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ABSTRACT
A simulation framework based on the open-source robotic software Gazebo and
the Robot Operating System (ROS) is presented for articulated tracked robots,
designed for reinforcement learning-based (RL) control skill acquisition. In partic-
ular, it is destined to serve as a research tool in the development and evaluation
of methods in the domain of mobility learning for articulated tracked robots, in
3D indoor environments. Its architecture allows to interchange between different
RL libraries and algorithm implementations, while learning can be customized to
endow specific properties within a control skill. To demonstrate its utility, we fo-
cus on the most demanding case of staircase ascent and descent using depth image
data, while respecting safety via reward function shaping and incremental, domain
randomization-based, end-to-end learning.

KEYWORDS
Reinforcement learning, robot control, incremental learning, domain randomizaion,
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1. Introduction

Autonomous navigation is a fundamental skill for contemporary mobile robots whose
domains of application are continuously expanding. Characteristically, unmanned
ground vehicles (UGV) tend to receive increased attention in various domains such as
assisting and warehouse robotics, autonomous vehicles, etc [1]. This was particularly
motivated by a shift of the community interest from conventional methods to machine
learning-based (LB) ones [2] in view of their prominent results in the development of
human-level skills [3].

As far as robot navigation is concerned, LB methods have been successfully em-
ployed to perform end-to-end control [2] which directly maps sensor observations to
actions, often through the employment of reinforcement learning (RL). Thanks to RL,
hard to engineer or sophisticated behaviours can be developed through trial-and-error
interaction with an environment [4]. RL-based end-to-end methods mainly address
outdoor, in-the-wild navigation [1], [5] which can differ from indoor navigation in that
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Figure 1. Global overview of the proposed software framework

a robot can never collide and damage its surroundings, as it must guarantee safety of
the platform as well as that of the environment. The particular topic of indoor con-
trol and navigation is usually associated with navigation on flat surfaces [6,7] where
researchers employ RL to a mobile robot for learning to reach a goal while avoiding
obstacles [8,9]. However, in real-world the robot should navigate in multi-floor envi-
ronments which supposes the capacity to negotiate staircases or steps. To the best of
our knowledge, control development for the tasks of learning-based staircase ascent
and descent is scarcely treated according to [10], especially concerning tracked robots
that exhibit a good trade-off between 3D traversability and stability skills.

Learning through RL requires multiple interactions with the environment [11] in
order to gain sufficient amount of data for policy parameters update towards maxi-
mization of the expected return by the behaviours. Often, learning relies on deploy-
ment in flat and fixed environments from a limited sets of preset environments for
navigation learning [7,12]. Unfortunately, usage of one or a small number of environ-
ments does not encompass domain randomization (DR), which makes the policy suited
to only a small number of possible situations [13]. The physics-based simulator [14]
(gazebosim.org) is usually used alongside the Robot Operation System (ROS) [15]
(ros.org) which allows to simulate various types of sensors, yet scene rendering is
far from realistic. This aspect is addressed in simulations presented in [16,17] that
provide highly realistic scenes. It is shown that a robot can learn to navigate in such
texture-rich environments, still, articulated tracked robots are not integrated.

To the best of our knowledge, there is no publicly available software framework
which addresses robot safety and introduces simulation environments for control learn-
ing in the case of ascent and descent of staircase for tracked robots, optionally equipped
with an arm. Furthermore, there is a lack of common utilities for development of
tracked robot controllers, which constrains researchers to develop custom robot mod-
els and environments from scratch. In view of these shortcomings, our goal is to provide
a software framework (see Figure 1), residing on Gazebo and ROS, that goes beyond
the current state-of-the-art in the following directions :

• Development of an open-source simulation framework and pipeline for 2D nav-
igation and staircase negotiation using reinforcement-learning for articulated
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tracked robots. The framework is available at github.com/gwaxG/robot_ws and
its GUI at github.com/gwaxG/robot-simu.
• Successful development of end-to-end controllers for staircase ascent and descent,

showing that the proposed incremental DR surpasses conventional uniform DR.

The latter point in particular allows us to go beyond our previous work [10] where
we developed staircase negotiation controllers relying on an external, step and robot
state estimation set-up and on uniformly varying simulated environments.

The remainder of the paper is organized as follows. In Section 2 we present the
background of our work. Section 3 unfolds the intention of the developed framework
and provides a formal description of the RL problem that is treated by our framework.
Section 4 presents all framework components allowing potential users to experiment
with alternative ways of learning control for tracked robots in indoor 3D environments.
Finally, in Section 5 we show its application on control learning for staircase ascent
and descent traversals.

2. Background

Through the use of RL, a robot can develop complex and difficult-to-engineer be-
haviours [11] through multiple trial-and-error interaction with an environment. Mnih
et al. [3] motivated the scientific community to discover new frontiers of RL usage,
for example in autonomous ground vehicle perception and control where RL is often
employed in a deep learning setting [2]. Authors of [5] agree that such solutions can
exhibit prominent results, but a number of issues still remain to be addressed more
thoroughly in order to enhance robustness and generalization.

Simulators The key concept in RL is interaction with a training environment [4]
that is usually built on top of a simulator. Authors of [18] present a wide comparison
of robotic simulators, over-viewing 18 major simulators and physics engines used in
robotics and highlight popular selections. Accordingly, Unity shows better applicability
to situations were visual data is important. V-REP [19] is a simulator commonly used
in robotics that provides a user-friendly world and robot model configuration tools,
exhibiting comparable computational cost and simulation accuracy with Gazebo which
is another popular simulator. Nogueira et al. of [20] compare V-Rep and Gazebo in
detail showing that V-Rep is far behind Gazebo in terms of integration with ROS,
which represents the state-of-the-art for modern robotics development. Gazebo enables
total control of the development since it is open source in contrast to commercial V-
Reps. For these reasons, Gazebo seems to remain the mostly widely used simulator in
the robotics community.

Robot modeling Tracked robots (see Figure 2) are endowed with superior
traversability skills and have simpler locomotion in comparison to their legged counter-
parts. From this perspective they are particularly suited for deployment in applications
where it is necessary to negotiate staircases. Sokolov et al. [21] highlight problems as-
sociated with the development of track models within Gazebo due to model instability.
Thankfully, Pecka et al. [22] alleviate this problem performing a detailed analysis of
robot tracks within Gazebo and developing the Contact Surface Motion (CSM) model
of articulated robot tracks. Authors rework the dynamic simulation formulation en-
abling the model to find the force to move the robot at a certain velocity. It does
not simulate grousers or deformable tracks. Still, it is plausible on flat and rough ter-
rains and constitutes the best trade-off between track simulation adequacy and the
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Figure 2. Tracked robot morphology; RGB axes denote XYZ coordinate system of joints; All joints rotate
around the X-axis apart from the joint connecting the two arm links which rotates around the Y-axis

computational overhead of simulation.
Learning environments In relation to indoor navigation and control learning, the

AI2-THOR framework [16] based on Unity provides near-realistic 3D indoor scenes
for AI research where agents can navigate and interact with the environment. Authors
consider that it can be helpful not only for reinforcement learning but also for learning
by interaction, imitation learning, etc. Still, this framework supports only discrete
actions and does not address robot dynamics where agents operate in continuous action
spaces. The work [17] presents Interactive Gibson Benchmark which develops its own
simulator based on the physics engine Bullet [23] including a renderer and over one
hundred 3D reconstructed environments. It is probably among the best environments
to date able to generate highly realistic images and simulate physical interaction. In its
most recent version, DR is integrated for objects and materials [17]. However, tracked
articulated robots are still not included into this framework.

Various research groups study navigation learning in indoor environments by using
popular tools such as Gazebo and ROS. For example, authors of [8] train a robot
to navigate in only two instances of a 2D environment. Tai et al. [7] also limit their
environment variation by two pre-constructed settings. The robot can cross one real-
world maze to reach a goal, but its scalability in a general setting is unknown.

Concerning learning environments, authors of [9] offer a set of 6 settings in total and
three robots to use with RL algorithms. Yet, multi-floor domains are not considered
neither is DR for ground obstacles, which could serve as a data augmentation tech-
nique [24]. The utility of this technique becomes more evident in indoor environments
populated with complex but traversable stairs, where robot dynamics become harder
to model and necessitate additional attention to safety [25]. At the same time, the
environment should vary sufficiently to cover the multitude of possible stair parame-
ters eventually met during deployment [26] both in reality and in simulation. This is
achieved by randomization of environment parameters at every training episode. This
makes the trained policy more robust and transferable to varying simulated and real-
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world environments [10,13,27,28]. Unfortunately, we can hardly refer to any available
simulation environment that accounts for this demand for articulated tracked robots
operating indoor.

Staircase negotiation learning To the best of the authors’ knowledge, the prob-
lem of 3D traversibility learning for articulated tracked robots is weakly addressed
in literature. One of the earliest approaches that employed reinforcement learning for
adaptive traversability learning was presented in [29]. The authors developed an RL-
based solution for rough terrain traversal. Despite the demonstration of prominent
results, expert manual assistance is required in the learning process while actions are
limited by pre-defined morphological configurations while contemporary RL methods
[30,31] allow the robot to discover such configurations alone.

Another approach is proposed by Pecka et al. [25] whose contribution amounts to
the development of RL algorithms for Search and Rescue scenarios that implement
constraints in a RL algorithm. That extension showed that a small number of iter-
ations is sufficient to learn flipper control for the traversal of an unknown obstacle.
However, the authors did not integrate DR in their approach making the controller
not transferable on different staircases.

Contribution The state-of-the-art in simulation environments for RL does not al-
low learning the task of staircase negotiation learning for articulated tracked robots,
especially lacking domain randomization as an essential component of learning. To
mitigate this we provide an API-like framework that consists of a DR simulation
environment interfaced with the developed OpenAI Gym [32] environment which rep-
resents a bridge between the simulation environment and any RL algorithm which
implements the OpenAI Gym interface. We base the simulation environment on ROS
and Gazebo attracted by the rich inventory of plugins and libraries, the fact that they
are open-source and that they facilitate the deployment and transfer of policies learnt
in simulation towards a real platform. Finally, we go beyond the state-of-the art by
applying our framework to end-to-end control learning of staircase negotiation and
provide quantitative experiments that demonstrate its performance.

3. Objective of the framework and problem statement

We propose a framework which consists of a ready-to-use simulation environment that
can be used for control learning of articulated tracked robots via RL. The framework
is also customizable, thus, it can be used for performance evaluation by allowing the
user to control the environment. It is built upon and extends earlier recent works of the
authors [33] and [26] that allowed learning in simulation and deploying/transferring
of policies learnt in simulation to a real commercial robot [10].

In RL, Q-tables were usually used for value and action-value function approximation
[11]. However, applying RL algorithms to robotics it is unavoidable to use function
approximators due to high-dimensional action and observation spaces. Another reason
is that robots tend to operate within continuous states and actions. Lastly, a function
approximator can boost learning, because its updates influence multiple states.

Among a variety of existing function approximators, used to represent what we refer
as controllers, we could consider radial basis function neural networks (RBF-NN) and
artificial neural networks (ANN). RBF-NNs precede ANN, namely, deep ANN. Their
advantages are fast convergence to a global optimum and trial-and-error efficiency, still,
RBF-NNs may suffer from difficulty of integration to deep architectures. In contrast,
deep ANNs which are endowed with the capability to learn different representations
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at every intermediate level, allow to attain superior performance [3]. Moreover, ANNs
have become significantly wide-spread and supported by many libraries, therefore our
framework supports out-of-the-box ANNs, although other types of controllers can be
used since they do not interfere with framework components.

To solve a control learning problem, we can use RL algorithms where the policy is
directly optimized. The main idea consists in performing gradient ascent over policy
parameters to maximize an expected gradient return.

In an indoor navigation setting we can distinguish three principal tasks: 2D naviga-
tion, ascent and descent traversals of a staircase. In each of them, the learning objective
is to move the robot to a goal, which is a point in space, avoiding ground obstacles on
the floor or negotiating a staircase. The user can impose additional constraints which
can be optimized jointly with the achievement of the goal.

3.1. Problem statement and treatment by RL

To address the previously described problem, the framework contributes a RL episode
life-cycle. RL learning is based on generating data through agent interaction with an
environment where at every time step t, an agent being in a state st−1 ∈ S selects
an action at−1 ∈ A with respect to its policy πθ where θ is the vector of policy
parameters, transits to a new state st receiving a scalar reward r. The multitude of
transitions from the initial state s1 to the termination state sT+1 is called a trajectory
τ = (s1,a1, s2, ..., sT ,aT , sT+1) where T is the number of time steps of an episode. A
policy πθ is a function parameterized with θ which sets a rule that helps to take an
action. It can be either deterministic at = f(st) where an action is taken at a specific
state or stochastic via πθ(at|st) which specifies a conditional probability distribution
and provides the action probabilities in a defined state from which we sample the
most probable action. During learning, we search for the optimal parameters θ∗ which
maximize the expected return :

θ∗ = argmax
θ

Eτ∼πθ
[R(τ)] (1)

where R(τ) =
∑T

t=0 γ
trt is the cumulative reward over a trajectory τ and γ is a

discount factor that can weigh the importance of rewards obtained at different times.
DR Indoor environments can vary significantly and unless this is accounted for

during training, the gap between simulation and reality will reduce the performance
of the policy during testing, whether it is deployed in simulation or in the real-world.
Furthermore, staircase ascent and descent traversals impose strict requirements such
as safety where the robot has to perform safe actions in varying environments.

To cover various possible environment configurations we enhance RL with DR in our
framework. To do so, we parameterize the training domain eξ where every domain has
a configuration ξ ∈ Ξ ⊂ RN , where Ξ is the configuration space of dimension N . We
apply randomization during learning and a policy is learnt on multitude of parame-
terized environments which favors generalization and allows to maximize the expected
return over a distribution of configurations. Thus, the optimal policy parameters are
obtained by:

θ∗ = argmax
θ

Eξ∼Ξ[Eτ∼πθ,eξ [R(τ)]] (2)
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We assume that to navigate within an indoor environment a robot has access to the
following state:

s = (v, w, αleftfront, α
right
front, α

left
rear, α

right
rear , β1, β2, φ, ψ, f1, ..., fNf

) (3)

where v, w represent linear and angular velocities, αleftfront, α
right
front, α

left
rear, α

right
rear , β1, β2

flipper and arm angles (see Figure 2), where rotation of robot links is considered
around red x-axes with the exception of the arm link 2 that rotates around the green
y-axis, φ and ψ are pitch and roll angles of the platform chassis and f1, ..., fNf

are Nf

in total, general environment features. Note that this general form of the state vector
can be altered by the user through an experiment configuration file (ECF) (see section
4.4), for example, in the case where the robot does not require angular velocity or arm
control. The control vector a is composed of commands to the robot as follows:

a = (ψleftfront, ψ
right
front, ψ

left
rear, ψ

right
rear , va, wa, β

a
1 , β

a
2 ) (4)

where ψleftfront, ψ
right
front, ψ

left
rear and ψrightrear are flipper rotation angles, va and wa are linear

and angular velocity commands, βa1 and βa2 are arm control angles. As in the case of
the state vector, the usage of the control vector components can be controlled through
the ECF and connected to used robot parts, as will be presented in detail in the sequel.

4. Framework architecture

This section presents the framework and its components, unfolds its workflow from its
most low-level parts such as the simulator to the high-level ones such as RL algorithm
employment and automation tools. It serves as a guide for the manual modification
of inner components to integrate new algorithms, sensors and experiment workflows.
Hereafter, we present the simulation environment, the robot command dispatching and
perception utilities and the learning environment which drives the learning process.
Finally, we discuss algorithm and library integration utilities.

4.1. Simulation

World Our framework is based on the open source physics-based Gazebo simulator
which resides at the core of our system. This simulator is widely used and popu-
lar within the robotics community and already contains multiple functionalities for
control of robotic simulation models. Still, Gazebo can be considered as ”low-level”
because users have to assemble them according to a scenario. World accepts requests
from simulation utilities which will be described next and spawns a corresponding
environment. Robot operates in it and provides the output to sensors.

Robot Our framework operates with a simulated tracked robot model in the uni-
fied robotic description format (URDF, wiki.ros.org/urdf) which consists of a body,
front and rear flippers and that can be equipped with an arm, whose mass and geome-
try can be set to match those of a real robot. Interaction between tracks and staircase
surface is performed by adopting the CSM model [22]. Front and rear flippers can
be jointly or separately controlled. This component receives commands from low-level
control.
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Table I lists examples of two developed articulated robot models that can be trained
or operated in simulation. Each robot possesses at least 4 degrees of freedom (DOFs)
which consist of linear velocity, angular velocity, front and rear flipper angles. This
means that the pair of front flippers is controlled by only DOF, and similarly for the
pair of rear flippers. In the case of separate flipper control, robots have 6 DOFs while
if an arm is also present and controlled, the total number of DOF raises to 8. These
robots possess similar negotiating capabilities.

TABLE I: Robot model characteristics
Property Robot 1 Robot 2

Photo
Mass, kg 20.5 29
Length, m 0.98 1.196
Width, m 0.7 0.61
Height, m 0.4 0.46

4.2. ROS components

ROS (Robot Operating System) [15] is open-source software under a BSD license. It
helps to develop software for robot applications through providing libraries and tools.
They consist of device drivers, hardware abstraction, visualizers, libraries, package
management, message-passing, and more. The following components of our framework
are developed using ROS standards.

4.2.1. Simulation utilities

By careful parameterization of the source domain in simulation, i.e. the definition
of Ξ and its samples ξ, we seek to generate a sufficiently rich and representative
set of situations for the three main tasks of indoor navigation corresponding to 2D
navigation, staircase ascent and descent whose environments are presented below.
Simulation utilities accept commands from gym environment, produce models that
are usable within world and requests the latter to load them.

Domain randomization for 2D navigation In indoor environments which are
organized in piece-wise orthogonal configurations (see Manhattan world assumption
[34]), the robot has to ordinarily traverse hallways or perform more complex zigzag
navigation on a 2D ground, as shown in Figure 3 (a) and (b). D,W,L are constant
environment parameters which define the size/scale of the environment, the width and
the length of the obstacle area. By varying these obstacle parameters, the framework
forms an environment configuration vector ξ = (W1, L1,W2, L2, C), where Wi ∈ [W2 −
C
2 ,W−C] and Li ∈ [L−W,L] are the width and length of obstacles 1 and 2 respectively,

C ∈ [Cmin, Cmax] is the minimum distance between obstacles.
The framework generates with equal probability a hallway or a zigzag environment.

In the first case, we sample ξ from defined uniform distributions. In the second case,

8



(a) (b)

(c)

(d)

Figure 3. Illustration of zigzag (a) and hallway (b) environments, complexity increment of the staircase

environment (c), ascent task environment (d)
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L1 and L2 are equal L, C and W1 are uniformly sampled within their values, W2 is
sampled from [0, L−W1 − C].

The user defines in the experiment configuration whether goal and robot spawning
is random or fixed. The appearance at random can be seen as a part of DR enhance-
ment where we vary unseen situations through experiment episode initialization. To
spawn a robot and the goal, the framework provides 2 separated ROS services. In
the case of random goal appearing, the goal can appear either in the rectangle of
random goal spawning area (see Figure 3 (a)) or at its geometrical center in the fixed
goal appearing situation. The framework puts the robot on spawning line either at a
random point on the same line and random orientation to the goal or at the center of
the spawning line with an orientation that is perpendicular to the first step.

Domain randomization for staircase negotiation Two other tasks involved in
indoor navigation concern staircase ascent and descent, making the staircase genera-
tion an important feature of our framework. A straight staircase can be represented by
the step length l, the step height h and the number of steps n, i.e. by an environment
configuration ξ = (l, h, n). Minimum and maximum environment configurations are
denoted by ξmin and ξmax.

We enable two types of staircase generation. The first one assumes ξ is distributed
uniformly to generate samples and we term as uniform environment. The second type
assumes that ξ follows a normal distribution with a diagonal covariance matrix. The
corresponding mean and covariance matrix depend on a parameter ε which regulates
the complexity (and in turn the difficulty), of the generated staircase. We term envi-
ronments produced with this technique as incremental Gaussian environments.

The vector of difference between maximum and minimum environment configura-
tions is the following:

∆ = ξmax − ξmin = (∆1,∆2,∆3) = (lmax − lmin, hmax − hmin, nmax − nmin) (5)

Equations (6a) and (6b) present sampling of the environment configuration ξ and
clipping of every sampled element:

ξ ← N (ξmin + ε ·∆, ε · diag(∆1,∆2,∆3)) (6a)

ξi =


ξmaxi , if ξi > ξ

max
i

ξi, if ξmini ≤ ξi ≤ ξmaxi

ξmini , otherwise

(6b)

where ξ is a candidate configuration, ← N (·, ·) indicates random sampling from a
normal distribution, ξmin and ξmax represent minimum and maximum admissible
environment configurations. Equation (6a) indicates that we sample a candidate ex-
periment configuration from the normal distribution with the mean ξmin + ε ·∆ and
the covariance matrix ε · diag(∆1,∆2,∆3), where ε enables to increase the mean and
covariance and is automatically reset according to learning progress that we define as
mean positive episode reward over last Nε episodes which is configured at the episode
beginning. The value of Nε was empirically determined allowing to obtain superior
performance compared to non-incremental DR (see section 5). This leaves space for
further performance gains if this point is addressed more thoroughly by the users of
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the framework. Equation (6b) clips ξ, so that it fits in the prescribed limits.
Figure 3 (c) shows staircases sampled for 3 different ε values. As in the case of 2D

environment, the user selects whether goal and/or robot are spawned randomly or
at fixed preset positions. In ascent, when random spawning is chosen, the robot can
appear at random position and orientation at Random spawning area (see Figure 3
(d)) or at center start position being aligned with the staircase in fixed spawning. The
goal can be spawned in the same way either at spawning goal area or at central goal
position. The goal and robot spawning areas are reversed in descent.

4.2.2. Low-level control

The framework provides control software which accepts a sole ROS-based message
issued from gym environment for controlling the entire action space of the robot, han-
dles and dispatches it to corresponding ROS and Gazebo low-level controllers and
further provides feedback through a message providing information about current lin-
ear and angular robot velocity and joint configuration state. Then, flipper and arm
joint rotation angles are limited to reflect real robot operation. A spawned robot can
be operated with a keyboard and a ROS message.

4.2.3. Sensors

Another central infrastructure component of our framework is related to perception.
Using an RGB-D sensor to perceive the environment within world, the framework
provides a baseline depth-based feature extractor and dispatches its calculations down
to gym environment and monitor. We have decided to rely on the depth image due
to the poor realism of simulated RGB images. The robot facing a staircase and its
depth perception is presented in Figure 4 (a) while Figure 4 (b) shows the associated
features whose coloring is reversed to avoid melding with the background.

Borrowing the idea of feature extraction from [7], we convert every depth image
into vertical and horizontal beam groups. The user can choose the cardinality of hor-
izontal and vertical beams after which the framework calculates beams positions and
averages non NaN (Not-a-Number) depth image pixel values around them within an
area predefined by a user. As it was shown in [7], 10 horizontal beams are sufficient to
learn map-less navigation, but we opt for using more vertical beams to better retrieve
the structure of the staircase in ascent and descent tasks.

The robot further contains a simulated inertial measurement unit, the output of
which is published within the ROS ecosystem and used in forming the observation vec-
tor and calculating the reward. Alongside, the framework further provides the ground
truth pose of the robot.

4.3. Monitor

Rewards and episode termination signals are issued from Monitor (see Figure 1) whose
importance was particularly highlighted in our earlier work [26]. These calculations are
produced with help of sensors output and, being concatenated with image features,
goes down to the gym environment. An appropriate reward function drives learning
towards the acquisition of complex behaviours and a well implemented termination
signal can boost learning. As part of the framework and baseline methodology, we
provide the exact same set of three reward functions (see section 3.B [26]) which can
be used to learn ascent and descent staircase traversals, that could serve as a starting
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(a) (b)

Figure 4. (a) Robot in front of a staircase, (b) horizontal and vertical extracted features

point for future research and bench-marking.
Recalling [26], the basis positive reward is the travelled distance from the robot

starting position to the goal. This reward is used in all tasks. In staircase traversal
tasks, we additionally add negative penalties weighted by their scaling coefficients
used to control arbitrary bias of negative penalties. The COG deviation-based penalty
drives learning towards acquisition of a safe behaviour which enhances robot stability
in ascent. The angular velocity-based negative penalty mitigates drop impacts during
descent transitions.

Finally, the component monitor receives data from the most of ROS utilities to
provide an adequate guidance of the learning process. It monitors the robot-goal dis-
tance, provides safety estimation, which monitors COG deviation and pitch angular
velocity of the platform, forms termination signals and sends data to a database. We
consider three cases when monitor triggers a termination signal, namely: (i) tipping
over, (ii) exceeding episode time steps and (iii) reaching the goal. Safety estimation is
performed for staircase ascent when the component continuously monitors mean time
step center of gravity (COG) deviation and mean time step pitch angular velocity for
descent.

4.4. Learning

This subsection unfolds the details of the learning components of the framework,
as shown in the beginning in Figure 1. Our framework allows to integrate different
implementations of reinforcement learning algorithms as long as they support the
OpenAI Gym [32] which is a standard toolkit and operates as an interface between a RL
algorithm and an agent environment. The key component learning of our framework
encompasses RL algorithms instantiation, an OpenAI Gym implementation and their
ECF.

ECF Before every experiment, the user can instantiate an ECF which is received
from server and contains user-defined RL algorithm and simulation environment pa-
rameters of the experiment loaded by algorithm, passed to Gym environment and
saved by database. File templates can vary for integration of custom experiments and
RL libraries. Finally, the ECF is used for policy testing saving robot performance such
as travelled distance and safety measures.
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Algorithm As soon as an experience starts the ECF is consumed by algorithm.
The latter selects a library and a corresponding RL algorithm with defined parameters.
This also instantiates Gym environment after which policy training is triggered.

Gym environment Our framework integrates an OpenAI Gym environment which
receives signals and calculations of monitor, provides experiment data back to algo-
rithm, requests simulation utilities for a new environment and, finally, robot and goal
respawning controlling robot through low-level control. Gym environment dispatches
rewards on every time step to algorithm as well as episode termination signals received
from monitor. It forms the observation vector (cf. eq. (3)), which is passed to the policy
πθ, obtains an action vector and sends it to low-level control. Finally, Gym environ-
ment receives the output from monitor related to time step reward and termination
signals, based on which the RL algorithm continues to perform policy optimization if
required and the cycle repeats.

4.5. Automation

Launching of all aforementioned components, creating the ECF and data saving can be
manually performed by the user. However, to simplify interaction with the environment
we provide certain automation tools, listed below.

Graphical user interface (GUI) This component enables managing of experi-
ments and visualization of results through sending commands to server. Figure 5 (a)
and (c) shows screenshots of its windows, the first one presenting the creation of a
configuration file and the second a visualization of ongoing learning results.

Server This is a light-weight process which functions in parallel to the rest of the
framework, helps to visualize learning results and run experiments, otherwise every
experiment would need to be launched manually. The user can start an experiment
through GUI which requests the server, the later creates the ECF and launches al-
gorithm. To visualize the data of the experiment, GUI interacts with server, which
requests database, and returns data.

Database To promote a disciplined approach to data management we employ a
database within the component database. The later is a program which works in paral-
lel to other components and stores data from ECF and every learning episode statistics
performing ”create”, ”read”, ”update” and ”delete” operations.

5. Experiments

This section presents the developed simulated robots that are provided with the frame-
work and the conducted experiments which allowed to obtain ascent and descent poli-
cies with optimization of desired properties. We endorse perception principles from [7]
where authors study the case of 2D navigation learning and investigate its extension
for control learning in ascent and descent tasks. These experiments are provided as
proof-of-concept for the utility of the framework, with the hope of stimulating further
research and allowing to benchmark different RL approaches for learning control of
articulated tracked robots in indoor environments. The paper is accompanied by a
repository where the framework is stored github.com/gwaxG/robot_ws, additionally,
GUI is located on github.com/gwaxG/robot-simu.

In the scope of this paper we employ Soft Actor-Critic (SAC) [31]. This is a recent
RL algorithm which has shown better performance compared to its counterparts. It
optimizes a stochastic policy in an off-policy way where its key feature is maximization
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(a) (b)

(c)

Figure 5. Framework GUI and simulation views: (a) experiment configuration, (b) robot learning ascent
task, (c) episode reward scatter

of both the policy entropy and the expected return. We employ SAC mostly with its
original hyperparameters from the Stable baselines3 RL library [35] which contains
many other state-of-the-art algorithms.

TABLE II: Learning tasks
Task id Direction Environment Criterion
Asc-inc-cog ascent incremental COG
Asc-uni-cog ascent uniform COG
Des-inc-ang descent incremental ang. vel.
Des-uni-ang descent uniform ang. vel.

Environment configuration We deploy our framework and obtain policies asc-
inc-cog, asc-uni-cog, des-inc-ang and des-uni-ang for tasks presented in Table II where
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Figure 6. Snapshots of robot ascent of a staircase using a policy learnt in an end-to-end fashion.

the staircase parameters are sampled from incremental (*-inc-* ) and uniform (*-uni-
* ) distributions and robot 1 was employed using 5 DOFs which are linear velocity,
angles of paired front and rear flippers and 2 arm joint angles. Commonly, in every
experiment the robot starts off being by facing the staircase. Angular velocity con-
trol is redundant in such setting because the robot can move only forward, therefore
it is omitted in the action vector as well as horizontal features and roll base angle
in the observation vector, and it makes sense to couple left and right flipper angles
at the front and at the rear respectively. The observation vector is populated with
(v, αfront, αrear, β1, β2, φ, f1, ..., f60), i.e. linear velocity, front and rear flipper angles
where front and rear flippers are coupled, arm joint angles, pitch angle of the platform
and 60 vertical features extracted from the depth image. We employ a 2-layer percep-
tron in which each inner layer possesses 64 neurons whose weights are updated by SAC
where we use hyper-parameters proposed by the library implementation besides two
parameters. After tuning, we have set the initial value of the entropy regularization to
0.5 and the entropy regularization coefficient to 0.05, γ was set to the library default
value 0.99.

Each task is performed three times in total and lasts up to 20000 time steps but
can be terminated earlier if the average return over the latest 30 episodes reaches an
empirical threshold value of 0.6 for descent and 0.5 for ascent when learning converges.

Ascent task performance analysis Figure 7 presents smoothed cumulative re-
ward curves during asc-inc-cog and asc-uni-cog tasks learning with ±σ bands. Since
the duration of each experiment can vary, the x-axis presents a universal learning time
which reflects scaling of all experiments time steps to the 0−1 scale. For the asc-inc-cog
task, we can see that cumulative reward raises up to 0.4 by the end of learning time.
The task asc-uni-cog shows the same dynamics, however its reward curve is mainly
located below the curve of asc-inc-cog task and converges to 0.0 which shows boost of
learning with Gaussian sampling of environment.

Figure 8 (a) shows evolution of COG deviation during learning, we can see that its
values significantly drops from 0.25m down to 0.14m. The agent shows its capability to
learn staircase traversal relying on visual perception and to increase its safety through
COG deviation minimization. Speaking about performance of the asc-uni-cog, we can
see that COG deviation is not optimized to the same extent and converges to 0.17m.
Thus, we can conclude that the incremental DR leads to a more optimized behaviour.
Finally, Figure 6 shows snapshots of the robot successfully ascending a staircase by
employing a trained policy (full video is provided as supplementary material).

Descent task performance analysis Figure 7 presents cumulative reward in des-
inc-ang and des-uni-ang tasks. Reward curves and mean episode pitch angular velocity
show the same pace of convergence and attain similar values. Reward curves begin
at −0.2 and −0.42, then they drastically increase up to 0.5 by the end of learning,

15



Figure 7. Reward convergence

(a) (b)

Figure 8. Evolution of optimized values during task execution

and they slowly continue to improve after 0.8 of learning time. They both trigger
termination by the early stopping criterion when the value 0.5 is reached. Overall,
however, the task learnt incrementally des-inc-ang has fewer performance oscillations
and hence seems more stable than the non-incremental.

Mean time step angular velocity (see Figure 8 (b)) drops from 0.185 and 0.173 for
des-inc-ang and des-uni-ang respectively, to 0.155 by the end of learning for both
tasks. As previously, we can notice here too that overall the task learnt incrementally
oscillates less. In descent, the robot is always able to advance downstairs through even
a small velocity application, the principal goal is to mitigate drop impacts which could
be even further by inappropriate behaviours. Nonetheless the curves of pitch angular
velocity evolution show that the robot achieves the prescribed goal.

Test performance Figure 9 presents how much the performance of a policy trained
in the uniform environment differs from a policy trained in the incremental environ-
ment for ascent and descent tasks. To obtain these statistics, a policy trained for a
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Figure 9. Comparison of average performances obtained when employing conventional, uniform environment

sampling while learning (-uni-) or incremental domain randomization (-inc-)

given task was applied 10 trials on a fixed staircase with an environment configura-
tion of the highest complexity ξ = (hmax, lmin, nmax). Then, relative travelled distance
(progress), COG deviation and angular velocity were recorded during trials.

Figure 9 (a) presents mean progress in ascent tasks over all trials, with error bars
corresponding to one standard deviation (we refrain from using progress as perfor-
mance measure in descent tasks, since the goal is reached more easily). As we can
see, a policy asc-inc-cog exhibits nearly perfect performance 0.965 ± 0.05 in contrast
to asc-uni-cog policy 0.82 ± 0.24 which tends to reach the goal less often and has
higher variance. At the same time, the COG deviation of the policy (see Figure 9
(b)) asc-inc-cog is 0.115± 0.008m which is lower than the COG deviation of the pol-
icy asc-uni-cog 0.125± 0.005m by 0.01m. The incremental environment also improves
performance in descent tasks (see Figure 9 (c)) where the policy des-inc-ang exhibits
better performance 0.215±0.15m against the one of the policy des-uni-ang that attains
0.235± 0.14m.

6. Conclusion

A reinforcement learning-based software framework for control learning of articulated
tracked robots is presented. The framework is unique in its kind in terms of the type
of task for which it is destined to be used, integrating domain randomization and the
possibility of incremental learning, accompanied with two articulated tracked robot
models.

The framework applied on control learning for ascent and descent staircase traver-
sals with safety constraints has shown ability to learn reasonable skills with joint arm
control relying on depth image features of the environment. Furthermore, enhancing
domain randomization with sampling of environment configurations from a Gaussian
distribution, that is controlled by the estimation of learning progress, has shown su-
perior results in comparison to the uniform environment.

We believe that the framework could stimulate research and experimentation in
various directions. For example, possible future improvements of the framework could
further account for generation of spiral staircase generation or more complex varia-
tions of floor obstacles to increase complexity of the 2D control learning and better
address the structural complexity of real-world environments. Another extension could
concern varying the number of DOFs of the robots in an incremental learning setting,
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for example, by starting learning using 2 DOFs corresponding to linear and angular
velocity control and then progressively adding additional DOFs of flipper and arm
control while environment complexity increases. Finally, there are various points to
be accounted for in the deployment in reality of policies learnt in simulation, such as
eventual domain differences, noise levels or hardware constraints such as the placement
of the RGB-D camera on the robot.
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