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ABSTRACT
In this short paper, we propose a new direction of cross-cutting research for pre-
diction and control of spreading COVID-19 viruses over a human social network.
Such a network consists of human agents whose behaviors are highly uncertain and
biased. To predict and control such an uncertain network, we need to employ various
researches such as control theory, signal processing, machine learning, and behav-
ioral economics. In this article, we introduce our recent research results, and propose
future research topics to overcome the COVID-19 pandemic.
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1. Introduction

Optimal control is a fundamental theory in robotics. It gives mathematically strict
ways of designing control systems, for example, a robotic manipulator with minimum
time to achieve a given task [1], stabilizing bilateral teleoperators under network time
delays [2], and designing human-like dynamic running motion [3]. The performance
achievable by optimal control highly depends on the accuracy of the mathematical
model used to characterize the object to be controlled. Thus, optimal control has been
mainly applied to physical systems such as mechanical and electrical systems that can
be modeled very precisely.

Optimal control is also being applied to human social networks, viewed as cyber-
physical-human systems (CPHS) [4], and in particular such ideas have been discussed
in the context of the COVID-19 pandemic [5]. Controlling these networks is not easy
since they consist of human agents whose behaviors are highly uncertain. Thus, we
cannot directly apply conventional optimal control to these systems by treating people
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Figure 1. Cyber-physical-human system for control of virus spreading

in the network as physical systems such as electric motors. Instead, we need to design
effective interventions to change human behaviors and achieve a global goal within
the CPHS, such as reducing the infection rate in the network. This is not only a
control problem but also an important problem in behavioral economics. In this short
paper, we propose a new direction of cross-cutting research: control, intervention, and
behavioral economics over networks.

Figure 1 illustrates the cyber-physical-human system we consider in this paper.
The “Data/Network Analysis” block in Figure 1 constructs network models from ob-
served data. This leverages the fact that it now has become possible to collect massive
amounts of data about human behaviors from various sources, such as open online
surveys [7] and sensor measurements. Methods to estimate networks from these data
have been widely studied in the fields of signal processing and machine learning [8–
14]. These methods rely on mathematical priors for the data on underlying network
structures (e.g., signal smoothness on the network), and then, they estimate the most
likely (potentially time-varying) network from observed data.

Next, based on network models learned from data, we design interventions to “con-
trol” the network (“Intervention Design” block in Figure 1). The main purpose of this
paper is to propose an intervention design, for which we adopt three approaches:

• model-based optimal control for social distancing,
• experiment-based incentive design with causal inference,
• and learning-based incentive design with multi-armed bandits (MAB).

These methods are related to each other. For example, the model-based approach can
give a theoretical limit of achievable performance of control to the experiment- and
learning-based approaches.

Model-based approach: By constructing networked epidemic models from ob-
served data, we can predict the propagation of viruses in human social networks for
designing effective control strategies. To achieve this goal, we can leverage the results
from the emerging research field of network epidemiology [15], which provides various
frameworks and tools for modeling, analysis, and control of epidemic processes taking
place in complex networks. One of the trends in this field is to utilize tools from systems
and control theory for better understanding epidemic spreading processes [16]. For ex-
ample, we have recently shown that the time-variability of human contact networks
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can be efficiently captured [17] by using the theory of Markov jump linear systems,
a model of stochastic dynamical systems studied in the systems and control theory
[18]. We have also shown that modeling of epidemic processes as positive systems
[19] allows us to use geometric programming [20] to design effective interventions on
epidemic processes [21].

Experience-based design: In behavioral economics, causal inference is a powerful
tool for incentive design [22] for estimation of effectiveness of incentives. More recently,
the method has been applied to engineering problems. For example, a recent study [6]
reports an application of behavioral economics to energy management systems. In this
research, we investigated the effectiveness of monetary and non-monetary incentives
through a field experiment.

Learning-based design: Apart from the two approaches mentioned above, we
can also adopt analysis and design by simulation and learning. In one ongoing work,
we are simulating the epidemic spread on a large college campus, using data about
student classroom enrollments to determine which individuals (students and teachers)
are likely to encounter each other, when, and where. Taking into account a model
for indoor airborne dispersion of virus particles and consequent infection, we are able
to analyze how the number of cases would grow over the course of a week, and how
the growth of infections is affected by factors such as mask-wearing, and reduced
occupancy of courses [23]. Another opportunity that presents itself in this context
is to leverage machine learning algorithms, such as multi-armed bandits to design
incentives that are effective at reducing contacts and spreading of infections.

Finally, we mention some recent researches on social networks and health. Social
networks are significant influences on a wide range of behaviors. Contact networks
provide the vector for disease spread [24], and throughout history have changed the
course of human development [25,26]. Social networks have also been demonstrated to
have strong influences on many health behaviors [27] such as obesity [28], adolescent
tobacco use [29], contraceptive choices [30], physician behavior [31], and country health
policy adoption [32]. The pathways and mechanisms for these influences vary and
include imitation, persuasion, peer pressure, modeling, and so on. In general, the
associations between individual health behaviors and that of one’s peers are quite
strong, rivaling the effects of socio-economic status.

2. Intervention over networks

To control the spread of viruses over a human social network, we need to design
interventions that can be effective in changing human behaviors in the network. A
lockdown is an extreme example of a possible intervention that drastically reduces
connections, which leads to the reduction of infection rate, but at the same time,
negatively (and significantly) impacts the local and global economy.

Decision makers have many interventions to choose from, and these have a wide
variety of strictness, frequency and incentives. Beyond simulations, interventions are
required to be effective in the real world. As mentioned, human behaviors are highly
uncertain and biased, and thus developing interventions (control strategies) that work
well, requires using both engineering and social science tools and concepts.

Therefore, we propose novel design and analysis methods of interventions/incentives,
based on model-based (Section 2.1), experiment-based (Section 2.2), and learning-
based (Section 2.3) methods as mentioned in the previous section.

3



0 150 300

Product of degrees of endnodes

0

0.04

In
ve

st
m

en
ts

 o
n 

ed
ge

s 
fo

r 
so

ci
al

 d
is

ta
nc

in
g

10 20 30 40
0

0.01

Figure 2. A threshold phenomenon in the optimal investments on edges for social distancing. Horizontal

axis: the centrality of an edge measured by the product of degrees of its endnodes. Vertical axis: the optimal

investment on an edge for promoting social distancing. The optimal investment found via convex optimization
[21] are zero for edges with centrality below about 20 (see the inset figure). The underlying network structure

is created by the Barabási-Albert model.

2.1. Optimal social distancing

Although vaccines are coming out and governments are working hard to distribute
them as fast as possible, the main tool being used to contain and suppress the current
pandemic is still mostly social distancing [33,34], in which healthy individuals avoid
contact with infected (and potentially infected) individuals in order to protect them-
selves against the disease spread. Social distancing would also be a key major tool
for coping with future pandemics of emerging diseases, as it is not realistic to pre-
pare vaccines for unknown diseases in advance. However, the current social distancing
strategies are often performed without a solid scientific evidence, and the quantitative
evaluation of the strategies remains a difficult task. For this reason, a solid mathemat-
ical approach to design an effective social distancing strategy is required to develop
effective responses to the current pandemic and to improve preparedness for similar
situations in future. In this context, we have been working to identify how a limited
resource should be allocated over a social network to encourage social distancing for
the optimal containment of epidemics [21,35]. An interesting finding is the existence of
a threshold phenomenon, where the optimal resource investments for social distancing
are zero for edges whose edge-centrality is below a certain number (see Figure 2 for
an illustration). However, these preliminary results focus on the most basic epidemic
model called the susceptible-infected-susceptible (SIS) model, and assume a complete
knowledge of the network structure.

Continuing our research effort, we are planning to generalize these preliminary re-
sults to more realistic epidemic models such as the SIDARTHE model [36] by building
on our attempt to analyze the susceptible-infected-recovered (SIR) model [37]. In or-
der to account for the unavoidable uncertainty in modeling human social networks, we
will further incorporate our ongoing research on robust control for positive systems
[38]. The developed mathematical tools will be applied to, for example, real time feed-
back control of crowd density in public areas. To realize such control, we will need to
learn from the information available about current crowd density to develop a model
of the disease spread so that optimal social distancing can be achieved by interven-
tions such as temporarily restricting entrance to certain areas. We are also planning
to develop a mathematical framework to limit the frequency of interventions by lever-
aging our ongoing research on event-triggered control [39] and sparse control [40–42].
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Yet another important direction of research is to incorporate the new-normal social
distancing strategies that societies have taken in the current pandemic [43,44] into
our theoretical development. The diversity in the strategies would urge us to develop
flexible frameworks able to accommodate the various types of temporal changes in the
structure of social networks.

2.2. Causal inference and field experiments based on behavioral
economics

As mentioned above, a cyber-physical-human system (CPHS) consists of humans as
agents whose behaviors are observed from sensors through the Internet. An example
of CPHS is an urban traffic signal control system based on networked vehicle data
from Internet-connected sensors [45]. A challenging problem is to estimate and control
such a CPHS with human behaviors that are highly uncertain and biased. To solve
this problem, we adapt methods in behavioral economics for analyzing interventions
(monetary and non-monetary incentives). A novelty of this research is to design in-
terventions that can change the behaviors of humans who interact with each other in
the network, an approach we call network-aware design of interventions.

Our ongoing work studies the impacts of monetary and non-monetary incentives
on energy-saving behaviors using a field experiment conducted in Japan [6]. In this
research, a novel method of causal inference, the causal forest, was proposed and the
difference between monetary and non-monetary incentives was revealed.

We will extend this method to develop network-aware causal inference and estimate
the effect of interventions in the context of epidemic control. In particular, we will
investigate how different incentives work for various types of networks with different
space and time scales. For example, we plan a field experiment in Kanmon Strait
Museum in Kitakyushu by using the social distancing detection system developed
by Mishima OA Systems [46]. We will use monetary incentives (e.g., reduction of
entrance fees or museum gifts) and non-monetary incentives (e.g., showing a heat map
on a digital signage set on the museum floor) to encourage behavioral change. We then
validate the effectiveness of these incentives for changing the network state (e.g., the
maximum density in the heat map, the maximum degree of the network, and sparsity).

2.3. Online learning for individualized incentives

Online learning techniques, particularly multi-armed bandits (MAB), offer a way to
learn the best choices in an environment that yields stochastic feedback. In the classic
MAB formulation, there are n arms, each of which yields a random reward from an
unknown distribution [47]. The player must select an arm at each time based on prior
observations, with the goal of maximizing the expected total reward over time. The
classic metric for performance is called regret, measured in case of independent arms
as the gap between the rewards collected by a player following a particular policy
and that obtained by a genie that has knowledge of the arm reward distributions. In
case of independent arms, it is known that the cumulative regret of the best policy
grows logarithmically with time, which implies that the time-averaged regret goes to
0 asymptotically (i.e., over time, the player is able to get a time-averaged reward that
is the same as the genie). Several policies with provable logarithmic regret have been
designed [47–49].

Building on our prior work on designing and analyzing algorithms and novel ap-

5



plications of multi-armed bandits including extensions to combinatorial and network
settings [50–53], we propose to formulate the problem of incentivizing people in a com-
munity in a similar way. Consider a given set of incentives. In the simplest formulation,
the goal is to identify which particular incentive is the most effective at maximizing
the desired benefit (e.g., with respect to ensuring that people stay home, minimizing
contact with others during high epidemic risk times), by applying different incentives
over time, observing their impact (a form of stochastic feedback given variations in
individual responses) and adapting to spend more time using the most effective in-
centives while still periodically sampling the less effective incentives to account for
the possibility of misleading samples in light of the stochastic feedback. A more so-
phisticated formulation could yield as an output a complex combinatorial collection
of incentives, each personalized to different clusters of individuals; this could be posed
as a joint clustering and contextual-bandit problem. We plan to explore the practical
design of such an online learning-based incentive system by investigating how to incor-
porate feedback and observations through sensors as well as manual inputs or survey
responses from users.

2.4. Stability

Since the system proposed in this paper is a feedback control system including humans
in the loop, we need to analyze and guarantee the global stability of the system. To
do this, we can adapt the passivity-based approach [54] to our cyber-physical-human
system. It is well-known that the feedback connection of two passive systems is again
passive. That is, we only need to know if the systems are both passive, even if the
systems are highly uncertain and difficult to obtain the precise models.

3. Conclusion

In this short paper, we have discussed a new direction of cross-cutting research to
overcome the COVID-19 pandemic. We proposed the design of interventions based on
mode-based optimal control design, experiment-based causal inference for effectiveness
analysis of incentives, and learning-based incentive design. To overcome the COVID-
19, cross-cutting collaboration is necessary. For this, other technologies in robotics are
also important. For example, social robots can be used as implementation of effective
incentives that change human behaviors in the cyber-physical-human system. This
idea has been already proposed in e.g., [55]. The important point to use robots in the
COVID-19 epidemic is that robots are free from virus infections. This viewpoint has
been discussed in recent papers [56,57].

Also, our approach considers the human-social network as an “input-output” system
(or a “blackbox”). If we can observe and utilize the internal states of humans, e.g.,
mental states, positive/negative, aggressive/defensive, the control performance may
be significantly improved, as in the state-space approach in control [58].
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