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ABSTRACT

In this study, we design connected multiple drones through electromagnets, and
it requires an attitude estimation that does not use magnetic sensors. In order to
solve this problem, we propose an extended Kalman filter-based attitude estimation
method based on the multiple global positioning system (GPS) to substitute the
magnetic sensor. Additionally, we demonstrate that combining velocity vectors al-
lows for highly accurate attitude estimation. We compare the estimation accuracy
and stability of attitude estimation in simulation and real environments using two
types of experiments. It is confirmed that the accuracy of yaw angle estimation
of the proposed method is improved 36.1% in simulation and 29.7% in the real
environments compared to conventional extended Kalman filter.

KEYWORDS
Connected Drone; RTK-GPS; Extended Kalman Filter; Multiple GPS; Attitude
Estimation

1. Introduction

Recently, drone technology has been commonly used because of the drastic improve-
ment of its performance and reduction in its manufacturing cost [1]. Therefore, drones
have been used in various fields such as agriculture, forestry, surveying, inspection,
disaster investigation, security, delivery, entertainment, and so on [2], and it has been
attracting increasing attention every year. The use of drones in a single aircraft has
been thoroughly studied and is now being expanded to include multiple drones.
Many studies have focused on cooperative flight as a flight mode for multiple drones.
However, autonomous flight of multiple drones is difficult because of technical issues,
such as the need for precise control to avoid collisions and the need for multiple com-
munication channels for the drones to communicate with each other [3]. To solve this
problem, we focus on a connected drone system. This is a system in which multiple
drones can be physically connected and separated to function as different-size drones
depending on the situation. This system allows the number of drones required for com-
munication and collision avoidance to be changed as needed. Drones with connecting
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mechanisms are rarely seen, except for a few types of research and patents [4-7], that
is, such systems have not been sufficiently considered or discussed.

The purpose of this study is that we focus on the application of multiple drones using
this connection method, design the drones and present a suitable attitude estimation
method for this drone. Fig. 1 shows an overview of the proposed drone.

Computer

RTK-GPS & IMU

Electromagnets

6 inch propellers

Figure 1. Drone Configuration

It is approximately 35cm long on each side and has electromagnets on the four sides
for the connecting mechanism. We use electromagnets for the connecting mechanism.
This is because the magnetic force makes switching between connecting and separat-
ing each other drones easier and ensures a strong connecting force. This magnetic
connecting mechanism makes flying like one large drone in various shapes possible.
This mechanism minimises the size of a single drone but allows it to be operated
flexibly depending on the task. In the centre, the drone has a global positioning sys-
tem (GPS) and an inertial measurement unit (IMU). These sensors can measure its
position, speed, acceleration and angular velocity. Furthermore, the system uses real-
time kinematic GPS positioning. This positioning system allows the position to be
measured with high accuracy.

In general, the measurement of a drone’s self-attitude enables the control of its po-
sition and speed. Therefore, the self-attitude measurement of drones is necessary for
stable and automatic control [8,9], and many researchers are working on attitude esti-
mation methods. Presently, the Kalman filter (KF) is mainly used for drone attitude
estimation [9]. KF is an algorithm that can be used to estimate the state of a system if
the accurate dynamics model of the target is known and can be used to fusion various
sensors [10]. This means that KF can combine the advantages and disadvantages of
various sensors. Owing to its simplicity and low computational cost, KF is used in
many fields other than attitude estimation [11]. However, KF has some disadvantages,
such as it cannot be used in nonlinear models and is easily affected by modelling er-
rors of the estimation target. To solve these disadvantages, KF has been developed in



various ways. For example, for targets that are difficult to adapt to nonlinear models,
extended KF (EKF) is used to make a linear approximation around the estimated
value [12], or unscented KF is used to approximate and estimate the state variables
by applying the unscented transformation [13]. Besides, adaptive KF [14] and fuzzy
KF [15] are used in cases where modelling errors are likely to occur, or the model
changes dynamically. Sensor fusion methods have been studied using KF, including
various sensors such as IMU [16-18], GPS [19], camera [20],millimetre wave radar [21],
star tracker [22], barometer [23], and other sensors. Often, attitude estimation by KF
used IMU, including a magnetic sensor.

Our proposed drone is connected using an electromagnet, disturbing the surrounding
magnetic field. Due to disturbance, magnetic sensors, which are often used for attitude
estimation, cannot be used. Therefore, we focused on a method [24,25] that substitutes
the geomagnetic sensor with two GPS antennas, extended this to the case of three or
more antennas, and applied it to our drone. Additionally, we add drone velocity to the
observation equation of EKF for highly accurate attitude estimation.

Due to not using a magnetic sensor, our proposed drone can operate in a geomag-
netic environment that was previously inaccessible to existing drones. For example,
Park et al. studied magnetic disturbances around ultra-high-voltage wires [26]. Be-
cause our proposed drone does not rely on a magnetic sensor, it can be used for tasks
such as inspecting ultra-high-voltage power lines.

The structure of this paper is as follows. In section 2, we introduce the previous
studies on attitude estimation and the proposed method. We add the velocity term of
the drone to the observation equation and try to make it more accurate than previous
studies. In section 3, we verify the effectiveness of the proposed attitude estimation
method through simulation experiments and outdoor experiments. In section 4 we
draw conclusions. In our previous study [27], we used a simulation experiment to
demonstrate the effectiveness of attitude estimation in a connected drone. In this
study, the simulation situation was increased for further verification of effectiveness.
Furthermore, the estimation experiment was conducted in the real environment, and
the effectiveness of the real environment was also confirmed.

2. Methods

In this section, we introduce three conventional methods used for attitude estimation
and describe the proposed method.

2.1. Conventional methods

In this section, we introduce the Q-Method, the Madgwick filter (MF) and the KF,
which are used for attitude estimation.

2.1.1. Estimation by the Q-Method

Inoue et al. proposed a method for estimating the attitude of drones using the Q-
Method [28]. The Q-Method is a method mainly used for satellite attitude estima-
tion, which uses star tracker and sun sensors attached to the satellite to estimate
its self attitude [29]. Specifically, the attitude is estimated by computing an attitude
that minimises an attitude estimation error function called the Wahba evaluation for-
mula [30]. Inoue et al. applied this method to the attitude estimation of a drone with



six RTK-GPS antennas. The advantage of this method is that it is a static estimation
method and is not affected by large past noises. However, the disadvantage is that the
estimation accuracy varies greatly depending on the number of GPS antennas, espe-
cially when there are fewer than two antennas, the estimation is almost impossible. In
the section 3.1 we verify that this method is suitable for our proposed drone attitude
estimation.

2.1.2. Estimation by the Madgwick filter

Madgwick has proposed a method of attitude estimation called the MF, which uses
only an IMU or an IMU and a magnetic sensor [31]. One of the features of this method
is that it reduces the computational load while achieving the same accuracy as the KF
method of estimation. The method determines the attitude by calculating a weighted
average of two attitude estimates, one using the gyro sensor and the other using only
the acceleration sensor or both the acceleration and magnetic sensor. This method
gives relatively good accuracy but has the disadvantage that the accuracy decreases
when the object is moving because it uses the direction of gravity. It has been suggested
that this drawback can be solved using a magnetic sensor [31]. However, this solution
cannot be used because magnetic sensors are unavailable for this drone. In section 3.1,
we will verify how accurately we can estimate the attitude without using a magnetic
Sensor.

2.1.8. Estimation by the EKF

Farhad et al. proposed an attitude estimation method suitable for rovers with two
GPS antennas and an IMU [24]. In this proposal, they have focused on the adaptive
EKF. The adaptive EKF is an algorithm proposed to deal with systems where the
internal state is changing, allowing the simultaneous estimation of the state and noise
variance matrices [32]. The Farhad et al. method uses an adaptive EKF to estimate
state variables such as attitude, position, velocity and gyro bias noise. By using the
adaptive EKF, they could reduce the effects of accumulated noise, which is a disad-
vantage of IMU and increases the estimation frequency, which is a disadvantage of
GPS. Furthermore, it is flexible enough to adapt to changes in the environment by
estimating the GPS noise variance matrices as it changes with movement and time.
We focus on this method and propose its application to our connected drone. We have
calculated the case of multiple IMUs and made them available for use in connected
drones. Furthermore, we have improved the accuracy by adding the drone’s velocity
obtained from GPS to the observation vector. This velocity data is provided using
the Doppler effect of the transmitted waves from the GPS. Section 3.1 examines the
effectiveness of this method.

2.2. Proposed method

Figure 1 shows the configuration of a single drone. The drone has an IMU and a GPS
antenna in the centre and electromagnets for the coupling mechanism on its four sides.
In this study, we consider the attitude estimation with two laterally connected drones
as shown in Fig. 2.

We describe the mathematical symbols we use in section 2.2 below. The estimated
value of the signal f is expressed by f , and the difference between the true value f
of the signal and the estimated value f is expressed by df, where this difference is



Figure 2. After the Connection

called the residual. That is, x — & = dx is held for a given estimated signal x. The bold
symbol f represents a vector.

2.2.1. Coordinate systems

We introduced two coordinate systems, such as those shown in Fig. 3 for attitude
estimation.

The first is the World coordinate system, which is a system in which the origin is
the position of the reference antenna, the east direction is the Xy, axis, the north
direction is the Yy axis, and the reverse direction of gravity is the Zyy axis. The second
system is the Body coordinate system, which uses the X p axis to represent the forward
direction, Yp axis to represent the right and left directions, Zp axis to represent the
up and down directions, and the origin as the centre of the two GPS antennas. This
coordinate system is attached to the drone, where the position and attitude change
with its motion. The estimation is the attitude of the Body coordinate system in the
World coordinate system, the GPS value is the value of the World coordinate system,
and the IMU value is the value of the Body coordinate system. Let the origin R of
the Body coordinate system viewed from the World coordinate system be the point
of estimation by the EKF. The positions of the respective antennas in the World
coordinate system are P; and P,. Furthermore, let » be the vector from the origin of
the world coordinate system to point R and p; be the vector to point P;.

2.2.2. Quaternion deployment

The quaternion g € R* expresses the attitude of the Body coordinate system from the
World coordinate system. The advantage of using the quaternion is that no singularity
point occurs when using Euler angles [33]. Generally, attitude control is impossible in
singularity points. The quaternion expresses the attitude by using a four-dimensional
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Figure 3. Body Coordinate and World Coordinate

vector ¢ = [q} ¢,)7. The quaternion,

Az Sin 9
dv| a2 )\y sin 2
= = ) 1
q )\Z sin § Y ( )
qo Ccos g

means 6 rotation about the direction vector q, € R3, where \,, Ay, and A, are the unit
direction vector, which is the axis of rotation of the quaternion. All the quaternions
treated in this study are in the unit of size ||g|| = 1, where ||-|| represents the Euclidean
norm of the vector. The rotation matrix is given as,

Aq) = (2¢2 — 1) I3 + 2¢,[qu x] + 2quq7 . (2)

Here, I3 is a unit matrix of 3 x 3, and [x] is a representation matrix of the vector
product satisfying @ x b = [ax]b in the vector product. For example, the expression
matrix of the vector product of g, is equal to

0 —qz dy
[@ux]=1 & 0 —q |. (3)
—qy 4x 0



Furthermore, the product of the quaternions is defined as

a® = gols + Q(qu), (4)
(a,) - | Ttz o). &)

At this time,
Alq1 ® g2) = Algq2)Alq1), (6)

is given. In a quaternion, the relationship between the true value g, the estimated
value @, and the residual dq is

g=90q®q. (7)

If the difference between q and @ is significantly small, the rotation angle 66 of the
residual dq is so small that Eq. (1) yields ||0g,|| < 1,d¢, = 1. Therefore, if we truncate
the small quantities of the order two or more from Eq. (2), an approximation like

A(dq) ~ I3 + 2[6qy ¥], (8)

can be held for the rotation matrix of the residuals.
If the angular velocity vector of the object is w € R3, the time derivative of the
quaternion ¢ can be calculated as

i =-0w)a. (9)

When the angular velocity is measured using a gyro sensor, the bias noise b € R3
and random noise w, € R3 are added to the measured value Uy € R3. Where wy is

the random walk noise according to F [wgwg] = 0313. Additionally, according to [34],

the gyro-bias is assumed to be b = wy, where wy, is a random walk noise that follows
E [wgng] = 0213. The angular velocity vector w of the drone is calculated using the
measured value uy, and the noise b, w, is calculated as

w=uy;—b—w,. (10)
The time derivative of the residual quaternion dq is satisfied from [34] as

S = —[&x]0gy — %51) _ %wg, (11)

8go = 0. (12)

In the EKF', we estimated the vector part q, of the attitude quaternion of the Body
coordinate system as seen from the World coordinate system, the position vector
r € R3, and the velocity vector # € R3, of the Body coordinate system as shown
in the World coordinate system, and the bias b that is used in the gyro sensor. Let

x = [qF r7 #7 bT]T be the state estimation vector that combines them.



2.2.3. IMU integration

The IMU position in the conventional method [24] is at the centre of the body, whereas
in this study, the IMU position is the antenna position. This study examines whether a
measuring device installed at the antenna position can estimate the value of the drone’s
centre. In this study, we considered an n number of antennas. The vector to the antenna
installation point in the World coordinate system shall be p; € R3 i = {1,2,...,n},
and the acceleration and angular velocity at the point p; shall be a;,w; € R3. Let
a,w € R3 represent the acceleration and angular velocity, respectively at the centre
point R after the connection, assuming that the connected drone rotates around the
point R as a rotation vector w. Furthermore, let e; € R3 be the vector from the point
R in the Body coordinate system to the position p; of each antenna. Additionally,
the relationship between a,w, a; and w;, will be considered. Because the value of the
angular velocity of a rigid body does not depend on its position, w can be calculated
using the average value of the i-th w; as

Lis Wi (13)

n

w =

Here, the number of drones connected is n € R. If the weight of a single drone is
m € R, the total weight after the connection is nm, where the external force applied
to the i-th drone is F; € R? in a rotational coordinate system defined as Fig. 4. The
equation of motion is given by

ma; = F — 2mlwx]é; — mlwx]([wx]e;). (14)

Therefore, the sum of the equations of motion at the point p; in the Body coordinate
system can be expressed as

n n n n
mZai:ZFi—Qm[wx]Zéi—m[wx]QZei. (15)
i=1 i=1 i=1 i=1

Here, if > 7" | e; = 0, Eq. (15), can be transformed into
F
Zal _ Zz 1 (16)

From the overall equation of motion, the acceleration a can be represented as

a= 2o Fi . (17)
nm

Therefore, the acceleration a can be obtained from Eq. (16) and Eq. (17) using an
average value as

Lic1 % (18)

n

a —
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Figure 4. Rotational Coordinate System



2.2.4. Derivation of observation equations and Jacobian Matrices

Let p; be the velocity vectors obtained from the i-th GPS. When using a state vector
to express the observation information, p;, p,;, can be obtained as shown below when
there is no noise.

pi =71+ A(q)e;, (19)

pi=1+A(ge;:. (20)

However, this expression can be written as

z = h(xz) + v, (21)
p1] [r + A(q)eq ]
_ p:n |t A(q)en
=15, | M@ = ik Algre | 22
_I;n_ |7+ qu)em

using the observation vector z € R3*2"_ the observation equation h(zx) € R3*?" and
the GPS observation noise v € R3*?". To apply the nonlinear function h(zx) to the
EKF, the Jacobian matrix must be calculated. This, the Jacobian matrix for p; can
be represented according to [24],

Op;
ox

= [-24[e;x] I3 03 03], (23)

=
where 03 represents a zero matrix of 3 x 3, and A represents A(§). The Jacobian matrix
for p; is then computed. The properties of the Jacobian matrix are

_ 0P

op; = Oz

dx. (24)

=T

From the calculations shown in Appendix A, Eq. (24) becomes

obi ~ |2(Aleix|[@x] — Aleix]) 05 I5 Alex]| o (25)

10



Thus, the Jacobian matrix H for the observation equation h(x) is calculated.

_ Oha)

H = 2
5|, (26)
i —2121[61 X] I3 03 03 i
—2A e, X I3 0 0
_ [ ] 3 U3 U3 ' (27)

2(Aler x][@x] — Ale1x]) 03 Iy Ale;x]

~

2(Alenx][@x] — Alenx]) 05 Iy Alenx]]

We can add observations of the velocity using Eq. (27) and Eq. (22), if we use them
instead of the Jacobian matrix H and the observation equation h(x) shown by the
conventional method [24].

According to [24], the dynamics of this system is

%[[3 03X1HQ(1{'9 + b + wg)q]
r

A(q)(ue +wa) — g
wy

= f(x,u,w) = (28)

Where u, is the value output from the acceleration sensor. Furthermore, w, is the

random walk noise added to the acceleration sensor, Elw,wl] = 0213 is assumed.

Moreover, u is [ug ul], w is ['wg w! wl]T. The Jacobi matrix in equation Eq. (28)
is
—[GJ X] 03 O3 %13
of 03 03 I3 03
F= 2L = p ) 29
8$ r—d u—ii —QA[dX] 03 03 03 ( )

03 03 03 O3

3. Experiments

In this section, we demonstrate the effectiveness of the proposed method through
estimation simulations and outdoor experiments under various situations. We assume
that the number of connections is two because attitude estimation is most difficult due
to the number of sensors. We experiment with a situation where drones are connected
side by side, as shown in Fig. 2. We use the Euler angle for accuracy evaluation because
it is more intuitive than quaternions. The Euler angle consists of three rotation angles,
roll, pitch and yaw angles, which represent the rotation around x-, y- and z-axes,
respectively. In this study, the World coordinate system rotates with respect to the
Body coordinate system in the order of yaw, pitch and roll.

3.1. Simulation Experiment

In this section, the accuracy of the attitude estimation is verified by simulation. In
section 3.1.1, we experimented with the situation in which moving and rotating were

11



repeated. In section 3.1.2, we investigated the situation in which stopping and rotating
were repeated. Four methods were used for comparison: the Q-Method, the MF, the
conventional EKF using position information from GPS, and the proposed EKF using
position and velocity information from GPS. Because the EKF is a stochastic method,
the simulation experiments in each section are repeated 100 times under the same
conditions, and the mean absolute error (MAE) and root mean square error (RMSE) is
calculated from the results. The standard deviation values for the white noise added to
each sensor are ogps = 2.0 x 1072 (m), 0, = 2.5 x 1072 (m/s?) and oz = 5.0x 1072 (°/s).

3.1.1. Experimental results (moving and rotating)

In this section, we conducted an estimation experiment assuming a situation where
the drone repeatedly moves in a straight line and rotates. Specifically, we assumed the
estimation experiment is based on the assumption that the drone alternates between
rotational and linear motion along the path shown in Fig. 5.

@ r: Position of drone centre @® p:: Position of i-th antenna

> 000

-6 -4 -2 0 2 4 6
X (m)

Figure 5. Drone Route in a Simulation

The red point in the Fig. 5 represents the drone’s centre position r estimated by the
EKF, and the green point represents the antenna position p;. Figs 6 and 7 show the
experiment result for each methods.

Figure 8 shows the absolute error of Fig. 7 compared to the true value.

Table 1 summarises the MAE and RMSE of the experimental results.
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Figure 6. Attitude Estimation Results of Q-Method and Madgwick Filter (Simulation
Experiment of Moving and Rotating)

Table 1. Comparison of Move And Rotate Estimation Results

Roll Angle (°)  Pitch Angle (°) Yaw Angle (°)
MAE RMSE MAE RMSE MAE RMSE

Q-Method[29] 116 142 13.0 25.0 36.1 76.0
MF[31] 0.766 1.38 1.39 1.75 5.35 8.28
Conventional EKF[24]  1.29 1.29 0954  1.20 1.04 1.26
Proposed EKF 0.386 0.480 0.490 0.597 0.975 1.20
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— True —— Conventional EKF —— Proposed EKF
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Figure 7. Attitude Estimation Results of Conventional EKF and Proposed EKF (Sim-
ulation Experiment of Moving and Rotating)
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—— Conventional EKF —— Proposed EKF
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Figure 8. Absolute Error of Attitude Estimation Results of Conventional EKF and
Proposed EKF(Simulation Experiment of Moving and Rotating)
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Compared with the conventional method, the proposed method improved the MAE by
70.0 % for roll angle, 48.7 % for pitch angle and 5.96 % for yaw angle. Furthermore, for
RMSE, the proposed method improved the roll angle by 70.4 %, pitch angle by 50.3 %
and yaw angle by 4.77 %. Thus, these results show the effectiveness of our proposal.

3.1.2. Experimental results (stopping and rotating)

In this section, we conducted an estimation experiment assuming a situation where
the drone repeatedly stops and rotates to verify the responsiveness in the stopped
state. Specifically, we hypothetically assumed that the drone rotates at a speed of 1
degree per second for 30 s and then stops for 1 min, repeat the sequence of operations
12 times. Fig. 9 show the experiment result for each methods.

— True —— Conventional EKF —— Proposed EKF
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100

50

Yaw (degree)
o

_50<

-100;

-150;

0 200 400 600 800 1000
Time (second)

Figure 9. Attitude Estimation Results of Conventional EKF and Proposed EKF (Sim-
ulation Experiment of Stopping and Rotating)

Figure 10 shows the absolute error of Fig. 9 compared to the true value.

Table 2 summarises the MAE and RMSE of the experimental results.

The results show that the proposed method is the most accurate for MAE and RMSE of
rotation on each axis. Specifically, compared with the conventional EKF, the proposed
EKF improves the roll angle by approximately 73 %, the pitch angle by approximately
58 %, and the yaw angle by approximately 30 % for MAE and RMSE.

16



—— Conventional EKF —— Proposed EKF
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Figure 10. Absolute Error of Attitude Estimation Results of Conventional EKF and
Proposed EKF(Simulation Experiment of Stopping and Rotating)

Table 2. Comparison of Stop And Rotate Estimation Results

Roll Angle (°)  Pitch Angle (°) Yaw Angle (°)
MAE RMSE MAE RMSE MAE RMSE

Q-Method[29] 126 148 815 167 654  88.1
MF[31] 0.698 0.826 0.705 0.836 147 179
Conventional EKF[24] 144 177 0848 1.03 186  2.22
Proposed EKF 0.385 0.479 0.349 0.434 1.43 1.80
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3.1.8. Discussion of simulation experiments

Estimation results using the Q-Method (red line in Fig. 6) shows that the results
of attitude estimation is unstable. This error is because Q-Method can not estimate
attitude when the number of antennas is two. Q-Method estimation requires at least
three antennas to obtain a unique attitude. In this study, we consider the number
of connections to be at least two, so it is considered that the proposed system has
difficulty in estimating the attitude using Q-Method.

The blue line in Fig. 6 shows that the estimation result is getting worse with time.
This error is owing to a poor estimation of the bias noise added to the gyro sensor.
As the effect of the bias noise increases with time, the estimate deteriorates with it.
This result shows that MF is not suitable for the estimation method of the proposed
system.

Figures 7 and 9 show that the conventional EKF and proposed EKF can estimate the
attitude with high accuracy. However, the difference in estimation accuracy between
the proposed EKF and the conventional EKF is not very large. The improvement in the
moving and rotating situation is 0.065 degrees, which is lower than the improvement
in the stopping and rotating situation of 0.43 degrees. This is because the proposed
method can flexibly respond when the motion changes, and the number of times it does
so in the moving and rotating situations is small so that the results may be different.

The accuracy of roll and pitch angle estimation using conventional EKF and pro-
posed EKF is higher than that of yaw angle. This is because the accuracy of the
information used to estimate the yaw angle is lower than that of the other angles. The
roll and pitch angles can be estimated with high accuracy with reference to the direc-
tion of gravity. On the other hand, yaw angle can be estimated by multiple GPS, but
it is affected by noise more strongly than other sensors because of the close distance
(35 cm) between GPS.

3.2. Real Environment Experiment

In this section, we conducted two experiments to verify the performance of the pro-
posed method in a real environment. We carried out two experiments with conditions
same as in section 3.1 outdoor. In both experiments, we constructed the drone shown
in Fig. 11 for the experiment and estimated the attitude in the outdoor.

We used the sensor BMX055 from Bosch Sensortec for IMU and ZED-F9p from u-blox
for GPS. The update frequencies are 30 Hz and 5 Hz, respectively. The drones were
connected by bolts rather than electromagnets for ease of handling in the experiment.

3.2.1. Experimental results (stopping and rotating)

In this section, we experimented with a hypothetical situation of repeated stationary
and rotational motion in the real world. We used the drone shown in Fig. 11 and a
tripod with an angle scale for this experiment. Fig. 12 shows the angle scale mounted
on the tripod.

We fixed the drone to a tripod and manually rotated the drone, and rotated the drone
30 degrees every minute using the angle scale as a guide. We performed ten of these
rotational movements and compared the accuracy with the estimation results of each
method. We extracted scenes (50s x 10 times) from the video of our experiments
where the drone was stationary and compared them in that section. We compared the
accuracy at the output of the prediction step by the IMU of the EKF (15,000 times).

18



Figure 11. The Connected Drone Used in the Outdoor Experiment
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Figure 12. Angle Scale Mounted on the Tripod Used During the Experiment
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Fig. 13 shows the true value of the yaw angle and the estimation result.

— True —— Conventionl EKF —— Proposed EKF
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Figure 13. Attitude Estimation Results of Conventional EKF and Proposed EKF (Out-
door Experiment of Stopping and Rotating)

Figure 14 shows the absolute error of Fig. 13 compared to the true value.
MAE and RMSE of each method calculated from these results are shown in Table 3.

Table 3. Comparison results of yaw angle estimation outdoors

Yaw Angle []
MAE RMSE

Conventional EKF[24]  1.49 1.92
Proposed EKF 1.04 1.49

The proposed method improved MAE by 29.8 % and RMSE by 22.1 % compared with
conventional EKF.

3.2.2. Experimental results (moving and rotating)

In this section, we have assessed the accuracy in a continuously moving situation in
an outdoor environment. In an open outdoor environment of about 20 m square, as
shown in Fig. 15, we moved the drone with it lifted above our heads.
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Figure 14. Absolute Error of Attitude Estimation Results of Conventional EKF and
Proposed EKF(Outdoor Experiment of Stopping and Rotating)
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Figure 15. The Route Moved in the Outdoor Experiment
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Initially, the drone faces to the right in Fig. 15 and changes direction to the top of
Fig. 15. It then repeats, moving forward a certain distance and rotating 90 degrees and
returns to the start position. We logged the sensor outputs and input them into two
Kalman Filters to verify the stability of the attitude estimation. As it is difficult
to measure the true value in this experiment, the stability of the estimation was
confirmed.

The estimation using proposed EKF results for the motion in Fig. 15 is shown in
Fig. 16.
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Figure 16. Attitude Estimation Results of Conventional EKF and Proposed
EKF(Outdoor Experiment of Moving and Rotating)

3.2.8. Discussion of real environment experiments

Figure 13 showed that the proposed EKF could estimate the yaw angle with high
accuracy, but the proposed method only improved accuracy by approximately 0.45
degrees. This could be caused by the lack of benefit of adding the proposed velocity
vector because it was a static estimation.

Comparing table 3 with the experimental results of the simulation (table 2), the
difference of MAE and RMSE is 0.4 degrees, which means that the simulation experi-
ment can reflect the estimation accuracy of the real environment. Therefore, although
we do not measure the true values of the roll and pitch angles in this experiment, the
simulation experiment results suggest that the roll and pitch angles are also estimated
as accurately as in the simulation.

Figure 16 shows that the proposed EKF can estimate the yaw angle with little
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noise, but since the true value is measured by eyeballing the scales, it cannot be
measured while moving, and therefore it cannot be compared with the true value in
the experiment at section 3.2.2. If we assume that the accuracy is the same as the
simulation result (Table 1), the error in Fig. 16 is about 1 degree.

4. Conclusion

In this study, a solution to the problem of attitude estimation in connected drones has
been proposed. Specifically, we use multiple GPS instead of the magnetic sensor, which
cannot be used due to electromagnets. We have compared the four methods through
experiments and shown that the proposed EKF can most accurately estimate. In other
words, we have shown that the estimation accuracy can be improved by adding the
velocity vector of the drone. We have confirmed estimation accuracy by two types of
experiments, one in simulation and the other in the real environment. In the simula-
tion, we have compared the four methods’ estimation accuracy in the moving-rotating
situation and stopping-rotating situation. As a result, we have found that the pro-
posed method is the best in all situations and angles. In outdoor experiments, we have
compared the accuracy of the proposed method with the true value in the stopping
situation. As a result, we have found that the proposed method is superior. Although
we can not compare with the true value in the moving situation, we have shown that
the estimation result is relatively stable. Using proposed method, we can estimate the
attitude of a connected drone with a few degrees of error. The accuracy of GPS mea-
surements has a significant impact on estimation accuracy so that the environment
in which the proposed method can be used must be open space. However, because
the method does not use a magnetic sensor, it is possible to accurately estimate the
attitude in an environment where the geomagnetic field is disturbed. In the future, we
hope to conduct flight experiments while connecting. Furthermore, estimation exper-
iments in a high-speed environment and the true value comparison experiments with
roll angle and pitch angle in a real environment should also be investigated.
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Appendices

A. Derivation of Eq. (24)

6p; from expression Eq. (20) can be expressed as

op; = o1 + (A — A)e,. (30)
Here, A and /1 are
A= Alg. A= A@). (31)
Since
Alq) = A(0g® 4) = AA(sq), (32)

is derived from Eq. (6) and Eq. (7), the derivative of the rotation matrix A can be
calculated as

A= AA(dq) + AA(5q). (33)
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A(6q) is substituted with Eq. (8) to obtain

. 2 ~d
A= A(I?) + 2[(5q1,><]) + A%(I?: + 2[6QUX])

— A+ 2A[6qux] + 2A[0qux].

Therefore, the second term on the right side of Eq. (30) can be transformed into

(A — fl)ez
= (A + 2A[5qy %] + 2A[0qux] — A)e;
— 2A[e;x]dqy — 2A[eix]0qy.

Because the last term of Eq. (38), can be calculated from Eq. (11), as

—2A[e;x]6q, = —2A[e; x](—[@x]6q, — %51) - %wg)

~ 2A[e;x|[@x]0q, + Ale;x]0b.

Therefore, Eq. (30) becomes

obi ~ [2(Aleix[@x] - Aleix]) 05 Ir Alex]| o
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