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ABSTRACT

The problem of guiding a flock of agents to a destination by the repulsion forces
exerted by a smaller number of external agents is called the shepherding problem.
This problem has attracted attention due to its potential applications, including
diverting birds away for preventing airplane accidents, recovering spilled oil in the
ocean, and guiding a swarm of robots for mapping. Although there have been various
studies on the shepherding problem, most of them place the uniformity assumption
on the dynamics of agents to be guided. However, we can find various practical
situations where this assumption does not necessarily hold. In this paper, we propose
a shepherding method for a flock of agents consisting of normal agents to be guided
and other variant agents. In this method, the shepherd discriminates normal and
variant agents based on their behaviors’ deviation from the one predicted by the
potentially inaccurate model of the normal agents. As for the discrimination process,
we propose two methods using static and dynamic thresholds. Our simulation results
show that the proposed methods outperform a conventional method for various types
of variant agents.

KEYWORDS

Multi-Agent System; Shepherding Problem; Navigation

1. Introduction

The guidance and navigation of flocks of agents have several applications including
guiding birds away from runways for preventing bird strikes [1], collecting oil spills
in oceans and rivers [2,3], and navigating a swarm of robots for map creation [4] and
coverage [5]. For such systems, a variety of guidance methods for flocks have been
proposed in the literature. The flock guidance methods available in the literature can
be mainly classified into the following two categories: attraction-based guidance and
repulsion-based guidance. Motivated by a recent comparison [6] of these two types of
guidance methods suggesting the potential superiority of the repulsion-based method
over the attraction-based method, this paper focuses on the repulsion-based guidance
of flocks of agents.

The repulsion-based guidance framework for flocks called shepherding [7] is an emer-
gent framework inspired by the behavior of sheepdogs guiding a flock of sheep. Specifi-
cally, the shepherding problem refers to the problem of designing the movement law of
a small number of external steering agents (called shepherds) so that they can guide,
with their repulsion force, a larger number of agents (called sheep) to a given destina-
tion. Consequently, in the course of the navigation by the shepherd agents, the sheep
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agents move according to their inter-flock interactions and the repulsive forces from the
shepherds. As for the inter-flock interactions, the following three types of interactions
in the Boid model [8] are often assumed: separation, alignment, and attraction.

In the literature of the shepherding problem, we can find several movement laws of
shepherds for guiding the sheep agents under various problem settings. For example,
Vaghan et al. [9] proposed a shepherd’s movement law in which the shepherd agent
accomplishes guidance by moving toward the center of the sheep flock, and demon-
strated the law’s effectiveness through robotic experiments for guiding a flock of ducks.
Strömbom et al. [10] proposed a shepherd’s movement law in which the shepherd al-
ternatively uses the following two different methods inspired by the behavior of actual
sheepdogs: collecting, which brings closer to the flock the individuals away from the
flock, and driving, which brings the whole flock to the goal. Tsunoda et al. [11] pro-
posed a shepherd’s movement law, called the Farthest-Agent Targeting (FAT) method,
in which the shepherd guides the sheep farthest from the destination, and have shown
that the proposed movement law can outperofrm the movement laws of Vaghan et al.
and Strömbom et al. The same authors have further shown in their another work [12]
an improved version of the FAT method by introducing a modification for preventing
the scatterment of flocks. Hu et al. [13] proposed a shepherding method in which the
shepherd guides the flock by going behind the herd, and showed the effectiveness of the
method by both simulations and robotic experiments. Ko and Zuazua [14] proposed a
feedback-based shepherding method for a flock of agents trying to escape from a goal
area.

A common practice in the literature of the shepherding problem is placing the uni-
formity assumption on the dynamics within the flock of sheep agents to be guided.
However, this assumption does not necessarily hold true in several practical scenar-
ios. For example, while fish form schools to protect themselves from predators, the
dynamics of each individual is not necessarily uniform [15]. On the other hand, in the
context of the swarm robotics, heterogeneity within the swarm can be found due to
fluctuations in production processes [16,17] or by the intent of the operator of the
swarm [18]. In order to address the aforementioned gap between the literature and
the practice, Himo et al. [19] recently proposed a guidance method for a flock con-
taining agents not responding to the shepherd agent. Although this work sheds light
on the shepherding-type guidance of a heterogeneous flock, the guidance method still
assumes the shepherd’s knowledge of the type of each sheep agent, thereby having a
limited applicability in some practical situations. For example, in emergency crowd
control situations, people may engage in unexpected behaviors such as pushing and
trampling. However, it is difficult to know in advance who will behave unexpectedly
because these behaviors are based on individual instincts, experiences, and the actions
of those around them (see, e.g., [20,21]).

Therefore, in this paper, we consider a problem of shepherding a heterogeneous

flock with a shepherd agent having no prior information on the type of each sheep.
We specifically consider a situation in which a flock consists of the following two types
of sheep agents: normal sheep agents and variant sheep agents. As for the normal
sheep agents, the shepherd is assumed to be given information about their dynamics.
On the other hand, as for the variant sheep agents, we assume that their dynamics
are different from those of the normal sheep and, furthermore, are unknown to the
shepherd. A major difference of our problem formulation from the one in [19] is that
we allow the dynamics of the variant sheep to lack any of the alignment, separation,
attraction, and repulsion from the shepherd. Therefore, the situation we consider in
this paper includes the case in which the navigation of the variant sheep is essentially a
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difficult task. For this reason, in our problem formulation, we consider the navigation
of only the normal sheep. Hence, the goal of the guidance by the shepherd is set to be
guiding the group of only the normal agents to the destination area.

Because we assume that the shepherd has no prior knowledge on the type of re-
spective sheep, the methodology presented in [19] is not directly applicable to the
current problem setting. Therefore, in this paper, we propose a discrimination method
in which the nominal model of the normal sheep agents is utilized. Specifically, the
shepherd internally predicts the trajectory of sheep agents under the assumption that
all the sheep are normal. The shepherd then computes the deviation of the trajectory
of each sheep from its prediction for discriminating agents. Finally, for agents that are
not discriminated to be variant, the shepherd agent applies the FAT method to guide
them to the destination area. We remark that, due to this model-based characteristics
of the discrimination process, the proposed shepherding method can be considered to
be an application of the framework called Model Predictive Control (MPC) in the
systems and control theory [22]. Although there exist several works on the Model Pre-
dictive Control of heterogeneous multi-agent systems (see, e.g., [23,24]), their direct
application to the current problem is not necessarily realistic due to the high nonlin-
earity in the Boid model. For this reason, in this paper we develop a novel shepherding
algorithm and, furthermore, aim to establish its effectiveness via extensive numerial
simulations.

This paper is organized as follows. In Section 2, we formulate the shepherding
problem studied in this paper. In Section 3, we describe the proposed guidance method
based on model-based discrimination. In Section 4, we evaluate the effectiveness of the
proposed method through comparison with the FAT method by numerical simulations.
We specifically evaluate the dependence of the guidance success rate on the type and
the number of variant agents. In Section 5, we conclude the paper and discuss future
research directions.

2. Problem statement

In this section, we formulate the shepherding problem studied in this paper. Let us
consider a multi-agent system on the two-dimensional plane R

2. The multi-agent sys-
tem consists of N agents, each of which is either to be guided or not to be guided,
and one steering agent performing navigation. Following the convention in the litera-
ture [7], we call the agents to be guided as sheep, and the steering agent as a shepherd.
As shall be described in Subsection 2.1, the sheep agents move on the plane accord-
ing to the inter-flock dynamics and the repulsive force from the shepherd agent. The
objective of the shepherd agent is set to be the guidance of the sheep agents to be
guided into a goal region G, which is assumed to be an open disk with center xg ∈ R

2

and radius Rg > 0.
Throughout this paper, we use the following notations. We assign the numbers 1, . . . ,

N to the sheep agents. The set of these numbers is denoted as [N ] = {1, . . . , N}. Also,
we let xd(k) ∈ R

2 denote the position of the shepherd agent at time k, and xi(k) ∈ R
2

denote the position of the ith sheep at time k. For a set X, we let |X| denote the
number of elements of X. For a real vector v, we let ‖v‖ denote the Euclidean norm
of v.
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2.1. Sheep dynamics

In this subsection, we present the mathematical model of the movement of sheep
agents. We assume that, at each time k, the position xi(k) of the ith sheep is updated
by the difference equation

xi(k + 1) = xi(k) + vi(k), (1)

where vi(k) ∈ R
2 denotes the movement vector of the ith sheep at time k. In this

paper, we assume that the vector vi(k) is constructed according to the Boid model [8],
a model widely used in the context of the shepherding problem [10,11,25–27] In the
Boid model, the following three types of inter-flock interactions are assumed: “separ-
ative force” from other agents, “alignment force” to match the speed of other agents,
and “attractive force” to approach other agents. In addition to these three types of
interactions, the sheep are assumed to move in such a way as to avoid the shepherd.
Then, the vector vi(k) appearing in equation (1) is determined as

vi(k) = Ki1vi1(k) +Ki2vi2(k) +Ki3vi3(k) +Ki4vi4(k), (2)

where Ki1, Ki2, Ki3, and Ki4 are non-negative constants that depend on individual
sheep. Also, vi1(k), vi2(k), and vi3(k) are vectors corresponding to the separative,
alignment, and attractive forces of the Boid model, respectively. To these three vectors
we add vector vi4(k) corresponding to the repulsive force from the shepherd.

We assume that the ith sheep receives forces from all sheep in the circle with
center xi(k) and radius R > 0. If there are no other sheep in this range, then we set
vi1(k) = vi2(k) = vi3(k) = 0. If we let Si(k) denote the set of the indices of the sheep
within radius R of the ith sheep at time k, then the vectors vi1(k), vi2(k), and vi3(k)
are given by

vi1(k) = −
1

|Si(k)|

∑

j∈Si(k)

xj(k)− xi(k)

‖xj(k)− xi(k)‖3
, (3)

vi2(k) =
1

|Si(k)|

∑

j∈Si(k)

vj(k − 1)

‖vj(k − 1)‖
, (4)

vi3(k) =
1

|Si(k)|

∑

j∈Si(k)

xj(k)− xi(k)

‖xj(k)− xi(k)‖
, (5)

whereas vi4(k) is given by

vi4(k) = −
xd(k)− xi(k)

‖xd(k)− xi(k)‖3
. (6)

2.2. Guidance problem

In the shepherding problem we consider in this paper, it is supposed that the sheep
agents consists of the following two types of sheep; normal and variant. A normal
sheep is assumed to be subject to all the four types of forces (3)–(6): separation,
alignment, attraction, and repulsion from the shepherd. On the other hand, a variant
sheep is assumed to be subject to at most three types of the four forces. Therefore, we
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do not consider the situation in which a variant sheep receives all the four forces but
with different coefficients. We place this assumption for simplicity of the formulation;
in particular, the shepherding method developed in this paper is applicable to such
general cases.

We assume that there exist M variant sheep. Without loss of generality, we assume
that the sheep 1, 2, . . . , N −M are normal, and the sheep N −M + 1, N −M + 2,
. . . , N are variant. In this paper, we do not consider heterogeneity within the set of
the normal sheep and the one of the variant sheep. Hence, we assume the existence of
positive constants K1, K2, K3, and K4 such that

Ki1 = K1, Ki2 = K2, Ki3 = K3, Ki4 = K4 (7)

for all i = 1, . . . , N−M . Likewise, we assume the existence of nonnegative constants α1,
α2, α3, and α4 such that

Ki1 = α1K1, Ki2 = α2K2, Ki3 = α3K3, Ki4 = α4K4 (8)

for all i = N −M + 1, . . . , N . We remark that the quadruple

α = (α1, α2, α3, α4) (9)

characterizes the deviation of the dynamics of the variant sheep from that of the
normal sheep. In this paper, we suppose that each coefficient αi is either 0 or 1. Under
this assumption, for example, if a variant sheep receives only the forces of separation
and alignment, then we have α = (1, 1, 0, 0).

As for the information available to the shepherd, we consider the following situation.
First, we assume that the shepherd is initially given an estimate

(β1K1, β2K2, β3K3, β4K4) (10)

of the coefficients (K1,K2,K3,K4) characterizing the dynamics of the normal sheep.
We do not require that the estimate is correct; therefore, each of the constants β1, β2,
β3, and β4 is not necessarily equal to one. Secondly we assume that, in the process
of the guidance operation, the shepherd will be given the location of all the sheep at
every T units of time from an external system for observation; i.e., we assume that
the shepherd can obtain the set of vectors

{xi(ℓT )}i∈[N ] (11)

for each ℓ ≥ 0. Finally, in addition to this global but periodic information, we suppose
that the shepherd is able to measure the position of the sheep closest to the shepherd
at every time instants to avoid collision. Hence, the shepherd is assumed to know the
index

n(k) = argmin
i∈[N ]

‖xd(k)− xi(k)‖. (12)

at each time k ≥ 0.
We can now state the objective of this paper as follows.
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Problem 2.1. Develop a movement algorithm of the shepherd so that the shepherd
can let as many normal sheep as possible arrive into the destination area G by using
the information (10), (11), (12) given to the shepherd.

3. Proposed method

In this section, we describe the proposed shepherding method based on model-based
discrimination of variant sheep agents. In Subsection 3.1, we describe the overall be-
havior of the proposed method. Then, in Subsection 3.2, we introduce auxiliary agents
called virtual sheep, which play an important role in the proposed method. A detailed
description of the proposed method is presented in Subsection 3.3.

3.1. Overall behavior

Let us first describe the overall behavior of the proposed method. We first remark
that, in the special case where a variant sheep does not exist, that is, when all the
sheep are normal, then applying the FAT method [12] can be considered to be effective
to solve Problem 2.1. However, as shown by the authors in [19], existence of a variant
sheep would prevent the successful guidance by the FAT method. One possibility in
this context is applying the FAT method only to the flock of normal sheep in all sheep.
However, in this paper, we are assuming that the shepherd is not given the labels (i.e.,
normal or variant) of sheep. In order to overcome this limitation, in this paper we
propose that the shepherd performs discrimination of sheep agents by using their de-
gree of deviation from their predicted trajectory. The details of the prediction method
is presented in Subsection 3.2, and that of the discrimination method is presented in
Subsection 3.3.

For prediction of the sheep’s trajectory, the proposed method uses the coeffi-
cients (β1K1, β2K2, β3K3, β4K4) given to the shepherd as an estimate of the coef-
ficient characterizing the normal sheep. If the estimate is accurate, i.e., if the esti-
mate (β1K1, β2K2, β3K3, β4K4) is closer to the normal coefficients (K1,K2,K3,K4)
than to the variant coefficients (α1K1, α2K2, α3K3, α4K4), then we can expect that
the trajectory prediction for normal sheep is more accurate than that for variant
sheep. Based on this supposition, the proposed method determines that sheep with
larger prediction errors are variant and, then, excludes them from the shepherd’s nav-
igation. Specifically, the shepherd uses the FAT method to guide only those sheep not
discriminated to be variant.

3.2. Dynamics of virtual sheep

In this subsection, we formally introduce the agents called virtual sheep, which we use
to perform the trajectory prediction of the actual sheep. These agents are assumed
to be placed one for each of the actual sheep agents. These N virtual sheep move
on the field R

2 in a way similar to that of the actual sheep, baesd on the estimated
coefficients (β1K1, β2K2, β3K3, β4K4) given to the shepherd.

Let the position of the ith virtual sheep at time k be denoted by ξi(k). Then, the
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change in position of the virtual sheep is specified as

ξi(k + 1) =

{

xi(k), if k mod T = 0,

ξi(k) + φi(k), otherwise.
(13)

In this equation, we assume that the position of the ith virtual sheep is re-positioned
to the same position as the (actual) ith sheep at every T units of time, when a global
measurement (11) of the sheep positions become available to the shepherd. This
re-positioning allows us to prevent an unlimited growth of the distance between the
normal and the virtual sheep caused by their difference in dynamics, which is therefore
necessary for performing discrimination effectively. Furthermore, φi(k) is the vector
representing the movement of the virtual sheep at time k, and is determined in a way
similar to equation (2) for the actual sheep as

φi(k) = β1K1φi1(k) + β2K2φi2(k) + β3K3φi3(k) + β4K4φi4(k), (14)

where β1K1, β2K2, β3K3, and β4K4 are the estimated coefficients of the normal sheep
and are given in advance to the shepherd. Also, φi1(k), φi2(k), φi3(k), and φi4(k) are
vectors corresponding to separation, alignment, attraction, and repulsion from the
shepherd, respectively. Because the global measurement (11) is available only period-
ically, between two consecutive global measurements, the virtual sheep is assumed to
perform its motion with reference to the virtual sheep’s position and displacement.
Therefore, the vectors in the equation (14) are constructed as

φi1(k) = −
1

|Ti(k)|

∑

j∈Ti(k)

ξj(k)− ξi(k)

‖ξj(k)− ξi(k)‖3
, (15)

φi2(k) =
1

|Ti(k)|

∑

j∈Ti(k)

φj(k − 1)

‖φj(k − 1)‖
, (16)

φi3(k) =
1

|Ti(k)|

∑

j∈Ti(k)

ξj(k) − ξi(k)

‖ξj(k) − ξi(k)‖
, (17)

φi4(k) = −
xd(k)− ξi(k)

‖xd(k)− ξi(k)‖3
, (18)

where Ti(k) ⊂ [N ] is the set of indices of the virtual sheep within radius R of the ith
virtual sheep at time k, and is defined by

Ti(k) = {j ∈ [N ]\{i} | ‖ξj(k)− ξi(k)‖ ≤ R}. (19)

If Ti(k) equals the empty set, then we set φi1(k) = φi2(k) = φi3(k) = 0.

3.3. Movement algorithm of shepherd

We are now ready to describe the proposed movement algorithm of the shepherd. The
proposed method is based on the FAT method. In the original FAT method [12], a
sheep called the target sheep is selected from among all the sheep. On the other hand,
the proposed method selects sheep only from those discriminated to be normal by the
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shepherd. The discrimination is performed by using the virtual sheep introduced in
Subsection 3.2.

In the algorithm, the shepherd possesses as its internal variable a set I(k) ⊂ [N ],
which is used to record the set of the sheep index discriminated to be normal. The
shepherd first initializes this set as I(0) = [N ] and update the set with period T .
At each time instant for update, a sheep index that is discriminated to be variant is
removed from the set. The discrimination is performed by the rule described later in
this subsection. On the other hand, for all the sheep that have been once removed from
the set I(k), the shepherd checks a condition described below. If the sheep satisfies
the condition, then its corresponding index is recovered into the set.

For discrimination, with period T , the shepherd computes the distance ‖xi(k) −
ξi(k)‖ between the actual and virtual sheep for all i ∈ [N ]. If this distance is greater
than a threshold value L, then the ith sheep is discriminated to be variant and, there-
fore, is removed from the set I(k). As for determining the threshold, we propose the
following two methods; Static and Dynamic. The Static method uses a fixed thresh-
old, while the Dynamic method dynamically and adaptatively sets the threshold using
quartile ranges, a common outlier detection method in statistics. Specifically, in the
latter approach, the first quartile q1 and third quartile q3 are first computed for the
set {‖xi(k)−ξi(k)‖}i∈[N ] of the distances. Then, the distance threshold L is determined
as

L = q3 + 1.5 IQR (20)

with the interquartile range IQR = q3 − q1.
At each update time of the set I(k), once the shepherd finishes discrimination

of all the sheep agents, the shepherd then adds the index i to the set I(k) for all
sheep i /∈ I(k) that have been determined to be variant, if the number of times the
sheep has been determined to be variant is less than the pre-determined threshold
τ > 0 and, furthermore, h units of time has passed since its last discrimination to be
variant. Thus, for a sheep to be permanently removed from the set I(k), the sheep must
be determined to be variant τ +1 times. The reason for introducing this mechanism is
that the above decision method is not always accurate due to the potential error in the
coefficient estimate given to the shepherd. Even when the estimate is correct, the non-
vanishing distance between a variant sheep and its corresponding virtual sheep causes
the difference in the trajectories of a normal sheep and its corresponding virtual sheep,
particularly when the normal sheep has relatively many variant neighbors. With the
intention of compensating for this imprecision, we set the threshold τ in the proposed
decision algorithm.

For the set I(k) thus constructed, the shepherd performs guidance based on the
FAT method proposed in [12] as follows. First, we let the shepherd change its position
from time k to k + 1 as

xd(k + 1) = xd(k) + vd(k), (21)

where vd(k) is the vector of shepherd movements at time k and is constructed as

vd(k) = Kd1
v1(k) +Kd2

v2(k) +Kd3
v3(k). (22)

In this equation, Kd1
, Kd2

, and Kd3
are positive constants, and the vectors v1(k),
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v2(k), and v3(k) are given by

v1(k) =
xd(k)− xt(k)(k)

‖xd(k)− xt(k)(k)‖
, (23)

v2(k) = −
xd(k)− xn(k)(k)

‖xd(k) − xn(k)(k)‖3
, (24)

v3(k) = −
xd(k) − xg
‖xd(k) − xg‖

, (25)

where t(k) denotes the estimated index of the sheep farthest from the goal among
those discriminated to be normal, and is constructed as

t(k) =

{

argmaxi∈I(k) ‖xi(k)− xg‖, if k mod T = 0,

t(k − 1), otherwise,
(26)

while n(k) is the index of the sheep closest to the shepherd and is defined as in (12).
We remark that, in the original FAT method, the shepherd is designed to steer the
sheep farthest from the goal among all the sheep agents. However, since we assume
that the shepherd can observe the actual positions of all the sheep only periodically,
we alternatively adopt the formula (26) as the estimate of the normal sheep farthest
from the goal.

Finally, the proposed method terminates when all the sheep in the set I(k) are in
the destination area G. A flowchart of the entire algorithm presented in this section is
shown in Figure 1.

4. Numerical simulations

The objective of this section is to demonstrate the effectiveness of the proposed method
through numerical simulations. As the performance measure for the comparison of
shepherding methods, we adopt the guidance success rate, which is defined as the
number of the normal sheep that could be guided to the destination area at the
end of executing the algorithms. In Subsection 4.1, we first describe the setup of
our simulations. We then, in Subsection 4.2, present our comparison of the proposed
method with the FAT method and, furthermore, the comparison among the proposed
methods (i.e., Static and Dynamic).

4.1. Simulation setting

Throughout our numerical simulations, the coefficients in the dynamic model of the
normal sheep (equations (2) and (7)) and those of the shepherd (22) are set as in
Tables 1 and 2, respectively. These values of the coefficients are the same as the ones
used in [19]. We set the total number N of the sheep to be 20, and the maximum
simulation step to be 10000 throughout all simulations. We assumed that, at the
initial time t = 0, each sheep is randomly placed according to a uniform distribution
on the open disk with center at the origin and radius 60. The initial position of the
shepherd is set to be (−30,−50). On the other hand, as for the destination area, we
set its center xg to be (20, 20) and its radius to be 15. We set the period T at which
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Figure 1. Flowchart of the proposed shepherding method

a shepherd can observe the position of arbitrary sheep to 10. We have also set the
time interval h for re-including a sheep once discriminated to be variant into the set
I(k) to be 20, and the threshold τ for permanently removing a sheep from the target
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Table 1. Coefficients of normal sheep dynamics (2)
Notation Description Value

K1 Separation 100
K2 Alignment 0.5
K3 Attraction 2
K4 Repulsion 500
R Radius of recognition range 20

Table 2. Coefficients of shepherd dynamics (22)
Notation Description Value

Kd1
Attraction to t(k)th sheep 10

Kd2
Separation from n(k)th sheep 200

Kd3
Repulsion from goal 4

of guidance to be 5. Finally, we set the distance threshold in the Static method as
L = 5.

As for the coefficients β1, β2, β3, and β4 appearing in the estimates (10) given to the
shepherd, we set βi = 1 for the forces received by the variant sheep, and set βi = 0.9
for the forces not received by a variant sheep. For example, when a variant sheep is
subject to only separative and attractive forces, i.e., if α = (1, 0, 1, 0), then we set
β = (1, 0.9, 1, 0.9). In our simulations, we consider the variance types characterized
by the vectors (α1, α2, α3, α4) (αi ∈ {0, 1}, i = 1, 2, 3, 4) except for the trivial cases
of (1, 1, 1, 1) and (0, 0, 0, 0). Hence, there are the total of 14 types of variant sheep
considered in our simulations.

Using the settings described above, we randomly generated 100 initial arrangements
of sheep and, then, performed simulations. We define the guidance success rate as the
average number of normal sheep that could be guided to the destination at the end of
the algorithm in these 100 simulations.

4.2. Simulatoin results

In this subsection, we perform comparison of the proposed methods and FAT method,
as well as the comparison among the proposed methods. Specifically, in Subsec-
tion 4.2.1, we compare the performance of the proposed and conventional methods
by observing the dependency of their guidance success rate on the number of variant
sheep. Then, in Subsection 4.2.2, we compare the two proposed methods thorough the
evaluation of their frequency of misjudgement, i.e., the number of times at which a
normal sheep is erroneously discriminated as variant.

4.2.1. Comparison of the proposed and conventional methods

We first demonstrate the overall behaviors of the proposed and conventional methods.
In this demonstration, we use the Static method as the proposed algorithm, and also
assume that the variant sheep receives only the force of separation (i.e., α = (1, 0, 0, 0)).
We show the timeline of the guidance by the FAT method and the proposed method
in Figure 2. In Figure 2a, we illustrate a typical situation in which the FAT method
fails to guide the whole flock because the shepherd keeps trying to guide a variant
sheep. On the other hand, as we can see from Figure 2b, the proposed method enables
the shepherd to discriminate normal and variant sheep and to guide the normal sheep
successfully in the goal region.

Let us then compare the performances of the proposed methods and the FAT
method. In Figure 3, we show the guidance success rates by the proposed meth-
ods (Static and Dynamic) and the FAT method for various values of M (i.e., the
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(a) FAT method. The guidance fails because the sheepdog keep trying to guide a variant sheep.

(b) Static method. The shepherd guide only normal sheep by not guiding the variant sheep.

Figure 2. Timeline of the guidance by the FAT and the Static method. The red circle indicate the sheepdog,
the circles indicate normal sheep, and the triangles indicate variant sheep receive only the force of separation.
The light blue represents the target sheep at the time.
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(a) The variant sheep receive one force.
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(b) The variant sheep receive two forces.

1 2 3 4 5 6 7 8 9 10

Number of variant sheep

0

20

40

60

80

100

G
u
id

a
n
c
e
 s

u
c
c
e
s
s
 r

a
te

 [
%

]

= (0,1,1,1)

1 2 3 4 5 6 7 8 9 10

Number of variant sheep

0

20

40

60

80

100

G
u
id

a
n
c
e
 s

u
c
c
e
s
s
 r

a
te

 [
%

]

= (1,0,1,1)

1 2 3 4 5 6 7 8 9 10

Number of variant sheep

0

20

40

60

80

100

G
u
id

a
n
c
e
 s

u
c
c
e
s
s
 r

a
te

 [
%

]

= (1,1,0,1)

1 2 3 4 5 6 7 8 9 10

Number of variant sheep

0

20

40

60

80

100

G
u
id

a
n
c
e
 s

u
c
c
e
s
s
 r

a
te

 [
%

]

= (1,1,1,0)

(c) The variant sheep receive three forces.

Figure 3. Guidance success rate by FAT method and two proposed shepherding methods. The blue, red,
and orange lines indicate the induction rate by FAT, Static, and Virtual, respectively.

number of the variant sheep). The FAT method achieves 100% guidance success
rate for the cases of 1) the variant sheep receives repulsion but not separation
(α = (0, 1, 1, 1), (0, 0, 1, 1), (0, 1, 0, 1), (0, 0, 0, 1)) and 2) receives all forces but align-
ment (α = (1, 0, 1, 1)). However, for the flock containing variant sheep that receive
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(a) The variant sheep receive one force.
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(b) The variant sheep receive two forces.
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(c) The variant sheep receive three forces.

Figure 4. Average execution time by FAT method and two proposed shepherding methods. The blue, red,
and orange lines indicate the average execution time by FAT, Static, and Virtual, respectively.

neither attraction nor repulsion (i.e., when α = (1, 1, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0)), the
FAT method frequently fails to guide the flock (guidance success rate < 13%). Fur-
thermore, for the case of other types of variant sheep, the FAT method shows the
trend in which the guidance success rate decreases with respect to the number of the
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variant sheep in the flock. On the other hand, we can observe that both of the pro-
posed methods exhibits relatively high performance (guidance success rates > 63%)
irrespective of the type of variant sheep, confirming their effectiveness and robustness.

In order to further investigate the difference in the performances of the proposed and
the FAT methods, we compare the average execution time (i.e., the average number of
steps taken by the algorithms). We show the average execution times of the algorithms
in Figure 4. We can confirm that the proposed methods finish guidance relatively
quickly (average execution time < 530). On the other hand, the FAT method requires
much longer execution time. This is mainly because the termination criterion of the
FAT method is that all the sheep lie in the goal region, which does not often happen
when the flock of the sheep contains variant ones.

4.2.2. Comparison of Static and Dynamic methods

In this subsection, we further investigate and discuss the difference in the performance
of the two proposed methods (Static and Dynamic). From Figure 3, we find that
the guidance success rate of the Static method tends to decrease with respect to the
number M of variant sheep. The reason for this characteristic can be attributed to the
fact that, the more the variant sheep, the more deviated the trajectories of the virtual
sheep to those of the normal sheep. This quantitative change cannot necessarily be
appropriately dealt with by the fixed threshold of the Static method. On the other
hand, the guidance success rate by the Dynamic method does not exhibit such trend
and, furthermore, even increases with respect to M for some types of variant sheep. A
possible reason for this phenomenon is that, in the Dynamic method, when there are
few variant sheep, its threshold would become relatively small because the difference
of the overall dynamics of the flock of virtual sheep and that of actual sheep is small.
This would let the threshold of the Dynamic method relatively small, which then can
make it difficult for the shepherd to discriminate variant sheep. Similarly, when there
are relatively many variant sheep, the Dynamic method would make its threshold high,
which then would prevent the shepherd from misjudging a normal sheep as a variant
sheep. These two factors can explain the trend in Figure 3 in which the Dynamic
method does not perform as better as the Static method for a small M , but can
outperform the Static method for larger M .

In order to further investigate the relationship between the guidance success rate and
the thresholds, let us investigate how the guidance success rate depends on the value of
the threshold. We show their relationship in Figure 5. In the figure, each plot consists
of 14 × 2 = 28 points resulting form all the pairs of the type of the variant sheep
and the two threshold method. Therefore, each point represents the average of the
threshold and the guidance success rate from the corresponding 100 simulations. The
points from the static method lies on the same vertical line because the method uses
a fixed threshold 5. On the other hand, because the Dynamic method adaptatively
changes its threshold in the course of the shepherding guidance, the points do not
necessarily lie on the same vertical line.

From Figure 5, we reconfirm that increasing M can result in degradation of the
performance of the Static method. On the other hand, we observe that the average
threshold in the Dynamic method tends to increase withM , while the guidance success
rate is mostly maintained for all the types of the variant sheep. This trend would be
because varying the size of the threshold enabled the Dynamic method to reduce the
number of times a normal sheep is mistakenly judged to be variant. These observations
suggest that preventing a wrong discrimination of a normal sheep would lead to better
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(a) M = 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Average threshold

60

65

70

75

80

85

90

95

100

G
u
id

a
n
c
e
 s

u
c
c
e
s
s
 r

a
te

 [
%

]

(b) M = 4
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(c) M = 7
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(d) M = 10

Figure 5. Relationship between the thresholds and guidance success rate. Horizontal axis: The value of the
thresholds. Vertical axis: Guidance success rate.

guidance success rate.
In order to assess the validity of our hypothesis that preventing discrimination of

a normal sheep as a variant sheep would lead to increase in the guidance success
rate, let us examine how the guidance success rate depends on the occurrence of the
incorrect discrimination. In Figure 6, we show the relationship between the guidance
success rate and the number of incorrect discrimination of the normal sheep. The
overall negative correlation from the plot, both in the Static and Dynamic method,
confirms the validity of our hypothesis.

5. Conclusion

In this paper, we have formulated a shepherding problem for a heterogeneous flock
consisting of normal and variant sheep, and then proposed a movement algorithm
of the shepherd to solve the formulated shepherding problem. In this algorithm, the
shepherd predicts the sheep’s trajectories using the given and estimated dynamical
model of normal sheep. Then, the shepherd discriminates those sheep deviating from
the predicted trajectory as variant. To the agents discriminated to be normal, the
shepherd performs navigation control by using the FAT algorithm. We specifically
proposed two methods having a different discrimination process; Static, in which the
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Figure 6. Relationship between guidance success rate and the number of incorrect discrimination of the
normal sheep. Horizontal axis: Guidance success rate. Vertical axis: The number of times a normal sheep is
mistakenly judged to be a variant one.

distance threshold for discrimination is constant, and Dynamic, in which the threshold
adaptatively changes. Our numerical simulations show that both methods outperform
the FAT method in its original form. We also find that the Dynamic method is robust
to the change in the number of the variant sheep in the flock of agents.

There are several interesting directions of future research. One is a further compre-
hensive investigation of the performance of the proposed method. For example, in this
paper, we have focused on the situation in which the uniformity among the variant
sheep is guaranteed. Investigating how the heterogeneity within the variant sheep af-
fects the performance of the proposed methods is necessary to further establish their
effectiveness. Another direction is to validate the effectiveness of the proposed discrim-
ination method when used in the shepherding methods other than the FAT method.
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