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ABSTRACT

Known attempts to build autonomous robots rely on complex control architec-
tures, usually implemented with the Robot Operating System (ROS). Runtime adap-
tation is needed in these systems, to cope with component failures and with con-
tingencies arising from dynamic environments—otherwise these affect the reliability
and quality of the mission execution. Existing proposals on how to build self-adaptive
systems in robotics usually require a major re-design of the control architecture and
rely on complex tools unfamiliar to the robotics community. Moreover they are hard
to reuse across applications.

This paper present MROS: a model-based framework for run-time adaptation of
robot control architectures based on ROS. MROS uses a combination of domain spe-
cific languages to model architectural variants and capture mission quality concerns,
and an ontology-based implementation of the MAPE-K and meta-control visions for
runtime adaptation. The experiment results obtained applying MROS in two real-
istic ROS-based robotic demonstrators show the benefits of our approach in terms
of the quality of the mission execution, and MROS’s extensibility and re-usability
across robotic applications.

KEYWORDS
self-adaptive systems, models-at-runtime, variability, autonomous robots, control
architecture, ontologies

1. Introduction

Robotic systems are designed by integrating and configuring individual robot
capabilities in a governing control architecture, most frequently based on the Robot
Operating System (ROS) [31]. However, static control architectures fall short when
addressing context variability in open-ended, dynamic environments, where internal
errors also compromise the quality and autonomy of mission execution. Self-adaptive
Systems methods offer various solutions to deal with the context variability resulting
from uncertainty and contingencies during execution [34]. However, existing approaches
to apply these methods in robotic systems are marginal, because they require a major
re-design of the control architecture, they use complex tools unfamiliar to the robotics
community, and they are hard to reuse across applications. Therefore, there is a
pressing demand for solutions to integrate self-adaptation in robot control architectures.
This paper demonstrates how model-based self-adaptation can be easily integrated
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Figure 1.: Left: Demonstrator D1 based on an ABB YuMi manipulator. Right: the
TOMASys model of its control architecture.

in robot control architectures to increase mission reliability and quality.
Robotics researchers have come up with sophisticated control architectures that are

able to perform very well a specific mission [14,33]. However, these architectures are
mission and robot platform specific and are unable to address other missions and robots
without undergoing major modifications [22].

An example of a robot performing a complex task is the mobile manipulator shown
on Figure 1. The robot uses QR-tags to calibrate its position in the work cell, and
the wooden blocks with which it builds a pyramid. The original ROS-based control
architecture suffered from errors locating the QR-tag in varying light conditions, and
from task failures whenever an arm bumps lightly into any obstacle (the internal
safety function prevents any further motion of that arm). However, the system offers
redundancy that can be exploited for self-adaptation. The challenge is to integrate
self-adaptation into its architecture without major development effort, and maintaining
extensibility to other tasks (e.g. navigation between the workstations), so that it can
be reused for other robots.

We claim that using a model-based solution to integrate self-adaptation in robot con-
trol architectures addresses this challenge and results in increased mission quality and
reliability at a lower cost. Modeling has been successfully applied in various domains to
solve issues of architectural composition both statically (software product lines [30]) and
at runtime (dynamic software product lines [11], models-at-runtime [5,7]). Using models
of the robot control architecture raises the abstraction level in the implementation of
robot control systems, improving reuse from system to system, which is presently rare
and often ad hoc. While work has been done in this direction [9], given the complexity
of robotics systems, it is unclear how to proceed to maximize the benefits, and to avoid
redesigning and re-implementing the adaptation layer for each robot from scratch.

In this work, we propose MROS: a model-based approach for self-adaptation of robot
control architectures, contributing two key insights. First, the use of different Domain
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Specific Languages to model different levels of abstraction allows for lean and extensible
tools to design self-adaptation in robotics. Second, an explicit separation of concerns,
between mission-specific logic and system management, and between general and
mission-specific concerns, allows to reuse adaptation rules and artifacts across missions
and robotic systems. For system design, MROS uses a combination of platform-specific
Domain Specific Languages (DSLs) to model the robot architecture. These DSLs are
close to the ROS ecosystem and effectively capture functional and task quality concerns
of a robotic system for run-time adaptation. For run time adaptation, MROS realizes
the meta-control vision [21] using a novel implementation of the MAPE-K loop based
on ontological reasoning to drive the run-time adaptations.

A parallel, but equally important, goal of this paper is to advance experiment
design for model-based self-adaptation, to push the community from anecdotal evidence
towards data. From methodological perspective, we propose to evaluate self-adaptation
frameworks at two levels: (i) how well, and at what computational cost, a given
framework improves mission performance and reliability, and (ii) how reusable (vs
idiosyncratic) a framework is; to how large class of systems it applies, and how much
specialized development is needed. We evaluate the former in a quantitative experiment,
and the latter in a qualitative assessment based on engineering experience from the
project, and its architectural qualities.

Our main contributions include:

• A reusable implementation of MROS meta-controller, ready to integrate self-
adaptation in ROS systems.
• A set of design tools and languages to model and deploy the MROS solution in

ROS systems.
• An evaluation of MROS in two case studies (mobile manipulator, factory floor
navigation) exceeding prior methodological standards. The experiments show
performance and robustness improvements, and quantify the computational cost
of the general architecture.
• An analysis of benefits of model-driven methods for this problem.

Design methodologies for autonomy and self-adaptation remain an open discussion
topic in the robotics community. With this paper, developed in a joint effort of robotics
and modeling researchers, we hope to get more members in the modeling community
interested in the problem. We also contribute a validated approach and artifacts to
the discussion of systematic design methods and reusable architectural components
for robotics. We believe that the integration of Meta-control with ROS may bring
models-at-runtime and system modeling methods to broader groups of practitioners in
robotics.

The rest of the paper is organized as follows. Section 2 gives background information
for model-based development and ROS, and self-adaptation using meta-control. Section 4
presents the two robotic demonstrators developed to validate our solution. Section 5
defines our experimental setup and results regarding the run time feasibility of MROS
on both demonstrators. Section 6 discusses how MROS supports system extensibility
and reusability, Section 7 discusses related work and, Section 8 presents the conclusions
and future research direction.
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Figure 2.: ROS graph for a simple navigation application, extracted from a system
at runtime by standard ROS tools. Ellipses denote nodes, boxes mark topics.

2. Background

2.1. ROS and the RosModel tooling

The Robot Operating System is a component-based, an open-source platform considered
the de facto standard for the development of robotics systems, and the platform chosen
to develop this work. A key to the success of ROS lies in imposing few architectural
constraints and in offering many tailored components (robotics-specific functional
components and hardware drivers). A typical ROS system consists of many small
and mostly independent distributed programs called nodes. Nodes communicate via
message passing, using a publish-subscribe mechanism, or service calls. Figure 2 shows
an example of a runtime communication graph of one of the cases of this paper.

To facilitate model-based development with ROS, Hammoudeh Garcia and colleagues
developed the RosModel tooling framework which contains a set of languages to formalize
relevant properties of a ROS system architecture, in a manner compatible with model-
based ecosystem [18]. Our paper uses two of these languages:

• RosModel model: specifies the communication interfaces of each node (the ports
offered by a node) and the deployment information (the ROS package of a node
and the packages it depends on)
• RosSystem model: reflects the composition of the instantiated nodes, how they

are wired and configured.

Figure 3 shows the (static) RosSystem for the (runtime) example of Fig. 2, in the
RosModel tooling graphical editor. Nodes are defined as components that contain a set
of interfaces, with properties name and a reference to the definition of the instantiated
interface. The format also captures connections between the interfaces. Associated
tools validate all the connections (i.e. the match of the type of the message sent by the
publisher and expected by the subscriber) and automatically generate a launch file, an
XML script used in ROS to start, configure, and connect all the nodes that constitute
the robotics system. The tooling offers static analyzers and runtime introspectors that
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Figure 3.: Example RosSystem model for the system in Fig. 2

allow scaffolding the models from an existing software implementation.

2.2. Meta-control and the TOMASys Meta-model

Meta-control [3, 21] is a reference architecture for self-adaptive autonomous control
systems inspired by MAPE-K (Monitor-Analyze-Plan-Execute over a Knowledge
base, [26]) and supervisory control [8]. At its center is the Teleological and Ontological
Model for Autonomous Systems (TOMASys) that allows to model the architecture
of component-based systems, including architectural variations at both design-time
and run-time [21]. Architectural models provide the appropriate level of abstraction
to manage adaptation at runtime [17]. TOMASys captures the relation between the
system’s requirements and their allocation to the system components through the
concept of functional and physical architectures from systems engineering [16,20]. In
the Meta-control vision, a Meta-controller component implements runtime adaptation
using the TOMASys model of the system and automatic reasoning for the evaluation,
selection, and deployment of architectural variants.

In TOMASys, a function represents a capability that has been designed in the
system, for example “Navigation” in a mobile robot. A function design is a possible
realization of a function, an architectural variant able to deliver it. Internally, a function
design prescribes a certain structure that delivers the function, i.e. it maps functionally
to system structure, through specifications of components and their interconnection.
TOMASys allows to model functional decomposition by designating required functions
for a function design, capturing the dependencies between lower- and higher-level
functionality. At runtime, the functional requirements are represented as instances
called objectives, which are solved by instances of the function designs, the active
function designs called function groundings.

A TOMASys model example is shown in Fig. 1, using UML notation with stereotypes.
A high-level function F0 (Pick&Place) represents the capability of the ABB mobile
manipulator to pick and place small objects. The model defines two function designs
named FD1 and FD2 that solve this function. FD2 represents an architectural variant
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Figure 4.: Data flow diagram for the run-time operation of the MAPE-K loop imple-
mented by the MROS Meta-controller.

that solves Pick&Place using both arms of the robot (which jointly can reach the entire
workspace), and it is implemented as a monolithic program in the ABB programming
language. FD1 represents a variant that solves the function using only one arm and
the ability of the mobile base to move and approach objects if they are out of reach of
the arm. It is implemented as a set of ROS nodes specifically parametrized to solve F0,
and it depends on function F1 (Move position) implemented by function design FD1.1
(Move relative to work cell). FD1.1 in turn requires the function F2 (Calibrate position)
delivered by two designs, FD2.1 and FD2.2, which detect the QR tag to calibrate the
position of the robot in the work cell. FD2.1 and FD2.2 use different camera settings
configured for different light conditions.

3. MROS Model-Based Meta-control

MROS is a model-based solution for meta-control that integrates easily in a typical
ROS development workflow. It provides a general reusable and extensible meta-control
node that extends any ROS system with runtime self-adaptation. Reuse is maximized
by separating the general reasoning principles, the adaptation related to system
configuration, and error handling from task-related adaptations. Extensibility is
achieved by using ontological reasoning to implement the decision-making in the
meta-controller. At design time, MROS greatly simplifies the development effort by
extending the RosModel tooling with a series of plugins that allow ROS developers
to model architectural variants and their quality attributes, and to automate the
generation and deployment of the meta-controller.

3.1. Runtime Adaptation

MROS implements a MAPE-K loop using a runtime model conforming to the TOMASys
meta-model serving as a knowledge base (KB1). The realization of MAPE-K with
ontological reasoning is a core contribution of this work. It allows to separate: (i) the
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TOMASys model of the robotic system, coded with the Ontology Web Language (OWL),
(ii) the adaptation rules, coded with the Semantic Web Rule Language (SWRL), and
(iii) the self-adaptation process—a ROS node mros1_reasoner. Figure 4 summarizes
the main data processing steps in the MROS MAPE-K loop. We discuss them in order
below.

Step R1. Monitor

Two monitoring processes track the status of active ROS nodes and the degree of
fulfillment of non-functional requirements using quality attributes as a proxy. The
goal is to (i) detect and identify parameters misconfigured by developers in ways
that lead to sub-optimal robot behavior, (ii) identify erroneous node behavior, and
(iii) observe violation of system constraints (i.e. level of quality attributes). The monitors
operate at a fixed frequency and produce diagnostics using the standard ROS diagnostic
mechanism [1]. This means they easily integrate into an existing system, and might
use or provide services already needed in the system, regardless of the presence of a
meta-controller.

The ROS node monitors leverage RosModel tools. The existing ros_graph_parser

node is used to create a RosSystem model of the running ROS-based system. A
newly developed rosgraph_monitor compares that model with the desired RosSystem
model of base application (cf. Table 1). It publishes a diagnostic error message in
case a difference is detected. The Quality attribute monitors are implemented by a
separate observer node per each quality attribute. They report normalized values for
the quality attributes: zero means that the quality attribute is at the required level,
one denotes maximum deviation from the required level. The skeleton of these nodes
is automatically created from the RosSystem model, for the attributes and the system
signals (ROS topics) specified by the system architect. Developers need to implement
the logic in the observers to obtain the quality attribute level from the given signals.
For the evaluation cases presented below, we implemented observers for two attributes:
safety (risk of collision with humans, using proximity sensors) and energy (using the
runtime battery consumption and a battery model).

Step R2. Analyze

The system diagnostic data produced in Step R1 is used to infer the status of the
functional architecture of the system. Any new facts, for instance a new component
status when a node has reported a fatal error, or a change in the level of a quality
attribute, are asserted in the TOMASys model (KB1). Then, ontological reasoning
and application-independent rules (declared in SWRL, as proposed in [23]) are applied
to the model to infer the current status of the functional architecture, including the
status of the TOMASys objectives and the applicability of the alternative function
designs. Finally, the status is updated in KB1.

Step R3. Plan

If the meta-controller discovers in Step R2 that any objectives are violated, an
architectural adaptation is proposed by searching for alternative function designs in
the TOMASys model (KB1). If several available designs meet the required quality
attribute levels, the one maximizing an application-specific utility function is selected.
The mros1_reasoner, used in R2–R3, is implemented with the Owlready2 library [27],
the off-the-shelf reasoner Pellet to infer the functional status, and a custom logic for

7



Step Input artifact Design-time activity Output artifact

1 Application
requirements

Application modeling (manual +
reverse engineering tools)

RosSystemmodel
of base application

2 RosSystemmodel
of base application

Modeling architectural variants RosSystemmodels

3 RosSystemmodel
of base application

Generate meta-controller deployment
configuration

(YAML)

4 RosSystemmodels Generate deployment configuration
for variants (automatic)

ROS Launch files

5 RosSystemmodels Generate observers of the quality
attributes (automatic)

Observers
boilerplate code

6 RosSystemmodels Generate runtime model for the
meta-controller (automatic)

TOMASys model
(OWL)

Table 1.: Key steps in development of MROS meta-controller.

1 RosSystem { Name ’system_a’ RosComponents (

2 ComponentInterface { name move_base

3 RosParameters{

4 RosParameter ’max_vel_x’ { value 0.5 },

5 RosParameter ’max_vel_y’ { value 0.5 },

6 RosParameter ’inflation_radius’ { value 0.5 },

7 RosParameter ’observation_sources’ { value scan }}})

8 Parameters {

9 Parameter { name ’qa_safety’ type Double value 0.41 },

10 Parameter { name ’qa_energy’ type Double value 0.48 }}}

1 RosSystem { Name ’system_b’ RosComponents (

2 ComponentInterface { name move_base

3 RosParameters{

4 RosParameter ’max_vel_x’ { value 0.3 },

5 RosParameter ’max_vel_y’ { value 0.3 },

6 RosParameter ’inflation_radius’ { value 0.8 },

7 RosParameter ’observation_sources’ { value point_cloud }}})

8 Parameters {

9 Parameter { name ’qa_safety’ type Double value 0.71 },

10 Parameter { name ’qa_energy’ type Double value 0.33 }}}

Figure 5.: Fragments of RosSystem models for two variants of a navigation system,
specifying configurations of the mode_base node and expected values for the quality
attributes. Left: base variant using a laser scanner, Right: alternative using a camera.

the search and selection of system configuration in the Plan step.

Step R4. Execute

Enforce the adaptation selected in Step R3—stop nodes no longer needed, start
new nodes needed, reconfigure the nodes remaining. It is implemented by a gen-
eral rosgraph_manipulator, which follows an adaptation tactic suitable for ROS1,
re-deploying the nodes by using launch files created by the RosModel tools.

3.2. Design Time Activities

The application developer uses the MROS extension of the RosModel tools to describe
the architecture of the domain application by specifying the set of possible configurations
of components and their quality attributes. Table 1 summarizes the steps involved.

Step 1. Model the application

We first create a RosSystem model of the base application, starting with individual
nodes. Two tools for automatic model generation from source code are available from
the RosModel project [19]: a built-in plugin that generates the models for ROS packages
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stored locally, and a web interface, available at http://ros-model.seronet-project.de/,
for ROS packages publicly available. Once the ROSModel models describing single
nodes are obtained, the developer can compose them, using either the graphical or the
textual editor, to define the RosSystem model of the entire base application. Optionally,
if MROS is used for an existing ROS application, the RosModel tools support automatic
analysis of the complete existing system. This step results in a RosSystem model (a
.rossystem file) which is validated by our tools and used to automatically generate
executable artifacts (launch files to start the ROS system).

Step 2. Model architectural variants

Next, the developer models the adaptation possibilities—the architectural variants.
Most adaptations can be sufficiently captured by parameter variations, but larger
architectural variations are also possible like switching to a different hardware module).
Figure 5 shows the representation of two different configurations of the same system.
In this case, we have two different configurations of the node move_base. This node is
in charge of interpreting the actions from the navigation module and translating them
into commands to the base. Notice, how the maximum speed, inflation radius, and the
type of sensor data used to adapt to the environment varies. The base variant system_a
uses the output of a laser proximity scanner, while the alternative variant system_b

uses the point cloud obtained from a 3D camera. Additionally global parameters are
added to define the value of the quality attributes (abbreviated qa), in the case of this
example for safety and energy.

Step 3. Generate meta-controller deployment configuration

We provide a RosModel plugin that automatically generates the application-specific con-
figuration for the mros1_reasoner node to be integrated on top of the base application.

Step 4. Generate deployment configurations for variants

We automatically generate executable artifacts (KB2: ROS launch files in Figure 4),
which can be called to execute runtime adaptations when a new configuration is selected
by the reasoner (R4 in Figure 4).

Step 5. Generate observers of quality attributes

Another RosModel wizard is used to generate the scripts to observe the system. The GUI
allows to select the quality attributes to be monitored. MROS generates a description
of the ROS node as a RosModel and the skeleton of the Python code for monitoring.

Step 6. Generate runtime model for the meta-controller

Finally, MROS provides a script that given the RosSystem models of different adaptation
strategies, automatically generates the TOMASys model that feeds the meta-controller
at runtime.

In summary, the provided tools offer a holistic model-driven solution for the
adaptation problem, exploiting models and automation, with a high degree of reuse
both at design time and at runtime. Since many artifacts are needed , generating all
of them offers not only productivity gains: the tools ensure consistency of the input
artifacts and guarantee consistency of all the generated artifacts.
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4. MROS Demonstrators

We use two different robotic systems to validate MROS and the developed artifacts.1
Both are based on realistic applications for autonomous robots, concretely manip-
ulation and navigation [2]. Mobile manipulation robots are designed to operate in
semi-structured environments, such as a warehouse, a factory floor, and a healthcare
facility. These environments change dynamically (e.g. the floor plan can change from
day to day, some areas may be shared with humans and with other robots, etc). This
context variability demands varying configurations of the robot control architecture
and appropriate methods to support successful mission completion.

4.1. Dual-Arm Manipulator (D1)

In D1, the robot is a YuMi dual-arm manipulator standing on a Clearpath Ridgback
mobile platform and equipped with an Intel Realsense RGBD camera (Fig. 1). Its task
is to build a pyramid with wooden blocks at the work station. The camera and QR-tags
are used to calibrate the robot’s position in the work cell, and to locate the bricks
and the target position of the pyramid. This information and prior knowledge about
the blocks sizes, is used to compute the required manipulation motions. To improve
robustness, we use a YuMi dual-arm manipulator. Its two arms provide architectural
variability: the task can be performed using both or one arm. Each arm has limited
range of operation, so when working with one arm, the robot uses the mobility of the
Ridgeback platform to reach all the bricks.

4.2. Mobile Robot Navigating in a Factory (D2)

The mobile robot demonstrator (Fig. 6a) is concerned with navigation on a factory
floor, where the robot moves between workstations to perform different manipulation
tasks. The robot is the Ridgeback platform, equipped with two Hokuyo lasers, odometry
and an inertial measurement unit, and is augmented for this demonstrator with an
indoors localization system. The baseline control architecture for navigation is based on
the ROS1 navigation stack [29], which uses off-the-shelf control and AI algorithms for
planning and reactive obstacle avoidance. The robot navigates to a target location using
odometry and sensor data and sending velocity twist commands to the Ridgeback.

The context variability includes: (i) new obstacles on the factory floor affecting the
quality attribute values attained in the default configuration of the navigation stack
(ii) variations in power consumption, resulting in changing battery depletion.

5. Feasibility of Runtime Adaptation

We analyze the implementation of MROS with respect to its management of component
failures and runtime quality attribute levels, by using the two demonstrators and asking
the following research questions:
RQ1. How does MROS improve system robustness in the presence of component fail-
ures?

1The source code of the meta-controller and the experiment scripts is released under the open source license
and can be found in the following repos: https://github.com/rosin-project/metacontrol_sim (Metacontrol) and
https://github.com/rosin-project/metacontrol_experiments (experimental scripts)
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RQ2. How does MROS affect system and mission performance in the presence of com-
ponent failures and system quality concerns?

With RQ1, we demonstrate qualitatively how MROS addresses component failures on
a manipulation mission. RQ2 investigates quantitatively how the MROS reconfiguration
affects the task and system performance of a robot by addressing functional and non-
functional concerns in a navigation mission.

5.1. Manipulation Mission (RQ1)

Experiment setup

To address RQ1, we conducted a study on D1 dual-arm manipulator (Section 4.1) in
two scenarios:

(1) System does not detect the workstation tag.
(2) System cannot use both arms.

The first scenario aims to demonstrate the MROS ability to recover a function that
requires multiple components (increased mission robustness). The second scenario
demonstrates the MROS controller’s ability to recover from an error by realising
an alternative set of functions to perform the task goal with degraded performance
(increased system robustness).

Results and discussion

In the first scenario, the QR-tag for calibration is not detected, due to the light
conditions. The meta-controller uses the TOMASys model in Fig. 1 to switch between
the alternative configurations of the camera parameters FD2.1 and FD2.2 to detect the
tag.

In the second scenario, we inject a failure by blocking one of the robot’s arms. MROS
identifies the component error and uses the functional architecture model to find an alter-
native variant. It adapts the architecture to a configuration that uses the arm not blocked.
Since the task cannot be completed with the remaining arm (the wooden blocks are out of
range), it also switches the control algorithm to change positions of the mobile platform.

We conclude that the MROS meta-control augments the reliability of the overall
system, delivering the expected behavior in real-time in the context of component
failures.

5.2. Navigation Mission (RQ2)

Experiment setup

To address RQ2, we systematically compared a system with the MROS meta-controller
to a benchmark system (Baseline) for mission success, component failure, and quality
concerns in the navigation scenario of Section 4.2.2 The robot is placed at a starting
location and it navigates to a goal location. An example of the route during one run is
shown in Fig. 6b; the starting position is at the bottom-left of the map and the goal is
at the top-right. We considered six pairs of initial and goal positions.

2The data from this experiment can be found in https://doi.org/10.5281/zenodo.5340886 released under the
Creative Commons Attribution 4.0 International license.
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(a) Simulation of the mobile manipulator
in a factory.

(b) An example route of the mobile manip-
ulator navigating.

Figure 6.: Mobile Manipulator in a factory

Baseline

We developed 30 variants of a control architecture, with different quality expected
performing the navigation mission. Each of these variants constitutes the Baseline
system for the corresponding experiment run. The variants are obtained by selecting
between a laser or a 3D camera as sensor input for obstacle avoidance, and different values
of three parameters that govern the behavior of the move_base node that generates
the motion commands: inflation_radius (minimal distance allowed to the closest
obstacle), max_vel (maximum velocity allowed for the robot), controller_frequency
(the frequency of the control loop).

MROS-D2

In MROS-D2, the meta-controller runs on top of one of the architectural variants,
performing run-time analysis on component failures and quality violations, and making
decisions on when and how to switch to a different navigation configuration. MROS-D2
calculates safety at run-time by measuring the braking distance of the robot before
hitting an obstacle d_break [13] and the distance from the current location of the robot
to the closest obstacle in its direction P . We define runtime safety to be 1 if the robot
is at least d_break distance from the closest obstacle. As the robot approaches the
closest obstacle, safety at run-time is computed as P/d_break. Furthermore, MROS-D2
computes the energy at run-time based on an energy model that simulates the power
consumption of a robot. The energy model computes the instantaneous power_load

of the robot using current controller frequency, velocity, acceleration, etc. We specify
0.6 as a required threshold for safety and 0.62 for energy. If the robot breaches these
thresholds, MROS-D2 initiates self-adaptation.

The independent variables in our experiment are: (i) the architectural variant initially
deployed for the control architecture, and (ii) the contingencies during the mission:
For each run, we compare the MROS and Baseline systems in terms of violation of
system qualities thresholds, component failures handling, and mission performance.
A run consists of an initial system configuration C and a perturbation P. We selected
nine initial configurations (out of 30) that show the best-expected performance in a
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set of preliminary tests. A perturbation models a sequence of contingencies within
a mission. Each perturbation P is represented by a tuple 〈iv1, iv2, iv3〉, where each
element represents a value for each contingency type:

(1) Cluttered environment: the environment contains a set of new obstacles unknown
to the robot (not in the map used by the navigation) in randomized positions.
We quantify the level of clutter depending on the number of new obstacles as low
(7), medium (14) and high (20).

(2) Unexpected increase in power consumption: This could be the result of a sticky
surface, a slope, some problem with the wheels, or activation of a new sensor that
consumes more power. We quantify this contingency in three levels: 20%, 40%,
and 60% increase in power consumption.

(3) Component failure: We inject a failure in the laser sensor by killing its driver
ROS node at run-time.

To estimate the effects of MROS on adaptation and mission performance we measure
the following dependent variables on both systems:

• The percentage of time the mission is above the threshold for safety risk and
energy consumption.
• Mission success. We defined a demanding metric for mission success that com-
bines reaching the goal with performance and safety requirements. A mission is
considered successful if (i) the robot reaches its goal, (ii) the average safety risk
level for a run is < 0.4, (iii) the safety risk is below its threshold for more than
95% of the mission time; (iv) the energy-consumption is below its threshold level
for more than 90% of the time.
• Time to complete the mission. We measure the time the robot needs to complete

a single run.

Results and Discussion

We collected data points for 6727 runs of both systems. Figures 7a and 7b illustrate the
management of safety and energy at run-time during a single run for the Baseline system
and for MROS-D2. The red line represents the threshold for each quality, while the
highlighted area is a time period when contingencies are introduced. For the Baseline
system (Fig. 7a), the total run-time is 39 seconds, the safety quality attribute value has
an average of 0.47 and is above the defined limit for 4 seconds (10% of the run-time),
and the QA Energy has an average of 0.38 and is above the required limit for 3 seconds
(8% of the run-time). For the MROS system (Fig. 7b), the total run-time is 56 seconds.
In this case, the average of the safety quality attribute value is 0.37 and it is above the
defined limit for only 1 second (2% of the run-time). The average for QA Energy is
0.325 and it is above the required limit for 3 seconds (5% of the run-time). Moreover,
when the MROS system is used, two reconfigurations occur, which can be clearly seen
in Figure 7b where, in the highlighted areas, both QA Energy and Safety values drop
down immediately after the limit is crossed and then they restart with a different trend.
Each reconfiguration takes about 4.3 seconds, contributing to the MROS run being
longer than the Baseline.

Table 2 shows the average percentage the Baseline and MROS-D2 are above the
safety threshold during the mission. On average MROS-D2 is 2.6 times more effective in
reducing the safety violation from 2.5% to 0.96% on average in a single mission. MROS-
D2 always outperforms the Baseline, independently of the level of clutter (number of
obstacles). Furthermore, MROS-D2 manages to keep the safety violation below 1% for
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(a) Baseline without MROS meta-control. (b) The system with MROS Meta-control.

Figure 7.: Safety (top) and Energy (bottom) quality attribute values for a single run.
The red line indicates the maximum allowed value in each case. The highlighted areas
mark the contingencies where a reconfiguration occurs.

How cluttered the environment is MROS Baseline

no clutterness contingency 0.99% 2.60%
low clutterness 0.98% 2.84%
medium clutterness 0.88% 1.73%
high clutterness 1.00% 2.70%

Total 0.96% 2.50%

The

Table 2.: Average time a mission is above the safety threshold.

Power consumption MROS Baseline

no power contingency 1.26% 2.63%
power increase 20% 1.16% 2.22%
power increase 40% 2.47% 2.63%
power increase 60% 2.63% 4.57%

Total 1.86% 2.98%

The

Table 3.: Average time a mission is above the energy threshold.

all contingency levels related to a cluttered environment. Considering these contingency
levels, the MROS-D2 meta-controller re-configures the system once every 2-3 runs.

Table 3 shows the average percentage the Baseline and MROS-D2 are above the
energy threshold during the mission. Again, MROS-D2 outperforms the Baseline for all
contingency cases related to the increase in power consumption. The biggest difference
is the 60% energy increase contingency, where the result shows that MROS reduces the
average violation of the energy constraint from 4.57% to 2.63% during the mission.

Table 4 shows that MROS-D2 outperforms the Baseline for all contingency types.
MROS-D2 improves the mission success by 13.3% on average. In this calculation, we
decided not to include the data for component failure, because the Baseline will always
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Contingency Type MROS Baseline

no clutter contingency 78.16% 67.03%
low clutterness 77.92% 62.03%
medium clutterness 79.13% 70.16%
high clutterness 77.77% 62.06%

no power contingency 81.63% 59.51%
power increase 20% 79.38% 68.48%
power increase 40% 76.47% 71.01%
power increase 60% 76.35% 60.18%

component failure 73.00% 0%
Total 78.50% 65.20%

Table 4.: Mission success rates under various contingencies.

fail the mission when a laser failure is introduced (so the 13.3% reported is biased
against MROS-D2 ). In contrast, MROS-D2 effectively adapts when laser failure is
introduced, completing the mission in 73% of the mission runs. Beyond the component
failure contingency, the biggest difference in mission success can be seen in the case
when there is not any increase in power consumption. In this case, the Baseline has
59.51%, while MROS-D2 has 81.63% mission success.

Finally, MROS increases the mission completion time by 7.5, as a result a result
of the Meta-controller choosing a slower configuration to satisfy the energy and safety
quality concerns. As expected in MROS-D2, adaptations were triggered more often
for higher contingency levels in terms of clutter and energy peaks.

It is important to note that one can engineer a more resilient robot, with more
redundant hardware and control strategies, and then the reported numbers for MROS
will improve further, as they are indeed a function of a more adaptive strategy, which
the baseline system does not have. The experiment demonstrates however that the
model-based MROS meta-controller is capable to exploit the hardware and software
redundancy to increase robustness. Thus we conclude:

Model-based intelligent reconfiguration does improve mission and system performance
for robot systems, effectively managing component failures and quality concerns.

6. Qualitative Analysis of MROS Design

MROS contributes two tools: the RosModel MROS plugins for ROS developers at
design time, and the Meta-controller ROS packages to deploy it in a ROS system. In
order to understand the generality of our contribution, we discuss the re-usability and
extensibility of these artifacts.
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6.1. Reusability

We prototyped the MAPE-K loop of the meta-controller for the D1 dual-arm manipulator
demo without generative programming. Following a common practice in the field, we
then generalized it for D2 using model-driven development.

For D1, we designed the OWL implementation of the TOMASys meta-model
(tomasys.owl) to support the specification of MROS models, and the ontological
reasoning for Steps R2 and R3 (mros1_reasoner.py). The TOMASys model was
manually developed. We first analyzed the existing software for the system following
the ISE&PPOOA MBSE methodology [16], obtaining the conceptual representation
of its functional architecture and possible variants (Fig. 1). Then we modeled it in
OWL, using tomasys.owl and the Protege editor. For D1, we used application specific
solutions for steps R1 and R4 at runtime.

To exploit the commonality in the domain, we consequently settled to use the
model-driven methods and the RosModel bridge tools. The resulting MROS tools offer:

• Modeling languages and tools for ROS architectures: (a) linking ROS and
TOMASys via RosSystem (b) with consistency checking and syntax feedback
• Extracting models from code, allowing to add meta-control to existing projects

and using new nodes with MROS.
• Automatic generation of the ontological knowledge base (otherwise a tedious and

low-level task).
• A reusable monitor of node status rosgraph_monitor (used in Step R1)
• A generator of boilerplate code for observers (step R1).
• A reusable meta-controller, including tactics to detect and address violations of

quality attributes and contingencies (steps R2 and R3)
• A reusable navigation ontology based on tomasys.owl including minimal domain-

specific model of safety, energy and performance quality attributes in navigation,
along with the associated SWRL adaptation rules (steps R2, R3).
• Automatic generation of executable reconfiguration actions for the system archi-
tecture (launch files) used by the rosgraph_manipulator to reconfigure the system
(StepR4)

For demonstrator D2, we used this infrastructure to model the architectural variants
with 30 different RosSystem models of the possible configurations of the navigation
stack.

It is a well known fact that effective deployments of model-driven engineering require
a very good domain implementation. It is somewhat surprising thus that often model-
driven technology is demonstrated in isolation, or on small examples and use cases. The
Robot Operating System provides an excellent platform, a rich and highly customizable
implementation of the robotics domain. ROS with model-driven engineering is a “match
made in heaven.” Using ROS was an enabling factor for this research: it opened access
to standard formats, architectures, and interfaces. We benefited from the rich tooling
and experience ecosystem, which allowed us to efficiently execute rich and realistic
experiments, rarely seen in model-based self-adaptation research. Furthermore, using
generative model-driven solutions with ROS meant that the meta-controller technology
is readily accessible to unprecedented number engineers and researchers working on
self-adaptation in robotics and software engineering using ROS.
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6.2. System Extensibility

We analyze how the MROS framework supports system extensibility in the context
of a mobile robot navigating in a factory scenario with respect to which aspects should
one extend in the application: (i) to capture new components added to the system;
(ii) to capture new quality attributes to be monitored.

Adding new components

A 3D camera component was added so the mobile robot would be able to continue the
task even if the laser fails. To add a new component we only needed to add the new
configurations in the RosSystem models. We extended the number of system variants by
adding new configurations that contain the camera component. We used the RosModel
tools to model 3 new configurations which corresponds to 30 different variants in total.
For monitoring, we did not need to add new observer models, because the current
tooling allows component failures to be captured. For analysis and planning, we used the
model-to-model transformation to automatically generate the updated knowledge base.
Finally, the RosModel tools automatically generate the new reconfiguration actions.

Adding new quality attributes

We extended the application scenario D2 with energy-efficiency. For monitoring, we
developed an observer for energy-efficiency that calculates energy at run-time. Energy
level was computed using an energy model that simulates the power consumption of
a robot using controller frequency, velocity, acceleration, etc. For analysis (R2) and
planning (R3), we extended the knowledge base with new information about the energy-
efficiency of each system configuration. Manual work is unavoidable, but the artifacts
are modular and reusable across robotic systems with the same quality attributes. Again
as a final step, the RosModel tools automatically generate the reconfiguration actions.

In conclusion, in both cases the cost of development of the new features of the robot,
greatly outweighs the cost if incorporating it into the meta-control system, which is
mostly automatic, barring modeling the new configurations (easy) and new quality
attributes (reusable).

7. Related Work

Dynamic architectures and self-adaptation have been an active topic of research
in model-driven software engineering for a decade. The so called models-at-runtime
paradigm [6, 7] has been exploring the use of abstractions to reduce complexity
and cope with increasingly complex runtime adaptation problems. One group of
prior works related to the use of models in robot software is based on variability
management and feature models that can represent the functionalities provided by a
software system symbolically [15,25]. The previous efforts have focused on the solution
space of architecture design, that is the possible configurations of components. The
discrete variants in the architecture are modeled separately from properties and quality
attributes (the problem space). However, formal semantics, a common meta-model,
for automated reasoning about the relation between both the solution and the problem
space is missing. We address this shortcoming by extending the TOMASys meta-model
to represent quality attributes and implement it as an ontology for automated reasoning.

Non-functional requirements, such as performance, reliability or safety, have been

17



considered in the dynamic reconfiguration of robot software architecture [28]. In a
newer work, Brugali et al. have integrated feature models, standard modelling languages
(UML-MARTE) with queuing network models to support reconfiguration in order
to maintain an adequate level of performance [9]. These solutions require intensive
modelling efforts, MDE skills and completely new toolsets. In contrast, we chose a less
invasive path, in that we exploit existing codebase and practices in the ROS ecosystem.

Iftikhar and Weyns [24] propose Active FORmal Models for Self-adaptation
(ActivFORMS). The adaptation goals that are verified offline are guaranteed to be
observed at runtime. The method uses timed automata for modeling the behavior
of the multi-robot system, a method unlikely to be accepted by a broader robotics
community. Its expressiveness is lower than of linear hybrid control systems, which
means they require careful modeling and abstraction for any typical robotics problem.
Our ontology-based approach presented offers more natural models of trade-offs and
requirements, including non-linearities, thanks to the use of description logics.

Aldrich et al. [4] leverage predictive data models to enable automated robot adaptation
to changes in the environment at run-time. While the approach clearly depicts the
benefits of using models by capturing high-level artefacts (combining application and
system logic), it makes it extremely challenging for a developer to make use of them
in robotic scenarios because: (i) it does not introduce models that can be reused for
a different application; (ii) it does not give insights how someone can build similar
models; (iii) it does not provide automated infrastructure to leverage those models.

The BRICS [10] and RobMoSys projects [32] have proposed model-based approaches
to develop robotic systems. Our work is inspired by the meta-models resulting from
those efforts, but goes beyond realizing their proposed future roadmap to use the models
at run time for adaptation and autonomy.

Cheng et al. propose [12] a framework that uses GSN assurance case models to
manage run-time adaptations for ROS-based systems. While the framework clearly
shows the value of systematically integrating assurance information from GSN models
to ROS specific information to guide runtime monitoring and adaptation, it has couple
of drawbacks: (i) it uses custom developed libraries specific to the approach, rather than
standard libraries in ROS (such as ROS Diagnostics); (ii) it does not reuse preexisting
practises developed in the ROS ecosystem raising the entry barrier for ROS developers
to effectively use it. Also, thanks to the tight integration of the ROS framework and
model-driven automation, we are able to execute extensive experiments, beyond simple
demos. We quantify the improvement of the self-adaptation, and its computational cost.

As discussed in section 2, our work exploits of two existing streams of contributions.
Hernández et al. [21, 23] proposed principles for knowledge-based self-adaptation
and the concept meta-control based on off-the-shelf reasoners, but did not provide
a solution to obtain the architectural models or to realize their approach on robotic
systems. Hammoudeh et al. [18] created the model-based RosModel tooling to support
development ROS systems, but it could not model architectural variants or quality
concerns. Our work leverages both works to create a complete solution to develop
self-adaptation in ROS systems.

8. Conclusions and Future Work

This paper introduces the MROS framework to support the integration of self-adaptation
in robot control architectures based on ROS. MROS promotes separation of system
management decision making from the mission logic, using ontological reasoning and
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design models.
MROS uses platform specific DSLs to represent the architectural models of variants

of the robotic system. We have developed extensions of the RosModel tools that lower
the modelling effort for developers and allow to automate the implementation and
deployment of the self-adaptation mechanisms. The use of an ontology-based knowledge
based and reasoning for the MROS MAPE-K loop facilitates reusing MROS adaptation
rules across robotic applications, and extend them to address new quality concerns
beyond safety and energy, which have been addressed in this work.

We developed two MROS tools: RosModel tooling extensions to support the de-
velopment phase, and a ROS package to deploy the MROS meta-controller for run
time adaptation, and applied in two different complex robotic systems for validation.
Our results from systematic experiments in the mobile robot demonstrator show how
MROS can be used to increase mission reliability and safety and energy concerns.
The implementation also illustrates how the MROS DSL approach at design time and
ontological approach at run time allowed to easily reuse the adaptation rules from
component failure, and extend them to safety concerns and then to energy.

The architecture of MROS provides a framework to explore the integration of methods
from robotics, software engineering and artificial intelligence. For example, currently
we are investigating deep learning methods for quality prediction, and the integration
of MROS meta-controller with different solutions to manage the mission logic, such as
behaviour trees or planning methods. Moreover, we are working on a version of MROS
for ROS2, which offers better support for component and system management than
ROS1, and more industrial traction. This will open new opportunities and challenges
for self adaptive systems and modelling in robotics.
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