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Reviewing high-level control techniqueson robot-assisted upper-limb
rehabilitation

Abstract— This paper presents a comprehensive review of high-level control techniques for
upper-limb robotic training. It aims to compare and discuss the potentialseflifferent control
algorithms, and specify future research direction. Included studies mainly come femtedcel
papers in four review articles. To make selected studies complete and comprehensive, especially
some recently-developed upper-limb robotic devices, a search was further conductedl in IEE
Xplore, Google Scholar, Scopus and Web of Science using keywords (‘upper limb*’ or “upper

body*’) and (‘rehabilitation*’ or ‘treatment*”) and (‘robot*’ or ‘device*’ or ‘exoskeleton*’). The

search is limited to English-language articles published between January 2018camibBr

2017. Valuable references in related publications were also screened. Compagdyisis shows

that high-level interaction control strategies can be implemented in a rangehofimeanainly
including impedance/admittance based strategies, adaptive control techniques, and physiological
signal control. Even though the potentials of existing interactive costiratiegies have been
demonstrated, it is hard to identify the one leading to maximum encouragemehtifram users.
However, it is reasonable to suggest that future studies should combénerditfontrol strategies

to be application specific, and deliver appropriate robotic assistance based on physitity disa

levels of human users.

Keywords:. interactive control; upper-limb; robot; rehabilitation

1. Introduction

Stroke is the second leading cause for acquired disabilities in §d{lis [1, 2], and most of
these survivors are left with motor impairments on their upper-limb moveinénts [3]. Other
issues like spinal cord injurids|[4Jnd multiple sclerosif [5] can also lead to upper limb
control deficits A variety of robotic devices have been developed for people’s upper limb
rehabilitation over the past few decafles [6-9]. With respect to traditional physical therapy,
robot-assisted techniques are afolgprovide more intensive training by increasing the
number of repetitions which a therapganimpose, and allow more intelligent interaction

.

Many upper-limb rehabilitation robotic systems have been successfully developed with
experimental validation with human users. They are either wearable exoskeleton robots
(such as the ARMin II[J1}1] and the L-EXJS [12]), or end-effector devices (such as the
MIT-MANUS and the hCAAR[[1}]). These robotic devices can be also classified
into unilateral or bilateral systems. While majority of current robot-assisted upper-limb
rehabilitation techniques are designed for unilateral training of human limbs, bilateral
training has become an emerging form of rehabilitation by stimulating coordinated use of
both armsmS]. One example is the hand robotic device developed by Rashedi, et al. [15].

Robot-assisted upper-limb training can provoke motor plasticity and therefore improve
motor recovery. Passive training is to control the robotic movement strictly along a



desired reference trajectory through position feedback with high gains. In rehabilitation
this passive technique is common at early stages of rehabilitation, when the impaired limb
is generally unresponsive. However, the efficacy of passive training is known to be
limited in stimulating neuroplasticitj [16]. To enhance rehabilitation efficacy, especially
for late stages of therapy, patients are normally encouraged to be involved with the robotic
training with active engagement. It is evident that the low-level trajectory tracking control
techniques do not allow for the implementation of interactive training. High-level control
strategies are required on robotic devices to achieve more effective rehabilitation training
due to enhanced human-robot interaction.

However, the question of what is the most appropriate high-level control technique for
robot-assisted upper-limb rehabilitation is not evident. Direct comparisons between
different high-level control strategies implemented with the same robotic device are
lacking. This review aims to investigate various high-level control techniques already
implemented on robotic prototypes, and analyze their potentials in delivering more
effective robotic training to human upper limbs. In this review, we focus on the discussion
of "high-level" rather than "low-level" control algorithms already implemented on upper-
limb rehabilitation robots. The "high-level" concept is defined as control strategies to
realize interactive robotic training. From the viewpoint el users, “high-level”
strategies generally refer to these designs that direct human-robot interaction following
certain training tasks. A common way is to encouragents’ active engagement with
robot-assisted rehabilitation training considering their movement intention or task
completion performance.

This review paper is organized as below: following the Introduction, a detailed search
and selection process is given, including selected papers, identified databases and
keywords, and inclusion/exclusion criteria. Results of different classifications are
provided nexin tables, followed by Discussion and Conclusion.

2. Search and selection process

Selected studies are mainly from four review pagers| [6-9]. In 2012, Lo and Xie [8]
reviewed 17 typical upper-limb exoskeleton robots for rehabilitation of patients with
neuromuscular disorders, and Van Delden, et al. [6] summarized six mechanical and 14
robotic bilateral upper limb training devices. In 2016, Brackenridge, et al. [7] conducted

a more comprehensive review on upper-limb rehabilitation devices (141 robotic or
mechanical devices), and Proietti, et al. [9] presented a list of 32 upper-limb rehabilitation
robotic exoskeletons focusing on control techniques. To ensure selected studies complete
and comprehensive, especially some recently-developed upper-limb robotic davices,
search was further conducted in IEEE Xplore, Google Scholar, Scopus and Web of
Science using keywordsupper limbB’ or ‘upper body*’) and (rehabilitation*’ or
‘treatment’) and (robot* or ‘device*’ or ‘exoskeleton*’). The search is limited to
English-language articles published between January 2013 and December 2017. Valuable
references listed in relevant publications were also screened.

This review aims to compare and analyze existing upper-limb rehabilitation devices in
terms of high-level control strategies. The inclusion criteria include 1) robotic
exoskeletons or platform robots developed for human upper limb rehabilitation, 2)
implementation of interactive control schemes, and 3) well-developed prototypes that
have been successfully prototyped and tested on human subjects. Studies with design
analysis, simulation or tests on animals will be excluded. When there are multiple studies
with the same robotic system, only those implemented with high-level control are selected.
Excluded studies are those 1) with non-automatic mechanical rehabilitation devices, 2)



with only mechanical description or design optimization of the robotic device, 3) with
only trajectory tracking control implementation,) 4ocusing on human finger
rehabilitation, and 5) with experimental validation of the robotic system on animals
instead of human users. The search and selection process is presented in Figure 1.

Review 1 [4] Review 2 [5] Review 3 [6] Review 4 [7] X
(upper-limb bilateral devices (upper-limb rehabilitation device: (upper-limb exoskeleton devices (upper-limb exoskeleton control strategie:

C Design and Development (robotic devices included, mechanical devices or only fingers roboti elaliced) )

v

CControl Strategies (high-level strategies included, low-level strategies ex%ded)

v

C Experiment Results (human experiments included, simulation or animal experiment resudtscjxc )

Add new materials in recent 4 years)

45 selected studies v‘

Impedance (7)
Interactive training based 0n4 Impedance/admittance (1‘%){ Admittance (7)

- i ic, kineti - Combined Impedance and admittance
human-robot kinematic, kineti Adaptive control (11) ’§ p L)

or performance information Performance (7
AAN (7)

(31)
Potential fields based (j)

Assistance trigerring (4
Proportional assistance %1
EMG (9) < P )

Others (3)

Physiological signals Tunning impedance controller (¢)

(14) EEG (5) Other, such as EMG-angle models (2)
\ MI based (4)
SSVEP based (1)

Figure 1. Flow chart of the search and selection progess.assistasneeded; EMG: electromyographic; EEG:
electroencephalography; MI: motor imagery; SSVEP: stetalg visual evoked potential)

More specifically about the selection process, studies with non-automatic mechanical
devices rather than robotic ones for upper-limb rehabilitation are excluded, such as the T-
WREX that passively counterbalances the arm weight using elastic bands. Studies
with only mechanical description or design optimization of the robotic device are
excluded, such as some upper-limb powered exoskeletons]|18-20], the PneufWREX [21],
the Wrist Gimbal[2], and the 6-REXJS [23], the optimization of a redundant shoulder
exoskeletor] [24], the BONE[S [}5,]26], and the MEDARM|[27, 28]. Studies stch]as [29,
were also excluded due to the lack of experimental validation with human users,
although advanced control techniques were proposed. Studies focusing on finger
rehabilitation are excluded, such as the Haptic Khob [31], the intelligent hand motion
system [[3]], the intention-driven hand robotic system] [33], the FINGER [34], the
pneumatically-controlled glove [353d the electromyographic (EMG) controlled hand
exoskeleton$ [3B, 37]. Studies are excluded if solely involving trajectory tracking control
techniques, four examples are the Hybrid-PLEMQ [38], the ETS-MARSE [39], the robot
arm ], and the ExoRo@l]. Studies with advanced adaptive control algorithms aiming
to achieve stable, accurate, and robust trajectory tracking are excluded, such as an
impedance identification based adaptive control met@ [42], a neural propertional
integral-derivative (PID) control [43], a robust sliding base contfol [44], an adaptive
controller combining a PID-based feedback controller and an iterative learning controller
based feedforward controll§r [45], and an observer based adaptive donftrol [46]. Studies
are selected with higher-qualified high-level control techniques in the case of multiple
studies with the similar robotic system. For instance, studied [12, 47] are included
compared with thos9]. Studies introducing newer prototypes with the same control
strategy were selected with respect to those with old versions. It should be noted that these
studies presenting high-level control strategies of the old prototypes will be still cited to
support comparison and analysis.




3. Results

After a comprehensive search and selection, a total of 45 studies are selected based on
predefined inclusion and exclusion criteria. In Table 1 are 31 rehabilitation studies that
implement interactive training based on human-robot kinematic, kinetic or performance
information, of them seven studigs JL.2, 50-55] based on impedance, seven [stuflies [56-
based on admittance, three studies combining impedance with admijttance [63-65],
four studies[[14, 66-68] for adaptive control based on performance, six studied [69-74]
with assstasneeded (AAN) strategy, one stufly [75] with potential fields based adaptive
control, and three other studif76-7g]. Table 2 presents 14 studies with interactive
training based on physiological signals, of them nine stdidk [13,]79-86] based on EMG
signals and five studieg 47, 87]90] based on electroencephalography (EEG) signals.
Further to divide EMG related research, four studig§[13, 79-81] tried to trigger robotic
assistance by detecting participants’ movement intention using EMG signals, one study

linked EMG signals to robotic assistance, two stUdig8pBlinked EMG signals to
impedance control parameters, another two stldigs[85, 86] represent others, such as
EMG-angle models. For EEG related research, four stiidi¢is [47,88-90] used EEG signals
to detect motion intention based on motor imagery (MI) but the one [87] using the steady-
state visual evoked potential (SSVEP) method.




Table 1. Thirty-one studies implementing human-robot interaction tgabdsed on kinematic, kinetic or performance information.

*kk

Studies Joints Control Strategies Features Training Tasks Performances
Impedance/admittance control (* impedance, **admittance, ***combined impedance aalinittance)
gg\f’igg Forearm | | . 0cdance control In patientin-charge mode, it required low impedance. In rahetharge| Play games in virtual realityn | Experimental results suggest that the develo
* Wrist p ) mode, it needed high robot impedance. eight different directions. device can be used as a good haptic interface.
} Leave the patient the possibility to actively condti task and being The evaluation on eight post-stroke patients show:
A ) passively guided by the robot only when he/she is len@bcomplete thel Reaching movements. significant reduction o e performance er
LEXOS | Shoulder | Impedance control ively guided by the robot only when he/she is lenbcomplete the Reachi t ignificant reduction of the perf
reaching task. (paired t — test,p < 0.02).
: . | The feedback loop of measured force and torque wesdrcmted at each join Perform  voluntary movemen - : :
IntelliArm Shoulder | Zero resistance regulatio to regulate zero force/torq{E]]. It was accurate and robuhieto dynamics| training with zero resistand&l]. Feasibility of the integrated capabilities of the g
* Elbow control [B]]. Internal model b an . : h : ) o system was demonstrated through experiments
Hand based impedance cont{al] estimation error correction using the internal modeltrebrstructure and| Active reaching training afte siroke survivors and healthy subiects
P < | efficient estimation of nonlinear dynamics using timéadestimatior[52]. | passive stretchingp]. y subjects.
Rehab- Shoulder The centralized torque control is based on a fullagiyics model of the
Exos Elbow Interaction torque contro| exoskeleton, calculates the kinematics and dynamics ofykEm and Track desired traiectories Tests have been carried out to validate the deg
exoskeleton Wrist based on impedance. estimates the feed-forward contribution for the corspgan of dynamic J : torque tracking in haptic interaction tasks.
* loads measured by joint torque sensors.

: : . : RiceWrist is a modification of the MAHI exoskeletd
RiceWrist Forearm In the case of the forearm, the task-space and thesjpate are the same al Free motion and steady contg S gy :
B4 Wrist Impedance force control. hence the impedance controller is simply a joint-sgacéroller. with the visual wall. %ﬁigu?;gillﬁgs low friction, zero-backlash and hig

oulder e impedance control contains the gravitation veg: 0 compensat| Tracking a cycloidal joint anglq e impedance controller ensures tracking o

LIMPAOT | Should Impedance control Th d trol t th tat sed t i Track loidal t lg Th d troll track 1
&5 Elbow p ) for gravitational effects. reference cycloidal joint angle reference.
Support Move the upper limb along th - . - .

Shoulder . : . h Training on subjects verified the effectiveness ef
Irom?cii Elbow Admittance control For resistance force control. ?huel(rjae;gjisttrajecmry made by th control algorithm of these systems.
MEMOS EIT)%L\JAI’der Stiffness control based o| The selection of parameters like task duration, maximueedpforce| Track a figure in a horizonta Results showed that the robotic system is able to
B+ Wrist admittance. threshold could be changed for each patient. plane. chronic hemiparetics to reduce their impairments.
iPAM robot E{L%lé\llder Admittance control It allowed the charactistics of assistance to be alteregch degree o] Perform the cycle task for 1} Results demonstrated the control suitabil
&8 Wrist ) freedom DOF) of the human arm independently. times. depending on the severity of patient disability.

: e - R Perform  isometric, isotonic e - !
ers*t* robot Wrist Admittance control. Iansglr((e)rgr?gtteslfveral rehabilitation exercise by adjustimgeidance parametel passive isokinetic exercise a tThr:gu\g/]?]“g%eﬁk g1netsproposed system is confirm
’ active isokinetic exercise. )

Shoulder When combining Gental/@P] with the Gentle/S robdBp] a total of 6 Results indicate the benefits of functional reach
*t*le/ G Elbow Admittance control active and 3 passive DOFs are available, and vigwaicises are designe| ﬁg?lcerr;g:]atzp-transfer-release grasp therapy as performed by the Gentle/G rob|

Hand to be highly interactive and motivational. ' system.

Shoulder Task space based admittance control was about

i Two different admittance controllers: one used thesftoccreate trajectorieq : : lower in mean interaction energy for the peg in

%%UU Egt;g\grm Admittance control and the other resolves the interaction forces intot jmrque equivalents il?}%f%;nr}glséks of inserting the pq hole task compared to joint space control. T

Wrist before creating trajectories in joint space. ’ completion time increased with both controllg

compared to back-driving the device.
Bimanual Shoulder The parameters of admittance control could be adjustsed on training Perform  tracking exercise| Results showed the system is suitable for m
robot Admittance control p Y developed to stimulate motq learning experiments during unimanual and biman
[62** Elbow mode. learning. movements.
HEnRie Elbow High level impedance contrd A virtual physiotherapist to stimulate and guide théigoa through the| Perform 17 repetitions of th{ HEnRIiE allows training of complex reaching a
[65*** Hand and low level admittance onq rehabilitation process. reaching and grasping tasks. grasping movements.
: Shoulder | Patient-cooperative  contrg . : Fulfill a task and gets patien
%"Tﬂ Elbow based on impedance ar égﬁﬁ,oﬁe‘gnd 2 are admittance controlled, and axes @ ace impedancs cooperative support in a ADL{ The latest ARMin system is commercially availablg
) Wrist admittance. ) game.
Upper-limb sh . - g . : . Experimental results demonstrated the feasibi
oulder | Impedance/admittance Gravity and friction compensation algorithms are depetl to make thg Perform upper limb voluntary . :

exoskeleton Elbow control. use’s interaction with the robot feel light. movements. impedanceand admittance contral for both the rolj

elbow and shoulder joint.




Adaptive control (* performance based, **AAN, ***Potential fields based)

Trials on four stroke patients show promising resy

: Shoulder . . . . - >t : ;

Bimanual ’ : Allow the paretic arm to contribute as much as fdsgoward tracking the . : After eight training sessions, the subjects were abl

robot [[6&]* &ﬁg}’v Adaptive assistance control reference object. Tracking exercises. apply forces with the paretic arm similar to the forg
of the unaffected arm.

i | The level of difficulty was managed by the controllodulating two . : : Preliminary results show that robotic therapy m

:’gbg{rli%l* \Ij\(l)rggflrm (I?grl;ft%?wance based adapti parameters as a function of the performance: a) freyuef the target] gﬁﬂgﬁ;g}fﬁ:g{)ﬂ ttr:r(:ké?g of improve motivations in patients and provide tangi

’ motion; b) level of the robot assistance. y g target. results even in a short term experience

. A acci The activeassist therapy utilizes the measure of a subject’s motor ability and The results on three stroke subjects demonstrated

RUPERT E{Eg\}yer Qggptlggaat(i:\t/l(\a/e %‘Q(‘)S_l)sterrg(t)id real-time movement kinematics to initiate robotic assisa at the| Reaching movements to differe| the device can be used for administering roj

[ 68]* Wrist mode p P appropriate time. The adaptive co-operative modetoisenable task| target locations. assisted therapy, in a manner that encourd
) completion instead of completing the task for the ettbj voluntary participation.

Active non-assist for Seventeen participants used the robotic de
hCAAR E{E’%lfl\llder assessment and actiy The assistance levels adjust according to the perforniarice assessmer| Each game involves a series | independently for eight weeks in their own hon
T4 Wrist assisted bimanual mode fq exercise. linear movements. with significant improvements in the kinematic a

training. clinical outcomes.

(1) Virtual tunnel to stay close to the desired path; ; :
PASCAL Shoulder (2) Minimum and maximum speed restrictions: Move to one of eight differen| Results showed that the AAN controller covers
robot AAN path control. P : . targets located at a distance of | support range from a passive arm that needs
63 Elbow (3) Direction-dependent supportive flux along the path; cm around a starting position assistance to a completely active movement
(4) Gain-scheduling control to ensure the target is reached. ) :
: Results demonstrated the ability of the orthosis
Pneu- Clavicle . . - . h / :

Model based AAN contro|l Lookup table forming a model of the patient’s ability [70], and real-time : - complete reaching movements with graded assist
%R*Ex () Elr:)%ld/\l,der with forgetting[[70[71]. computer modeling of weakness optimizes robotic assisfd}e [ Reaching movemenfS0I71] and to adapt to the effort level of the subjecthw

improved movement abilitfZDI77].

. . : . -1 The RiceWrist-S is a 3-DOF serial mechan& |
RlceV\*/*nst Forearm Model based AAN control. | Model-based sensorless force estimation to determine suajettitity. Perform a target-reaching task in The AAN controller and accompanying algorithr]
s Wrist visual interface. were demonstrated experimentally with subjects

; ; e The control allows parameter adjustment to prov
Upper-limb | 5. It handles humarobot interactions in such a way that correct moveang ] ] flexibility for therapists to adjust and fine tur
robot Wri AAN control. are encouraged and incorrect ones are suppressed ® thmakKraining| Trajectory tracking. ? h ” f th :
3+ rist process more effective depending on the conditions of the patients and

) progress of their recovery.
NTUH- " : . : T Smooth trajectory with continuou| Results with six patients are positive and
ARM EIFL%%\I,der AAN control. gﬁgﬁngglgﬁiﬁogggiggggg trajectory as basis to deterrtiie timing to positioning and velocity using th{ assessment by physical therapists also re
[74** : cubic spline method. promising results.
Upper-limb | Shoulder : ] The control modified the robot behavior in accordamdth a force field Results showed that the controller based on pote
robot Elbow Zg;ert'it\'lae“ contfrlgllds base defined along its workspace, trying to mimic the cdivecactions done by Hgfak igt]e path conducted by fields achieve a stable and safety behavior of the r
| 45! i Wrist p : the therapists. pist. with an acceptable accuracy.
Others
Upper-limb | Shoulder | Hybrid Position/force contro| Constrain the movement in the desired direction amdaimtain a constan| Planned  linear or  circula E)%Sol:Itsa?]ngnuci’argasll?g}gcsttsrcilr(ﬁosu%bﬁﬁféi;p%vr‘]’gdcti?g
robot[[7g] Elbow incorporating fuzzy logic. force along the moving direction. trajectories movements under predefined external force levels
Forearm ; Fuzzy PI tuner was used to compensate the nonlineantgs of the robof : . Results showed that in active mode the robot cq
robot[[77] Forearm | Fuzzy logic torque control. and the unknown disturbing torque from the subject. Trajectory tracking maintain constant assistant or resistant torque.

A method to detect the motio| ,, . . oo . . Results indicated that the proposed method of exe
ULERD Elbow | It is useful with the lack of backdrivability and acate detection of thg Perform elbow flexion ang : b : -

3 Wrist of the human forearm usin contact force between the human and the device extension. resistance can be implemented and is effective for

elastic materials.

with the ULERD.




Table 2 Fourteen studies implementing human-robot interaction training based onlpgigsibsignals.

Studies

Joints

Control Strategies

Features

Training Tasks

Perfor mances

Physiological control — EMG signals (* triggering robots by detecting motion intentidh linked to robotic assistance, *** linked to impetize control parameters, **** representing others, such\M&+angle models)

MIT- Shoulder Speed, time or EMG signals { . . .
MANUS Elbow initiate  robot assistance fg EMG activity increases above the threshold. Reaching movement tasks. EES Setf;fgrtlztl\i)eenneesﬁstlog ;?enﬁgggrqtt?gzjfct\{gr?lifé?#éto
I3+ Wrist performance-based robot therapy. 9 221510
Upper-limb E{E’%%der EMG signals for patients’ movement | Levenberg-Marquardt algorithm based back propagatéural | Perform six upper-limb activitiey Results on healthy subjects demonstrated
robot[79]* Wrist intention detection. network is used to recognize six rehabilitation motions. of daily living (ADLs) motions. effectiveness of the proposed method.
: . The difference of the EMG-based estimated muscle foreeskat| Perform flexion and extensiol .
Exoskeleton | Elbow EMG signads for users’ motion ] : p : The effectiveness of the proposed approaches
T+ : ; ; ; the agonist and antagonist muscles is considered as ¢nene# | movements of the elbow and th e : ;
arm[B0] Wrist intention detection. input in the controller. wrist, been verified on five subjects.
EMG based game parameters can be adapted to train s :
InMotion? Shoulder The onset of a patient’s attempt to | muscles and to deliver robotic treatment even whepalient is Perform ointto-noint EpreEr:\rAng_Trf Wgrreedcor;crl]lécte;iotjoc)te_\éasl;g:gdthetﬁg:g
* Elbow move is detected by monitorin only able to generate weak bursts of muscular caiurec EMG movements in a hoﬁzontalpplane however its gl?nical effectiveness was not evaluate
EMG signals in selected muscles. | signals can be useful to better understand patienvescdrom this study
stroke. '
Provide continuous assistive torque in proportioméamplitude . . .
Elbow robot ) o of the subject’s EMG signal from the triceps and enable strol Control elbow movement to trac| Results on eight chronic stroke patients shoy
"% Elbow EMG signals for assistive control. subiects fo perform training bevond their initial vatary range and match the target pointer th| improvements in upper limb functions in terms
of rrjwtion (R%M) g bey yrangé| yas displayed in real time. clinical scales and robot-measured parameters.
Upper-limb Shoulder EMG si : ; . . : fe s : : . The robustness of the proposed approach has
signals based impedand The estimated joint stiffness through EMG signals iszetll to | The designed trajectories we T . :
exo%fleton 5\}22}/" control. design the optimal reference impedance model. selected as 0.5*sin(t). \égféfrlggrusmg a real robotic exoskeleton and a hur
Shoulder ; : ; L
; ; Impedance parameters were adjusted in real time bydzirg ; : ;
SUEFUL-~7 Elbow EMG signals based impedang gy S | Perform  cooperative ~ ADLY Results with two young subjects showed f
B2 Forearm control. %Bgzl;pr%%rdli'f?;? posture and EMG activity levels based oauro motions. effectiveness of the proposed robotic system.
Wrist '
An  EMG-angle model wad Elbow joint angle can be predicted from EMG signalaubing . . . . [
Elbow constructed for pattern recognitio] the back-propagation neural network as the classifiens the Perform elbow flexion and Results with six healthy subjects |nd|c§ated that
%)Iskeleton Elbow i'e. using EMGs to predict elbo| nervous system can adapt the exoskeleton control ftaretit extension movements by holding exoskeleton could be controlled by the user’s motion
Hkk S : 1-kg load. intention in real time based on EMG signals.
joint angle. motions.
W-EXOS Forearm EMG-based fuzzy-neuro control f Multiple fuzzy-neuro controllers are used owing to mesd Perform wrist flexion and Results with two young subjects show that the
RG] Wrist realize natural and flexible motio| activation levels changing in accordance with theglem of | extension and forearm pronatiq EXOS is able to assist wrist and forearm motion|
= assistance. motions. with assistance. physically weak individuals.
Physiological control —EEG signals (* detecting motion intention based on SSVEP, ** deterthotion intention based on motor imagery (Ml))
Shoulder
« | Elbow A SSVEP based brain-computs : ] Grasping-a-ball and a carrying Twelve able-bodied subjects were able to con
BOTAS[E7] Wrist interface BCI) using EEG signals. The BCl was used to trigger predefined movements. the-ball movement. BOTAS successfully using SSVEP.
Fingers
At the level of action plan, a kinect-based visiostegn was . : ; . .
] employed to track objects, and an eye-tracker was foséarget Assist the patient in reaching ar| Results showed that subjects were able to operat
L-EXOS Shoulder Gaze-BCl-driven control. selection. At the level of action generation. an HizGed BCl| 9rasping of real objects by onlin exoskeleton movement by BCI with a classificati
| Elbow BCI: brain computer interface was used to control the movem%nt throuah the motor imal capturing his/her intention o| error rate 0f89.4+5.0% in the robot-assiste
(MI) paradigm 9 movement. condition.
BRAVO Shoulder . : : The average elapsed time of 3.45+1.60 s indicates|
Exoskeleton | Elbow Movement intention detection basg MI-BCI was used to trigger the robot movement. Perform . : patients were able to volitionally trigger ta
et Wrist on MI-BCI. reaching/grasping/releasing task execution through the MI-BCL.
Shoulder : : : : . . : . ;L > Results showed that the proposed BCI can link th
*e*oPower Elbow I(\)/InO\'(/lelr_nBeCnIt intention detection bas¢ Iélfrflcl)(rtsthreedlmensmnal robotic training to the participants Reaching movements. dimensional robotic training to th@articipants’
= Wrist ) ) efforts and allow for task-oriented practice of ADL.
. Elbow, ; : . Several BCI features were optimized to increase syg Initiate elbow flexion or extensiorl Evidences show the closed-loop EEG-based BCI
';LI Exo-ll Forearm, gﬂnomg%lt intention detection bass performance in the presence of single-trial variabdityyRCPs | of the exoskeleton to reach th be optimized to perform well across multiple dg
Wrist ’ In the injured brain. target. without system recalibration.




4. Discussion

The efficacy of robot-assisted physical therapy can be enhanced when actigerseqgt is involved by

the patient, while passive training is not capable of inducing motor ledrnihg [47]. Encouraging human uset
to perform self-initiated movements is thought to be an essential requirement to achieve effective cortic:
reorganizatior [4]7]. Over the past few decades, a variety of high-level controlissizge been proposed

to modulate the robot assistance according to kinematic, kinetic, performance, or either physiologice
information measured during task execution, such as trajectory tracking error, interaction forge/torque
EMG, and EEG activity, as summarized in Table 1 and 2.

4.1 | mpedance/admittance control

Human-robot interactive tasks cannot be completely handled by just motion control. Position contro
generally rejects external forces or torques from human users as disturl¥amdegpedance control
scheme is generally considered as the basis of interactive robotic training. It has been widely adopted wi
rehabilitation robots for enhanced training safety, comfort, and efficacy. Therevareethods of
implementing impedance control based on controller causality: impedance control (force/torque base
method) and admittance control (position based method). The impedance controller takes a displaceme
as input and reacts with a force, and the admittance control accepts force and reacts with the position.

Impedance control has been commonly used with a variety of rehabilitation robotic systealgzéo re
interactive training. Seven of selected studies in Taple]fl [12,]50-55] implemented interactive traiing ba
on impedance. Frisoli, et al. [12] developed an impedance controller on a force-feedbacle&xoiie
upper-limb rehabilitation, which allows the patient for active trairimgpeing passively guided when
he/she is unable to complete the reaching task. Oblak, et al. [50] developed an impedance controller on
universal haptic device to allow patientcharge training where the interaction forces are controlled
towards zero with a low impedance. Experimental results suggest that this robotic system can be used a
haptic interface between a computer and a human user. Park, et al. [51] developed Armirttedli
realized zero resistance regulation control through a direct interaction torque feedbaekh\&/dibes not

use the impedance law, this results in a consant interaction torque control, such as zero torque for acti
training. More recent, the same group proposed an internal model based impedance method to control t
robot to be backdrivablp [$2]. The introduction of the model based control structure improved the contro
accuracy and robustness through dynamics estimation error correction, with positive experimental resul
on both healthy subjects and stroke survivors. Solazzi, et al. [53Jansegpedance strategy to control
contact forces/torques not only at the end-link handle, but also at intermediate links, based on a fu
dynamics model of the exoskeleton. Similarly, a force control was implemented on the RiceWrist based o
a task-space impedance lqw[[54]. Otten, et al. [55] constructed a cascade controlleryolnatiiecaily
powered LIMPACT, of which the impedance controller contains the gravitation vector and a statekfeedbac
controller to regulatjoints’ position and velocity.

In general, impedance control has showed great potential for interactive training with a variety of
rehabilitation robots. While the issue of poor accuracy in free-space due to friction and other edmodel
dynamics exists, this can be mitigated through inner-loop torque control or the use of low-friction
components.

In contrast, while admittance control may result in contact instability with stiff environments, it provides
better performance when interacting with soft environméntp [95]. Admittance control generally requires
high transmission ratios such as harmonic drives for precise motion control. Seven [
employed admittance control for interactive training for robot-assisted upper limb rehabilitation. This kind
of control method aims to compute position and velocity of the robot based on human-robot interactiol
force or torque. Furuhashi, et al. [56] used admittance control on a rehabilitation support robot fay teachin
function and muscle tests. For the MIME, Micera, et al. [57] implemented stiffness control to adjust the
resistance of the robotic system during the tracking tasks. Stiffness contratiieasged by considering

only the proportional component. In a more complex system, Jackson, et al. [58] used admittance contr
to modulate the input trajectory for each DOF as a function of measured force or torque.cointritzr
design is also applied on a wrist device][59], the Gentle/6 [60], the EXOFUL7 [61], and bimanual robot

.
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There are another there studjes [63-65] with the implementation of both impedance and admittance contr
schemes. Lo [63] respectively employed impedance control and admittance control to implemen
interactive training strategy on a robotic elbow joint and a shoulder mechanism. For the HEnRie, Mihelj
et al. [65] developed a task level controller where the physical model of the virtual environment is
impedance based, while the robot joint level control is admittance based. Oldewurtel, et al. [64] propose
a patient-cooperative training scheme based on admittance control of Axes 1 and 2, and incpattahce

of Axes 3 to 6.

4.2 Adaptive control

Impedance and admittance control can be simply implemented with intuitive properties, unfortunately
these approaches fail to incorporate the time-varying capabilities of a human user and may thus interve
incorrectly. For instance, as robot-assisted rehabilitation training progresses, the participant may requi
less assistance than is provided. To provide appropriate robotic assistance in response to tempo
variabilities in subject performance, several adaptive control schemes have been proposed.

Four studies[ [14, 66-68] implemented adaptive control, where the adaptation of controller parameter
replies on online measurement of the participant's training performance. Sivan, et al. [14] controlled th
hCAAR to provide assistance when the user’s voluntary upper limb movement is insufficient to complete

the prescribed task. The assistance levels were adjusted according to the performance in the assessn
exercises. Trlep, et al. [66] proposed a control strategy with adaptive assistance on a bahat)@@ining

to adjust the contribution of the healthy arm and thus reduce the load on the paretic side. To achie\
smoother and more precise motor patterns on the IIT-wrist robot, Masia, et al. [67] evaluated online
performance and modulated both assistance and difficulty of training tasks. Balasubramanian and He [6
implemented two adaptive robot-assisted therapy modes (co-operative mode and active-assist mode). T
adaptive active-assist mode completes training tasks when the participant fails to do so voluntarily. |
initiates robotic assistantg measuring subjects’ motor ability and their real-time movement kinematics.
The adaptive co-operative mode is based on the idea of enabling task completion insteadetihgaime!

task for the subject. Both modes were designed to adapt ferticipant’ motor ability for enhanced
training efficacy.

Providing too much assistance may have negative consequences for learning, thus a commonly stated g
in active exercise is to provide AAN, which means to assist the participant only as much as is needed
accomplish the task [96]. This kind of control strategy is expected to maximize robot-assisted training
efficacy, and has been successfully implemented on some upper-limb robotic ystenjs [69-74]. Keller, et &
[69] designed an AAN strategy by combining a path controller with additional speed restrictions to support
when the arm speed is too slow, and to resist, when the speed is too fast. Similar high-level control to ass
only as needed in reaching exercises were also implemented on the PneufWJREX [70, &dhtiiciier

allows voluntary movements toward the task target while resisting movements awaty Asmach target
position is reached, the controller builds an internal model of the partiGigap4bility, and learns the
forces required for movement completion. Pehlivan, et al. [72] proposed a mAAN controller through
sensorless force estimation to dynamically determine subject inputs without considering the nature ¢
subject capabilities, and computes a corresponding assistance torque. Another two studies with the AA
strategy also showed promising res{iltd[73, 74[. I [73], the controller handles-wabwatrinteractions in

a way that correct movements are encouraged and incorrect ones are suppressed to make the trair
process more effective. Chen, et al. [74] defined a smooth motion trajectatyaas to determine the
timing to switch on/off the assistance. In a different way, Diez, et al. [75] proposed a potential fields base
control method to modify the robot behaviour in accordance with a force field defined along its workspace
trying to mimic the corrective actions done by the therapists.

Some other methods have been also adopted for interactive training on upper limb rehabilitatibots [71
[78]. Ju, et al. [76] developed a position/force controller incorporating fuzzy logic on a robotic system to
constrain the movement in the desired direction and to maintain a constant force. Kung, et al. [77] develope
a fuzzy logic tuned torque controller to generate assistant and resistant torque on a forearm rehabilitati
robot. Song, et al. [78] used elastic components to detect human motion in the ULERD system for resistan
training. It was demonstrated that this method could be used commonly in the field of human-robo
interaction where the robot is of high friction, non-backdrivability, and difficult measurement of contact
force.



4.3 Physiological control —EMG signals

Physiological signals can be used to avoid slacking and provide robotic assistance. Traditional contre
concepts have been extended into the consideration of human motion intention during the robotic trainin
EMG signals recorded from selected muscles have been used as an indicator of training fpadterns.
studies[[1B] 79-81] adopted EMG signals to trigger the robotic motion laspsatients’ movement
intention detection. Of them, Krebs, et al. [13] proposed a performance-based impedancegoritnoha

which is triggered via speed, time, or EMG data, determining optimal subject-specific therapy. The gam
is triggered when the EMG activity increases above the threshold. Li, et al. [79 lbaekl propagation
neural network to recognize six upper-limb rehabilitation motions. Li, et al. [80] collected EMGdagaal

of selected musdieo reflect the user’s motion intention, where the difference of the EMG-based estimated
muscle force between the agonist and antagonist muscles is considered as the reference input in
controller. To achieve a similar goal, Dipietro, et al. [81] uBBHG signals to detect patients’ attempt to

trigger the robotic training. The recorded EMG signals were also used to understand the process of recove
from stroke. In general, preliminary tests of these proposed EMG-based triggering stoatigles have

been verified on human users with great potential for clinical applications.

EMG signat, an indicator of human users’ effort generation, can be used for adjusting robotic assistance.
Song, et al. [82] collected EMG signals from medial triceps brachii of the affected arm fortipregdo
control to provide continuous robotic assistance, as in Equation (1) of Table 2. Results on eight chroni
stroke patients showed improvements in upper limb functions in terms of clinical scales and robot-measure
parameters. The EMG signal can be also used or tune control parameters for adaptation. Gbd8d4, et
developed an impedance controller on the SUEFUL-7 by considering upper limb posture and EMG activit
levels. Li, et al. [83] proposed an EMG-driven musculoskeletal human forearm model to account for joint
stiffness, and then designed the optimal reference impedance model.

EMG signals have been applied for robot-assisted rehabilitation applications in different fofmk. In [86], tc
achieve natural and flexible motion assistance, an EMG-based fuzzy-neuro control was developed
combining flexible fuzzy control and adaptive neural network control. Experimental results with two young
subjects support the \WXOS' function in assisting wrist and forearm motion for individuals with physical
disabilities. Another studf [5] developed an EMG-angle model for pattern recognition during the robotic
training. The elbow angle was predicted in real time from EMG signals, and then the angle was input to th
controller as the desired trajectory.

While EMG-based control strategies have been widely used with robot-assisted applications, there are sot
challenges in reliably and accurately collecting EMG signals. For instance, tlysggqaical signals are
sensitive to the electrode placement, interference from neighboring muscles signals, and skin propertie
However, the use of EMG signals to trigger rabeiction offers several advantages: 1) allowing robot-
assisted therapy to be customized based on specific muscles; 2) providing a means to verify that patiel
are actually attempting to generate voluntary movesneaiher than engaging their trunks to initiate
movements; 3) triggering the robot earlier than based on kinematic signals; 4) allowing highitgdmpa
subjects to activate robot assistance even when they are unable to produce sufficient movement of triggeri
5) providing datao understand the process of recovery and patient’s motor abilities. These recapitulative
points have been also identified by Dipietro, et al. [81].

4.4 Physiological control — EEG signals

BCI technologies have been also developed by extracting neurophysiological signalkefrbrain to
control robotic devices. The scientific interest in using BCI is corroborated by the fact they can be use:
even in the earliest phase of stroke recovery, when the injured human upper limb is not able to infe
movement intention to guide the robotic training from any of the available peripheral biometric
measurements, such as EMG activity and joint displacements.

SSVEP signals are natural responses to visual stimulation at specific frequencies, which mostly require
less training than motor imagery systems. Sakurada, et al. [87] developed a non-invasive SSVEP sigr
based control method to trigger grasping/carrying ball training movements. Result showed that th
participants managed to control the BOTAS. In contrast, motor imagery (Ml) based BCI technologies
represent a promising rehabilitation approach for sensorimotor training, and is advancing verywtpidly
encouraging results. Barsotti, et al. [88] used the MI metbaittect patients’ movement intention to



trigger a full upper limb robotic exoskeleton for reaching and grasping/releasing exercises. Theyeasibilit
of the proposed system was verified with three chronic stroke patients. Brauchle, et al. [89] developed
similar MI-BCI on the ArmeoPower where EEG signals were aedli@ control the visualization engine.

It was suggested that the proposed BCI technique could successfully link three-dimensional robotic trainin
to the participants’ efforts and allow for task-oriented practice of ADLs. Bhagat, et al. [90] analyzed
movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes to dete
patients’ intention triggering the motion of an upper-limb exoskeleton (MAHI Exo-Il). Several BCI features
were optimized to increase system performance, and evidences show that the closed-loop EEG-based E
can be designed and optimized to perform well across multiple days without system recalibration. Wit
respect to SSVEP based BCI technologies, the MI-BCI generally require a longer peaaurgf 8ession

for better identification performance.

BCls can detect intent by simultaneously combining information from different types of inpaissiguch

as eye movements for enhanced safety of rehabilitation robots. Integrating an eye-tracking system into
MI-BCI, Frisoli, et al. [47] proposed a gaze-independent BCI-driven control scheme on the toExos
provide active assistance in reaching and grasping of real objects by online capturing his/hen otenti
movemen Experimental results from three healthy volunteers and four chronic stroke patiergs gtaiw

all participants were able to operate the exoskeleton with a classification error 8at¢ 6f5.0%. This
indicates the high potential of the proposed gaze-BClI-driven robotic assistance for neurorehabilitation ¢
patients with motor impairments after stroke.

In general, a variety of signal features and classification algorithms have been verified witicteay
accuracy. As a result, the training time has been significantly reduced, which tasned widespread

BCI applications in the daily life of disabled people. However, more research should be devoted fc
investigating various signal acquisition methods and their performance, as well as identifying
electrophysiological and metabolic signals that are best able to encode user intent.

4.8 Limitations of thisreview

An attempt was made to ensure a complete and comprehensive search and selection relating with high-le
control techniques of upper-limb robotic systeds.important assumption is that the four review papers
include most typical upper-limb robotics systems reported before the year of 2013. However, othe
research may exist in which upper-limb/body was not identified as a key term within the article. For instanc
some articles about upper-limb rehabilitation robots are probably described in terms ofxtgweity.
Studies written not in English have been excluded, leading to potential incomplete search.

5. Conclusion

This paper reviews a variety of high-level control techniques that have been used for robot-assisted upp
limb rehabilitation. The maipurpose of interactive strategies is to encourage human users’ engagement

and promote enhanced training efficacy. Comparative analysis shows that high-level interaction contrc
strategies can be implemented in a range of methods, mainly including impedance/admittance algorithm
adaptive control techniques, and physiological signal control. To summarize in the field of control strategie
for interactive rehabilitation training, 1) the impedance and admittance method is simply implemented witf
intuitive properties; 2) adaptive control is needed when incorporatimegvarying capabilities of human
users; and 3) physiological signal control is an effective way of avoiding slacking and providing robotic
support only when the brain is particularly responsive to peripheral input.

Even though the potentials of existing interactive control strategies have been demonstrated, tbis hard
identify the one leading to maximum encouragement from human users. This is due to the lack of studie
with direct comparison among various control algorithms. However, it is reasonable to suggest that futur
studies should combine different control strategies to be application specific, and deliver appropriate robot
assistance based on physical disability levels of human users.
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