and the actual angle of the drill. I, II
and III correspond to three pose classes. Blue points are poses whose pose
class estimation is correct. Red points and green points are poses whose
pose class estimation is not correct due to symmetry.

fails on some test cases which shows its limitation while
handling objects with two perfect symmetric planes, it shall
be noted that determining the pose class for these objects is
not possible for any algorithm only using texture-less point
cloud data. To deal with these objects, we need to combine
additional information such as textures for the two candidate
solutions provided by our algorithm.

It takes about 770ms and 590ms to determine the pose
class for the gun-type drill and the barrel-type drill. This
process can be accelerated by GPU acceleration and cloud
computing, since running MCIPE on an object is independent
of running it on other objects. In addition, we could further
accelerate the computation by using the height matching
between the model and scene data.

C. Object Classification using MCIPE

The same technique can be applied for object recognition,
by considering each pose class of each object as a separate

model data and apply MCIPE for registering all of them
against the scene data. For all the four objects in Figure [T}
there are 14 different pose classes in total. For each actual
pose, 5 randomly placed pose has been tested and the results
are shown in Figure [[4, Among all 70 test cases, 63 of them
are correct, 4 of them are incorrect due to the symmetric
problem, and 3 of them are incorrect due to the high level
of sensor noise.

Actual
G-Drill B-Drill F.S.
Pose | I |II|IIJIV| I |[ITIIIV| T |IT|IIO| T |IT|IIX

Estimated

Sd

L
—
=
«n

Fig. 14. Object recognition across four different objects and all their pose
classes. The gun-type drill (G-Drill) and the barrel-type drill (B-Drill) have
four pose classes, while the fire hose standpipe (F.S.) and the cutting tool
(C.T.) have three pose classes.

VIII. CONCLUSION

We have proposed a novel algorithm, MCIPE, to produce
better initial pose guesses for ICP to solve the 3D registration
problem. MCIPE is efficient and is able to provide better
pose estimation results than the state-of-the-art approaches.
In addition, MCIPE is able to automatically identify the pose
class that the target object is currently in. It can further be
extended to handle the object recognition problem.

Future extensions that we plan to investigate include: 1)
improving the curve fitting technique to deal with mul-
tiple contours lying on the same level due to occlusion;
2) automatically identifying the optimal slice contour; 3)
modifying the algorithm to solve the object recognition
problem with massive number of objects; 4) extending our
approach to cluttered scenes with stacked objects by lever-
aging physcially-based simulators to estimate the stability of
stacked objects under a given set of pose estimations and
filter out invalid pose combinations.

ACKNOWLEDGMENTS

The authors would like to thank Professor Wyatt Newman
for his insight and advice in this research.

REFERENCES

[1] G. Pratt and J. Manzo, “The darpa robotics challenge [competitions],”
IEEE Robotics Automation Magazine, vol. 20, no. 2, pp. 10-12, 2013.

[2] M. T. Mason, “Manipulator grasping and pushing operations,” in
Robot hands and the mechanics of manipulation, M. T. Mason and
J. Salisbury, Eds. Cambridge, MA, USA: Massachusetts Institute of
Technology, 1985, pp. 171-294.

[3]

[4]

[5]
[6]

[8]

[9]
[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

A. Bicchi and V. Kumar, “Robotic grasping and contact: a review,” in
IEEE International Conference on Robotics and Automation, vol. 1,
2000, pp. 348-353.

P. Besl and N. D. McKay, “A method for registration of 3-d shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 239-256, 1992.

“Multisense sl,” https://carnegierobotics.com/multisense-sl/.

L. Silva, O. R. P. Bellon, and K. L. Boyer, “Precision range image
registration using a robust surface interpenetration measure and en-
hanced genetic algorithms,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 27, no. 5, pp. 762-776, 2005.

0. Cordén, S. Damas, and J. Santamaria, “A fast and accurate approach
for 3d image registration using the scatter search evolutionary algo-
rithm,” Pattern Recognition Letters, vol. 27, no. 11, pp. 1191-1200,
2006.

Y. Otake, M. Armand, R. S. Armiger, M. Kutzer, E. Basafa,
P. Kazanzides, and R. Taylor, “Intraoperative image-based multiview
2D/3D registration for image-guided orthopaedic surgery: Incorpora-
tion of fiducial-based c-arm tracking and GPU-acceleration,” IEEE
Transactions on Medical Imaging, vol. 31, no. 4, pp. 948-962, 2012.
“Least squares 3d surface and curve matching,” ISPRS Journal of
Photogrammetry and Remote Sensing.

A. W. Fitzgibbon, “Robust registration of 2d and 3d point sets,” in
British Machine Vision Conference, 2001.

N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann, “Robust global
registration,” in Eurographics Symposium on Geometry Processing,
2005.

A. Makadia, A. I. Patterson, and K. Daniilidis, “Fully automatic regis-
tration of 3d point clouds,” in International Conference on Computer
Vision and Pattern Recognition, 2006, pp. 1297-1304.

A. Johnson and M. Hebert, “Using spin images for efficient object
recognition in cluttered 3d scenes,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 21, no. 5, pp. 433-449, 1999.
G. Sharp, S. Lee, and D. Wehe, “Icp registration using invariant
features,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 24, no. 1, pp. 90-102, 2002.

R. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(FPFH) for 3d registration,” in [EEE International Conference on
Robotics and Automation, 2009, pp. 3212-3217.

S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp al-
gorithm,” in International Conference on 3D Digital Imaging and
Modeling, 2001, pp. 145-152.

A. Nuchter, K. Lingemann, and J. Hertzberg, “Cached K-d tree search
for ICP algorithms,” in International Conference on 3-D Digital
Imaging and Modeling, 2007, pp. 419-426.

R. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recognition
and pose using the viewpoint feature histogram,” in IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 2010, pp.
2155-2162.

D. H. Ballard, “Readings in computer vision: Issues, problems, prin-
ciples, and paradigms,” M. A. Fischler and O. Firschein, Eds., 1987,
ch. Generalizing the Hough Transform to Detect Arbitrary Shapes, pp.
714-725.

J. Glover, R. Rusu, and G. Bradski, “Monte carlo pose estimation with
quaternion kernels and the bingham distribution,” in Proceedings of
Robotics: Science and Systems, Los Angeles, CA, USA, June 2011.
Y. Cui and D. Stricker, “3d shape scanning with a kinect,” in ACM
SIGGRAPH 2011 Posters, ser. SIGGRAPH 11, 2011, pp. 57:1-57:1.
M. Ester, H. peter Kriegel, J. S, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in
International Conference on Knowledge Discovery and Data Mining,
1996, pp. 226-231.

E. C. H. Cheung, C. Chao, and W. S. Newman, “Initial pose estimation
using cross-section contours,” in [EEE International Conference on
Robotics and Biominmetics, 2014, p. to appear.

https://carnegierobotics.com/multisense-sl/

	Introduction
	Related Work
	Data and System
	Contour Initial Pose Estimation
	Multi-contour Initial Pose Estimation
	Pose Class Determination
	Experiments
	Correctness of MCIPE
	Pose Class Determination using MCIPE
	Object Classification using MCIPE

	Conclusion
	References

