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Real-time motion planning for an autonomous mobile robot with wheel-

ground adhesion constraint 

Jiuchun Gao*, Fabien Claveau, Anatol Pashkevich, Philippe Chevrel 

The Department of Automation, Production and Computer Sciences, IMT-Atlantique, Nantes, France 

The paper proposes a new real-time motion planning technique for an autonomous mobile robot that 

is able to find a collision-free path and a corresponding time-optimal trajectory while taking into 

account limits on the actuator capacities and constraints from the wheel-ground adhesion. The 

proposed technique includes two sub-modules. The first one, an optimal path planner, is based on the 

discretization of the robot workspace and dynamic programming principle. It allows finding the 

shortest path in the robot environment to avoid obstacles and reach the robot target. The second one, 

an optimal trajectory generator, operates with the discretized robot state-space and also employs 

dynamic programming techniques. It produces a time-optimal motion along the obtained path, which 

may include numerous regular and singular trajectory sections caused by the simultaneous 

application of actuator and wheel-ground adhesion constraints. To adapt this technique to real-time 

implementation, a moving window strategy is presented that allows regularly updating the robot 

motion profile in a dynamic environment. The advantages of the developed technique and its 

suitability for real-time control are illustrated by experimental studies implemented on a car-like 

mobile robot. 

Keywords: autonomous mobile robot; real-time motion planning; wheel-ground adhesion; time-

optimal trajectory; dynamic programming 

  



1. Introduction 

At present, the autonomous mobile robot market is exploding, such types of robots are 

continuously improved and already widely used in numerous fields like aerospace, military, 

goods delivery, and medical services [1]. Their further development focuses on providing a 

higher degree of autonomy and greater mobility/speed, which motivates new developments in 

mobile robot motion planning and control because usual classical techniques can be hardly 

applied if the motion speed exceeds some physical limits. One of perspective research 

direction is related to the wheel-ground interaction whose modelling normally assumes rather 

high adhesion and excludes such phenomena as excessive slipping and skidding. Similar 

topics are also significant for self-driving cars whose mechanics is very close to four-wheel 

mobile robots.  

 

Figure 1 General schematic for autonomous mobile robot control 

 

Generally, control of an autonomous mobile robot contains three basic layers as 

shown in Fig. 1, the main purpose of motion planning module is to provide the mobile robot 

with a proper and collision-free trajectory towards its destination while considering the 



constraints from the mobile robot kinematics/dynamics, manoeuvre capabilities in the 

presence of obstacles, and the environment boundaries. Motion planning for autonomous 

mobile robots can be divided into three hierarchical classes [2]: (i) global planning, (ii) local 

planning, and (iii) trajectory generation. Global planning is more like routing, which is 

concerned with selecting the best global path from an origin to a destination. The local 

planning is a locally correcting phase that handles the dynamic obstacle avoidance while 

taking into account the vehicle kinematics, obstacles, road geometry, and traffic interactions 

in the case of the self-driving cars. And finally, the trajectory generation outputs a time-

velocity profile corresponding to the previously obtained geometric path while considering 

some constraints from the robot kinematics and dynamics. In most of the related works, the 

main attention is paid to the path planning while the velocity profile generation, especially 

with the minimum-time objective, received less attention. 

In literature, graph-based techniques are widely used to generate a global collision-

free path in robot workspace. It presents the robot workspace in the form of a 2D graph, 

which allows to present the desired robot motion as a shortest path on the graph connecting 

the initial and the final vertices. The most representative algorithms are Dijkstra and A*. 

Together with a PID-based Path Follow module, they were adopted in [3, 4] for the DARPA 

Urban Challenge 2007. Another known technique of this group, state lattice algorithm uses a 

discrete representation of the planning area with a grid of vehicle states [5, 6]. But similar to 

the above two, the principal limitation of these techniques is the difficulty of taking into 

account constraints related to the robot kinematics/dynamics and wheel-ground interaction in 

real-time. Sampling-based approaches consist of randomly sampling the configuration space 

and searching for feasible connectivity inside it [7]. The most widely used two are the 

Probabilistic Roadmap Method and the Rapidly-exploring Random Tree [8, 9]. However, this 

family usually produces non-smooth and jerky paths that should be avoided in time-optimal 



control of the autonomous mobile robot [2]. Combinatorial planning techniques use a 

polyhedral representation of the environment as input and augments it with additional edges 

or vertices, such as Visibility Graph and Voronoi Diagram [10-13]. But this technique 

concentrates on geometric aspects mainly. Local path planning techniques are usually applied 

to avoid collisions in a dynamic environment [14]. The Potential Field Method and its 

modification Vector Field Histogram are commonly used because of the elegant mathematical 

analysis and simplicity [15, 16]. Despite numerous advantages, these field-based methods act 

as a fastest descent optimization procedure, it may get stuck at a local minimum [17]. In 

contrast to field-based methods, the velocity-space techniques are derived directly from the 

mobile robot kinematics, allowing taking into account the constraints on the robot maximum 

velocity/acceleration [18]. A typical example is the Dynamic Window Approach (DWA) [19]. 

It generates the velocity commands directly, but still with difficulties in taking into account 

limitations arising from the wheel-ground interactions.  

Trajectory generation is for producing the optimal motion along the obtained path. 

Existing techniques mainly rely on the classical phase-plane methods came from control 

theory [20] in industrial robotics. For wheeled mobile robots, a time-optimal velocity profile 

should be produced under dynamic constraints that are due to the motor physical capacities 

and also must ensure the wheel-ground adhesion [21]. In the frame of the phase-plane 

method, this adhesion limits can be presented as a non-linear constraint imposed on the 

velocity and acceleration, which leads to multi-switching of the time-optimal control [22, 23]. 

Such multi-switching makes difficult for algorithmization in real-time and can be hardly 

implemented in mobile robot controllers. The wheel-ground adhesion constraint was partially 

taken into account in [24], where a phase-plane based algorithm was proposed and the 

maximum centripetal acceleration limit was considered. Another technique was presented in 

[25], where the cornering trajectory planning algorithm was developed and implemented for a 



differential-wheeled mobile robot. It takes into account constraints on the wheel maximum 

longitudinal force and lateral force in order to avoid sliding, similarly in [26, 27]. However, 

the longitudinal force and lateral force were considered separately there instead of a resultant 

one within the friction circle. In [28], a simplified elliptical friction model was considered via 

limiting the angular acceleration to a predefined maximum value when generating a 

minimum-time velocity profile for a differential-wheeled mobile robot. It is also worth of 

mentioning some recent work based on NMPC [29] that allows taking into account the 

Pacejka’s tire model in urban driving conditions, however the high-curvature path and related 

wheel-ground adhesion issues was out of the authors’ attention. 

To our knowledge, few works combine global/local path planning with trajectory 

generation while taking into account the constraints arising from the mobile robot kinematics, 

dynamics, and wheel-ground interaction that are in the focus of the paper. It is an extension 

and integration of our previous works [30, 31]. The main contribution of the paper is the 

development of a new real-time motion planning technique, implemented as two sub-

modules. The first of them, the path planner is based on the dynamic programming principle 

applied to the discretized robot workspace. It allows finding the shortest path in the robot 

environment with multiple obstacles. Generally, the architecture design of the path planner 

depends on the application. In particular, for autonomous driving on the road, a hierarchical 

architecture including global path planning and local path planning is required. Whereas for 

goods transportation in small spaces, the global and local path planners can be merged into a 

general one, which is implemented in our experimental mobile robot. The second submodule, 

the trajectory generator operates with the discretized robot state-space and also employs 

dynamic programming technique. It produces a time-optimal motion along the obtained path, 

using the maximum capabilities of the actuators. The obtained fastest motion allows 

achieving higher efficiency in such applications as goods deliveries. An essential advantage 



of this work is that the wheel-ground adhesion condition is directly included in the trajectory 

generation sub-module. It is worth mentioning that the friction limits of the wheels are widely 

studied in the automotive field, and precise wheel dynamics models are used in vehicle 

dynamics control. However, there is no existing work considering this issue in the time-

optimal trajectory generation/planning for autonomous mobile robots. It should be also noted 

that in classical time-optimal control, the velocity and acceleration constraints are usually 

assumed to be independent yielding rather simple trajectories with two switching only. In 

contrast here, the velocity and acceleration constraints are coupled and corresponding time-

optimal trajectories include multiple switching points that can be hardly generated using 

conventional phase plane methods. But the developed technique is able to treat even such 

difficult cases in real-time. 

2. The Problem of Real-Time Motion Planning 

The problem of real-time motion planning here is divided into two sub-problems, such as (i) 

path planning and (ii) trajectory generation, as shown in Fig. 2. It should be mentioned, in our 

case, the mobile robot moves in a quite small indoor area, around 30 m2, and it is reasonable 

to merge the global planning and local planning into a general path planner in this work.  

 

Figure 2 General schema of motion planning for autonomous mobile robot  



2.1. Path Planning with Geometric/Kinematic Constraints 

It is assumed that the path planner obtains the coordinates of the desired target 

location and the known obstacle locations from the indoor GPS system, as shown in Fig. 3a. 

The current position coordinates and orientation angle of the robot 0 0 0 0( , , )G G G Gx y p  

with respect to the global frame GF  are measured in real-time (see Fig. 3b). Let us describe 

the desired target location by ( , , )G G G G

t t t tx y p , where the target orientation 
G

t  is 

assumed to be not constrained in this work. Also, let us denote the center locations of the 

known obstacles as ( ) ( ) ( ){ ( , ) 1,2,... }G k G k G k

obs obs obsx y k n p  where k is the obstacle number. For 

the unknown obstacles, we are using the same notation but assume that the similar 

coordinates 
( ) ( ),R k R k

obs obsx y  are measured online by the LiDAR with respect to the robot frame 

RF , whose definition is shown in Fig. 4. The obstacles in this work are approximated by 

circles whose dimensions are slightly modified by adding the equivalent radius of the robot to 

their original values, as 
( ) ( ){ ; 1,2,... }k k

md rob obsr r r k n   , where robr  is the equivalent radius of 

the robot. It should be mentioned that the unknown obstacles are detected by the LiDAR and 

also roughly approximated as circles for simplicity. Using the data from the LiDAR, a 

distance between the LiDAR center and the obstacle d, the obstacle width w, as well as an 

angle with respect to the LiDAR frame ϴ, can be obtained. Thus, an approximated circle with 

the radius w/2 can be located at the detected point whose distance to the LiDAR center is d. 

Although the approximated circle may not completely cover the obstacle, in practice, no 

collision may happen as such circle and the locally planned path should be updated at each 

time step. 



 

Figure 3 Estimation of robot position and orientation from the sensors (indoor GPS system 

and LiDAR)  

 

Using the above definitions and notations, the considered path planning task here can 

be presented as finding a shortest smooth 2-dimensional curve connecting 0

G
p  and 

G

tp , 

which satisfies the geometric/kinematic constraints that are presented in detail below. For 

further convenience, let us assume that the desired path is presented in the parametric form 

and is described by two continuously differentiable functions 

 max{ ( ), ( ) ; [0, ]}G Gx s y s s s  (1) 

where s  is the distance from the origin to the current state (treated here as the parameter), and 

the following boundary conditions are satisfied  0 0(0) ; (0)G G G Gx x y y   and 

max max( ) ; ( )G G G G

t tx s x y s y  . In addition, let us define the path curvature described by its 

radius function max{ ( ), [0, ]}c s s s  which can be easily computed from ( )x s , ( )y s  using 

standard formulas. 



 

Figure 4 Kinematic structure of the mobile robot and its parameters 

 

The principal constraints imposed on the desired shortest path can be presented in the 

following way. First, the robot wheel angle   cannot exceed certain values  max max,  , 

which in accordance with Fig. 4 imposes the following constraints on the path curvature 

  max
max

sin
( ) ; 0,c s s s

L


    (2) 

where L is the wheelbase. Besides, considering the initial orientation of the robot 0

G  cannot 

be changed instantly, it is necessary to introduce additional boundary condition on the path 

tangent (robot moving direction) at the starting point, which produces additional constraints 

of the following form 

  
 

 
 

0

0 0

d d
tan

d d

G G

G

s s

y s x s

s s


 

   (3) 

And finally, the collision constraint can be expressed via the distance from the path to the 

obstacle center and its increased radius 



    
2 2

( ) ( ) ( ); 1,2,3...G G k G G k k

obs obs mdx s x y s y r k            (4) 

Therefore, the path planning problem for the autonomous mobile robot studied here is 

presented as finding the shortest path 
max{ ( ); ( ) [0, ]}G Gx s y s s s  connecting the current 

location 0 0 0( , , )G G Gx y   and the target position ( , )G G

t tx y , which satisfies the path curvature 

and collision constraints (2)-(4). In a formal way, this problem can be summarized as follows   
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max
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0
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minimizing d ( ) d d ( ) d d min

s. t .
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s
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 (5) 

2.2. Trajectory Generation with Dynamic Constraints 

After obtaining a smooth path max{ ( ); ( ) [0, ]}G Gx s y s s s  in the Cartesian space, it is 

necessary to find a time-velocity profile ensuring the fastest motion along this path. This 

motion is described by the time-displacement function ( )s t  where [0, ]t T , which minimizes 

the traveling time objective 

 

0

1 d min

T

t   (6) 

from the initial state 
0

d
( 0, 0)

d t

s
s

t 

   to the final state max

d
( , 0)

d t T

s
s s

t 

  , and satisfies 

certain constraints on derivatives 



 
2 2

max maxd ( ) d ; d ( ) ds t t v s t t a   (7) 

that describe the robot's capability to achieve desired velocities and accelerations during the 

motion. Besides, for fast motions of wheeled robots, there is an additional specific constraint 

arising from the wheel-ground interaction and excluding the wheel skidding when the robot 

enters the high curvature path segments with high speed. As known from the vehicle 

dynamics [32], the adhesion force acting between the wheel and the ground is limited by a 

certain value that depends on the road condition and should be inside of the so-called friction 

ellipse/circle, as shown in Fig. 5. The latter can be expressed in the form of the following 

inequality 

 
2 2

x y zF F F    (8) 

where , ,x y zF F F  are the longitudinal, lateral, and vertical forces respectively, μ is the friction 

coefficient that is assumed as a constant here. When the robot of mass m goes into a cornering 

manoeuvre with the velocity v (see Fig. 5), the lateral force provides the centripetal 

acceleration 
2

yF m v R   where 1R c s    is the curvature radius. However, if the tangent 

speed is too high, the robot is desired to decelerate slightly, which requires the longitudinal 

force xF ma . In addition, the vertical force can be computed as zF m g . So, after 

simplification, a non-skidding condition (8) can be expressed via the derivatives of the 

function ( )s t  as follows 

   
2 22 2 2 2d ( ) d ( ) d ( ) d ( )s t t c t s t t g      (9) 

where  ( ) ( )c t c s t  is the path curvature. 



 

Figure 5 Friction ellipse/circle 

 

It should be mentioned that the non-skidding condition (9) was derived assuming that 

both the velocity and the acceleration are computed for the robot center of gravity, i.e. the 

robot is presented as a material point. However, this constraint can be easily generalized by 

considering the interaction with the ground for all wheels separately. It can be proved that for 

the four-wheel case, the non-skidding condition produce four constraints with similar 

structures 

   
2 22 2 2 2d ( ) d ( ) d ( ) d ( ) ; 1,2,3,4i i is t t c t s t t g i        (10) 

where 1 2 2

1( ) 1 ( ( ) cos ( ) 0.5 )c t c t t B L    , 1 2 2

2( ) 1 ( ( ) cos ( ) 0.5 )c t c t t B L    , 

1 1

3( ) [ ( ) cos ( ) 0.5 ]c t c t t B    ,
1 1

4( ) [ ( ) cos ( ) 0.5 ]c t c t t B     and  ( ) arcsin ( )t L c t   ,

   d ( ) d d ( ) d ( )i is t t s t t R c t  ,  2 2 2 2d ( ) d d ( ) d ( )i is t t s t t R c t    . 

It should be also noted that for high-speed driving, full dynamics of the vehicle and 

wheel/tire usually should be considered in the motion control. However in this work, there are 

several simplifications. First of all, it is assumed that the robot drives on a 2D plane, so the 

pitch and roll motion are ignorable, and also the friction coefficient is almost constant because 



of unchanging road condition. For this reason, for planning the desired time-optimal trajectory 

under these assumptions, a kinematic vehicle model plus the tire dynamic model should be 

sufficient. For computational convenience, a simplified tire dynamic model based on TMeasy 

is used here. According to the generalized tire characteristics presented in [33], there are three 

modes: 1) adhesion mode where the combined slip ratio max[0, ]S S , and max[0, ]F F , maxS  

corresponds to the maximum friction maxF ; 2) adhesion/sliding mode where max[ , ]slideS S S  

and max[ , ]slideF F F , slideS  corresponds to the sliding friction slideF ; and 3) sliding mode 

where [ ,1]slideS S  and slideF F . The adhesion constraint proposed in the paper ensures the 

resultant tire force F  is always within the friction limits, never beyond maxF , which leads to 

the combined slip belonging to 0 max[ , ]S S . Therefore, it is reasonable to use this model in this 

work. 

Finally, taking into account both the boundary conditions and all the constraints (7)-

(9), the problem of time-optimal trajectory generation for the given geometric path 

max{ ( ); ( ) [0, ]}G Gx s y s s s  can be summarized as 

 

  

0

2 2

max max

2 22 2 2 2

0

max

find { ( );d ( ) d [0, ]}

minimizing 1 d min

s.t

d ( ) d ; d ( ) d

d ( ) d ( ) d ( ) d ( )

and

(0) 0; d ( ) d 0

( ) ; d ( ) d 0

T

t

t T

s t s t t t T

t

s t t v s t t a

s t t c t s t t g

s s t t

s T s s t t







 



 



  



     


  

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

 (11) 

It is worth mentioning that the optimization problem includes some particularities 

compared to the classical time-optimal control problem for the second-order system that was 

intensively studied in the literature [34], where the constraints were applied to the velocity 



and acceleration independently. In contrast, in our work, there is a non-linear adhesion 

constraint (9) where the velocity and acceleration are coupled, which does not allow 

straightforwardly applying previously developed methods. Relevant techniques for the 

considered time-optimal trajectory generation in real-time are proposed in the following 

section. 

3. Motion Planning Algorithms and the Real-Time Implementation 

In order to solve the above-stated problems, a combinatorial optimization based methodology 

is proposed in this section. It includes the discretization of the robot workspace (for path 

planning) and state space (for trajectory generation). Further, to find the desired shortest path 

and time-optimal trajectory satisfying all static/dynamic constraints, the dynamic 

programming principle is applied to create relevant motion planning algorithms. 

3.1 Shortest Path Search in Discretized Robot Workspace 

To present the robot path planning problem in a discrete way, let us use the double 

presentation of the workspace, via the Cartesian coordinates ( , )x y  and the polar coordinates 

( , )  , and discretize the allowable domain of the polar angle min max[ , ]    and the distance 

max[0, ]   with the steps   and   respectively 

 
; 0,1,...

; 0,1,...

k

i

k k m

i i n

 

 

  

  
 (12) 

where max( )min m      and max n   . It is assumed that the pole of the polar system 

coincides with the origin of the robot frame RF  and the polar axis is directed along the 

Cartesian X-axis of RF . In such settings, it is reasonable to limit the range of the polar 

coordinate   by the distance from the origin to the target point, 
2 2

max

R R

t tx y   , as 

shown in Fig. 6. Further, in order to avoid excessive discretization and to reduce the real-time 



computational effort, the range of the polar angle   should be reduced in the following 

way: 

 

max

min

max , atan 2( , )
2

min , atan 2( , )
2

R R

t t

R R

t t

y x

y x







 
  

 

 
  

 

 (13) 

where ( , )R R

t tx y  is the target location coordinates with respect to the robot frame. However, it 

is worth mentioning that the proposed technique allows doing a new search with the full range 

of the polar angle if there is no solution found in the reduced admissible area. This may 

happen when the numbers and dimensions of the obstacles are quite huge. 

 

Figure 6 Discretization of robot workspace for path planning: admissible and non-admissible 

nodes 

 

Such discretization allows us to replace the continuous workspace of the robot by 

limited numbers of nodes ,k iS  that can be described by either the Cartesian coordinates 

{ , }ki kix y  or the polar coordinates { , }i k   where cos( )ki i kx     and sin( )ki i ky    . 

Further, assuming that the distance between the mobile robot and the target point is 



sequentially reducing, the desired optimal path can be presented as the following sequence of 

the nodes 

 
1 2 1,1 , 2 , 1 ,{ } { } ... { } { }

n nk k k n k n    S S S S  (14) 

where { 1,2,... }ik i n  are certain indices obtained from the optimization routine. 

Corresponding distances between the subsequent nodes can be evaluated via the Cartesian 

coordinates as 

 
1

1

1

, , 1

, , 1

, , 1

dist ( , )
i i

i i

i i

k i k i

k i k i

k i k i

x x

y y













   
    

   
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S S  (15) 

where , ,( , )
i ik i k ix y  is the Cartesian coordinates of the ith path node, and 

1 1, 1 , 1( , )
i ik i k ix y
   is the 

potential coordinates of the (i+1)th path node. The latter allows us to present the objective 

function to be minimized as follows  

 
1

1

, , 1

1

dist ( , ) min
i i

i

n

k i k i
k

i

D








  S S  (16) 

Further, to take into account the constraint on the path curvature, all subsequences 

1 1, 1 , , 1i i ik i k i k i   S S S  should be verified with respect to the inequality (2), which in the 

frame of the adopted notations can be presented as 

 
1

1 1 maxcurv [( , 1),( , ),( , 1)] sini i ik i k i k i L 

      (17) 

where the curvature function curv [ , , ]   is easily obtained by the arc fitting of the following 

three points 
1 1, 1 , 1{ , }

i ik i k ix y
   , , ,{ , }

i ik i k ix y ,
1 1, 1 , 1{ , }

i ik i k ix y
   . For computational convenience, the 

path curvature at the node 
,ik iS  can be also expressed via the robot orientations  ,ik i ,   1 , 1ik i  

at the segments 
1 , 1 ,[ ]

i ik i k i  S S  and 
1, , 1[ ]

i ik i k i S S  respectively, which yields the revised 

approximated expression for the constraint (2) 

 
1 1

1

, 1 , , , 1 maxdist ( , ) sin
i i i ik i k i k i k i L  
 



    S S  (18) 



where 
1 1, , , 1 , , 1atan 2( , )

i i i i ik i k i k i k i k iy y x x
      ; 

1 1 1, 1 , 1 , , 1 ,atan 2( , )
i i i i ik i k i k i k i k iy y x x
       . 

The collision constraints can be taken into account via the verification of the validity of the 

inequality 

 ,
ˆdist( , )

i

md

k i j jrS S  (19) 

where ˆ
jS represents the center of the jth obstacle and 

md

jr  is the modified obstacle radius. 

Thus, the original robot path planning problem is converted to a combinatorial one, 

dealing with the shortest path search on the graph. In contrast to classical formulations, there 

are specific constraints here (feasible curvature and collision-free) applied to the graph nodes 

and triples of subsequent nodes, which make difficulties in applying known graph-based 

approaches. For this reason, a dynamic programming (DP) technique is used here to find the 

desired optimal path that satisfies all constraints imposed by the environment and geometry. 

The developed DP-based algorithm breaks down the full-size problem presented 

above into a set of sub-problems, aiming at finding the shortest path from the initial node 
0, 0S  

to the arbitrary node 
,{ , }

ik i ikS  belonging to the ith layer with the polar coordinate i i   

. To present the basic idea of this algorithm, let us denote 
*

,k id  as the length of the shortest 

path connecting the initial node 
0, 0S  to the current node 

,ik iS . Then, taking into account the 

additivity of the objective (16), the shortest path for the nodes belongs to the next layer 

, 1{ , }k i k S  can be found by combining the optimal solutions for the previous layer 
,{ , }p i pS  

and the distances between the nodes belonging to the layers i  and 1i  . The latter yields the 

formula 

  * *

, 1 , , , 1min dist( , )k i p i p i k i
p

d d   S S  (20) 



that is applied sequentially starting from the second layer, i.e. 1,2,... 1i n  . Finally, after the 

selection of the minimum objective 
*

, 1k id    of the nodes belonging to the final layer and 

applying the backtracking, one can get the desired optimal path in the considered graph. It is 

described by the recorded indices 1 2 3{ , , , ... }nk k k k . It should be noted that the fusion of the 

optimal path 0, 0 ,[ ... ]
i

opt

k i S S  and a new segment 
1, , 1[ ]

i ik i k i S S  is allowed if and only if 

all the above-mentioned constraints are satisfied, which are verified using the node 

subsequence 
1 1, 1 , , 1[ ]

i i ik i k i k i   S S S  extracted from the considered path. As the DP 

principle is applied to both path planning and trajectory generation, a more detailed 

explanation and pseudo-code for DP implementation are given in Subsection 3.2. 

3.2 Time-Optimal Trajectory Generation in Discretized Robot State Space  

For the problem of trajectory generation with time-optimal control structure, as discussed in 

Subsection 2.2, the conventional phase plane technique has the difficulty in including the non-

linear wheel-ground adhesion constraint (9). An alternative approach was first proposed in 

our previous work [30, 31], based on the discrete dynamic programming (DP). Its main 

advantage is the universality allowing to take into account all considered constraints in a 

similar way and to generate optimal trajectories of complex structure including multiple 

switching points. In this paper, an extended and more complete DP-based algorithm is 

presented. 

First, let us apply sampling to the allowable domain of the velocity max[0, ]v v  and 

displacement max[0, ]s s  with the steps v  and s  respectively 

 
; 0,1,...

; 0,1,...

k

i

v k v k m

s i s i n

  

  
 (21) 



where maxv v m   and maxs s n  . Further, for each path point is  it is possible to generate a 

number of the possible states ( , )k iv s  that differ in velocities, i.e. to produce a mapping from 

the geometric path to the robot state space ( , )v s  allowing to describe motion in time 

 ,{ ( , ) 0,1,... }i k i k is v s k m  C  (22) 

Taking into account that the path points are naturally ordered in time as 0 1 ... ns s s   , 

the search space including all possible trajectories corresponding to the given path can be 

presented as a directed graph shown in Fig. 7. In particular, it is clear that the robot velocity at 

the starting and end points is known, so only a single state 
0 ,0kC  should be used to represent 

the starting point and a single state 0,nC  for the target point, see the graph in Fig. 7. Another 

particularity of this graph caused by the time-irreversibility is that the allowable connections 

between the nodes are limited to the subsequent configuration states 
1, , 1i ik i k i C C , while the 

edge weights correspond to the traveling time defined below.  

 

Figure 7 Graph-based presentation of the discretized state space for optimal motion 

generation along a given path  

 



Using the discrete search space, the considered problem can be transformed to the 

searching of the shortest connection on the above presented directed graph, which can be 

represented as the following node sequence  

 
0 1,0 ,1 0,...k k n  C C C  (23) 

where the distance between subsequent nodes is corresponding to the motion time and is 

computed in the following way 

 
1 1, , 1 1time( , ) 2( ) ( )

i i i ik i k i i i k ks s v v
    C C  (24) 

The latter allows us to present the objective function to be minimized as follows 

 
1

1

, , 1

0

time( , ) min
i i

n

k i k i

i

T








  C C  (25) 

It is clear that the method of state-space discretization (21) applied above automatically takes 

into account the velocity constraint in (7), but the relevant acceleration constraints 

max ; 1,2,... 1ia a i n     must be examined for each candidate subsequence 
1, , 1i ik i k i C C , 

using an approximated expression  

 1( )i i i ia v v t    (26) 

where 
1, , 1time( , )

i ii k i k it
   C C . In addition, the non-skidding condition (9) should be also 

verified using the following inequality  

 2 2 2( )i i i
a v R g    (27) 

where 1i iR c  is the radius of path curvature corresponding to the ith sampling point. Hence, 

the original trajectory generation problem is converted to a combinatorial one, which allows 

taking into account the wheel-ground adhesion limits and the constraints applied to the node 

subsequences that limit the robot acceleration.  



The DP principle is adopted here too, breaking down the full-size problem into a set of 

sub-problems and aiming at finding all optimal sequences from the initial node 
0 ,0kC  to the 

current ones ,{ , }
ik i ikC  ensuring the minimum of the motion time (25) for which the 

accelerations computed via the subsequences 
1, , 1{ 0,1,... 1}

i ik i k i i n
    C C  do not exceed 

allowable limits.  

Let us denote ,p i  as the length of the optimal connection on the state-space graph 

from 
0 ,0kC  to ,p iC . Then, the optimal connection for the nodes belonging to the next layer 

, 1{ , }k i k C  can be found by combining the optimal solutions for the previous layer 

,{ , }p i pC  and the distances between the nodes with the indices i and i+1. The latter 

corresponds to the recursive formula 

  , 1 , , , 1min time( , )k i p i p i k i
p

    C C  (28) 

where the index p must satisfy the following condition 

  2 2 2

, , 1 maxaccel( , ) min , ( ) ( )p i k i p i
p a g v R

    
 

C C  (29) 

in which the acceleration 
, , 1accel( , )i p i k ia  C C  is computed using expression (26) and the 

velocity pv p v   corresponds to the node 
,p iC . This formula is applied sequentially 

starting from the second layer producing the matrix of the motion times ,[ ]k iτ . When this 

matrix is created, the minimum value 
min

n  is selected from the last column corresponding to 

the robot time-optimal motion from the initial state to the target point. Finally, by applying 

the backtracking, one can get the desired optimal connection in the state-space graph. It is 

described by relevant indices 1 2 1{ , ,... , }n nk k k k . 



Algorithm: Time-optimal trajectory generation along the path  

Input: Matrix of states – C(k,i) of size m×n 

 Array of radius – R(i) of size 1×n 

Output: Minimum path length – Dmin 

  Optimal path indices – k0(i), i = 1,2,…n  

Notations: Distance matrix – D(k,i) of size m×n 

  Pointer matrix – P(j,i-1) of size m×n 

Functions: Distance between nodes – dist ( C(k1,i1), C(k2,i2) ) 

 Adhesion test for a node – adhs ( C(k,i), R(i) ) 

 Acceleration test for nodes – acc (C(k1,i1), C(k2,i2)) 

(1) Set D(k,1):=0; P(k,1):=null; ∀k=1,2,…m 

(2) For i = 2 to n do  

        For k = 1 to m  do 

          For j = 1 to m  do 

      (a) If (acc (C(k,i), C(j,i-1)) = 0) &  

       (adhs ( C(k,i), R(i) )=0 ) & (adhs ( C(j,i-1), R(i-1) )=0 ) 

                     r(j) := D(j,i-1)+dist ( C(k,i), C(j,i-1) ) 

            else 

                     r(j) := Inf 

            end 

      (b) Set D(j,i) := min(r); P(j,i) := argmin(r); 

(3) Set  Dmin := min( D(k,n) ); k0(n) := argmin(r) 

(4) For i = 2 to n do 

           Set  k0(i-1) := P(k0(i), i)   

 
In more detail, an outline of the developed algorithm is presented below in the form of 

pseudo-code. The input includes the state matrix { ( , ) 0,1,... ; 0,1,... }C k i k m i n  containing 

information on the velocity and displacement, as well as the array of path curvatures 

{ ( ) 0,1,... }R i i n . The algorithm operates with two tables ( , )D k i  and ( , )P k i  that include the 

minimum distances for the sub-problem of lower size (for the path 
0 ,0 ,...

ik k iC C ) and the 

pointers to the previous state 1( , 1)iC k i   respectively. The procedure is composed of four 

basic steps. The first step (1) initializes the distance and pointer matrices. In step (2), the 

recursive formula (28) is implemented. The computing starts from the second layer, and it 

tries all possible connections between the states in the current layer and the previous one 

while verifying the wheel-ground adhesion and acceleration limits in the sub-step (2a). The 



sub-step (2b) finds the optimal trajectories from all states { ( , ), }C k i k  belonging to the ith 

layer and records the references to { ( , 1), }C j i j   into the pointer matrix ( , )P k i . In steps (3) 

and (4), the optimal solution is finally obtained and the corresponding path is extracted by 

means of backtracking.  

3.3 Real-time Implementation of Developed Algorithms  

For real-time implementation, a ‘moving window’ strategy was developed. This developed 

strategy breaks down the full-size problem into a set of lower dimension sub-problems 

corresponding to shorter displacements. As is shown in Fig. 8, a moving window is applied 

segment by segment. For each window, the developed DP-based algorithm from 

Subsection 3.2 is used to generate a trajectory segment, i.e. a local time-optimal motion from 

the current state to some intermediate (goal) states with maximum velocity and some ahead 

displacement. This procedure is periodically repeated while the current state is approaching 

the target one. It is implemented in real-time, generating each new segment slightly in 

advance while the controller is carrying out the motion profile from the previous window. The 

latter allows us to execute the motion generation and implementation simultaneously.  

4. Experimental Validation 

The proposed methodology was validated via the experimental studies dealing with a mobile 

robot in an indoor environment, around 30 m2. The following subsections present some 

details concerning the robot technical parameters. 



 

Figure 8 Multi-segment strategy of real-time optimal motion generation for the mobile robot 

4.1 Robotic Platform and Experimental Setup 

The mobile robot (see Fig. 3) is a car-like system with four-wheel driving and front steering, 

whose wheelbase is 0.450 m, and the length of the front/rear track is 0.482 m. The robot is 

localized by means of indoor GPS. Odometer, available in each in-wheel motors equipped 

with build-in hall-effect sensors, is used to measure and regulate the velocity of the wheels 

only. A LiDAR makes the environment scanning for local vision construction. More details 

concerning the sensors are given in Table. 1.  



Table 1 Robot sensors, their parameters, and locations 

 Sensor parameters 

Indoor GPS 

Marvel-Mind solution 

Accuracy ±2cm 

Detection area ~30 m2  

Frequency 4Hz (average value) 

LiDAR scanner 

RPLIDAR A2 

Range 0.5-6 m  

Accuracy: 0.9º resolution (200 points for a 180º arc) 

Frequency: 2000 Hz 

Odometer  14-pole motor 

 

The robot is actuated using four in-wheel motors (velocity control) and a steering 

motor (position control). The dynamic capacities and specifications of the motors are 

presented in Table. 2.  

Table 2 Motors parameters and control modes 

 Basic parameters 

Servo motor 

Savox SB-2290SG 

Maximum speed: 8.04 rad·s-1 

Rotating range: [-33°,+33°] 

In-wheel motors 

MTO7052-HBM-60-HA 

Maximum speed: 23.92 rad·s-1  

(3200 ERPM) 

 

The computation layer is based on an Intel Atom processor N270 (1.6 GHz 1 GB 

DDR2 533 MHz RAM). The proposed algorithms were created on an external PC first and 

then downloaded to the robot CPU via Simulink Real Time 2017. This hardware 

configuration ran with the sampling time of 0.20 sec and utilizes the discrete solver from 



Simulink. It should be mentioned that the sampling time used here is rather large to simplify 

the experiment monitoring but for future industrial applications, it will be essentially reduced. 

The experimental environment is shown in Fig. 9. The robot's initial location and the 

target position were randomly selected by the experimenters. Within the test area, there is a 

no-go area (also treated as a static obstacle). A dynamic obstacle (box) was moved manually 

during the robot navigation. 

 

Figure 9 Experimental environment for indoor navigation 

4.2 Experiment: Implementing High-Curvature Robot Paths  

For the experiment, the maximum velocity was set to 0.50 m·s-1, and the maximum 

acceleration was 0.30 m·s-2. The robot initial location was placed at (1.886, 5.376, -39.586º), 

and the target was defined by its position coordinates (0.645, 0.579). The no-go area was 

presented as a circle of radius 0.350 m centered at (1.770, 3.96). The detecting range of the 

LiDAR was set to 1.0 m for moving obstacles. 

In the implemented motion planning algorithm, the robot workspace ( , )   was 

discretized with 10n   samples for the polar radius  , and angle step 1   . It was 

converted into a directed graph composed of from 1800 to 2700 nodes after collision 

checking, which was used as an input to the developed DP-based algorithm producing a 

collision-free path. Then, the proposed procedure of the time-optimal trajectory generation 

was applied. Here, the robot state space ( , d d )s s t  was discretized with the number of the 



speed increments d dv s t  set to 30, and the number of the distance increments 10n   was 

the same as for the   discretization in the path planning. Thus, the robot state space was 

converted into a directed graph composed of 300 nodes. Finally, a time sequence of the 

speeds ( )iv t  for the robot gravity center was obtained and transformed into the angular speeds 

of the wheels. 

An experimental result confirming the validity of the proposed approach is presented 

in Fig. 10, which shows the robot motion and its planned path evolution caused by changing 

of the environment. At the beginning of the experiment, the robot was placed at its initial 

location, and the planned path was obtained taking into account the static obstacle only (see 

case t = 0.0 sec, when the path was expected to be on the left side of the static obstacle). 

Slightly later (see case t = 5.80 sec), when the robot posture changed, the route was modified 

and located on the other side of the obstacle to meet the shortest path objective. The main 

reason for this change is that the maximum steering constraint (2) is satisfied during the initial 

planning whereas it is actually violated in practice. That is caused by the inaccuracies coming 

from the approximate discrete presentation of constraint (2), as shown by equation (18). Such 

violation may appear when the system status is close to the limit border. As shown in the 

figure, the initial path at the time t = 0.00 sec is quite curved, already at the limits of the 

maximum steering angle. It is also worth mentioning that the corresponding route segment at t 

= 5.80 sec was close to a straight line, and the robot speed reached almost the maximum 

value, about 0.48 m·s-1. But, when the robot was avoiding the static obstacle (at the time 

t = 8.80 sec), the path curvature increased causing the speed reduction down to 0.40 m·s-1. 

Further, at the time instant t = 10.00 sec, when the robot ‘saw’ a dynamic obstacle, the path 

was essentially re-planned to avoid any collisions while moving to the target point. While 

moving in the dynamic obstacle neighbourhood, the path curvature was very low allowing the 

robot to use its maximum speed of 0.50 m·s-1, see case t = 11.20 sec. At the final segment, 



when the robot was reaching its target position (see time t = 16.80 sec), the path curvature 

increased, and the speed decreased down to 0.29 m·s-1. In more detail, the evolution of the 

robot location recorded by GPS and the estimated displacement along the path are shown in 

Fig. 11. 

To demonstrate the impact of the wheel-ground adhesion constraints on the robot 

motion, Fig. 12 presents the time profiles of the planned speeds and the corresponding path 

curvature to the total displacement. As can be seen from this figure, the path curvature is very 

low at the time instance t = 5.6 sec, 8.0 sec, and 12.0 sec, so the robot speed is planned to be 

maximum (or slightly lower because of the coarse discretization). In contrast, for other time 

segments, the path curvature cannot be ignored, and the robot speed is reduced in order to 

satisfy the wheel-ground adhesion constraint. It is worth mentioning that the proposed 

constraint can be applied either to four wheels or to the virtual wheel located at the robot's 

center of gravity for simplicity. Considering the computational capacity of the hardware, in 

the experimental study, the proposed constraint was applied to the center of gravity. As we 

assume the robot’s center of gravity and geometric centroid are overlapped, so the velocities 

of two wheels on the same side should be the same. Such simplification is reasonable here 

because the robot wheelbase of 0.450 m is rather small and even shorter than its wheel track 

of 0.482 m. This simplification is also justified by Fig. 12 where the optimal time profiles for 

both the robot center and wheels are presented. 



 

Figure 10 Evolution of the robot location and its planned path in the dynamic environment 

 

 

Figure 11 Time profiles of robot location coordinates and displacement 



 

 

Figure 12 Time profiles of planned robot speed and corresponding path curvature 

 

To show the validity of the proposed adhesion constraint, Fig. 13 presents the time 

profiles of the planned longitudinal and lateral accelerations, as well as their resultant 

acceleration (see the left hand side of equation (9), the simplification of the resultant tire 

force). As can be seen from this figure, at the time instances t = 8.8 sec and 12.5 sec, the 

resultant acceleration reached its limit (or slightly lower because of the coarse discretization). 

It is also shown in Fig. 12 that at those two time instances, the robot was trying to enter the 

high curvature path segment with relative high speed. This result confirms that by applying 

the proposed constraint, the resultant acceleration is always within the friction limit, and the 

adhesion condition is always satisfied. 



 

Figure 13 Time profiles of planned longitudinal, lateral, and resultant accelerations 

 

To demonstrate the effectiveness of the proposed technique, the obtained time-optimal 

trajectory has been also compared with the one from the conventional phase plane method 

which does not allow taking into account the non-linear adhesion constraint (9) where the 

velocity and acceleration are coupled. As can be seen from Fig. 14, using the conventional 

phase plane method without wheel-ground adhesion constraint, the resultant acceleration of 

the robot will be out of the friction limits when the path curvature and the robot speed are 

both relative high, whereas the proposed solution ensures the wheel-ground adhesion for the 

entire robot motion. 



 

Figure 14 Comparison of motions obtained from the proposed approach and conventional 

phase plane method 

 

In our experiments, to implement the planned path and generated trajectory along this 

path, the PI speed controllers were employed for all wheels. Corresponding time profiles are 

presented in Fig. 15, which shows some small differences between the planned and real wheel 

speeds (as well as between the speeds of the front and rear wheels) that are not essential for 

the global motion and are compensated due to periodical path/trajectory re-planning in 

accordance with the current robot location and its environment. Therefore, the obtained 

experimental results confirm the validity and practical reasoning of the proposed robot motion 

planning technique. 



 

Figure 15 Experimental time profiles of the wheel speeds (PI-controlled)  

 

5. Discussion  

In spite of the obvious advantages of the proposed technique (practical benefits confirmed by 

the experimental study, the capability to take into account the velocity/acceleration limits, and 

the wheel-ground adhesion constraints), there are a number of limitations and open questions 

to be discussed. The first of them is related to the selection of the discretization step for the 

path planning and trajectory generation. It is clear that a smaller discretization step may 

provide faster and smoother motions but require extremely high computational efforts that 

may be beyond the system hardware capacity. On the other side, too excessive discretization 

does not yield significant improvement of our engineering objective that is focusing on 

generating in real-time the smooth, collision-free, and fast motions. In our experiments, the 

distance was discretized with the maximum step 0.6 m and the speed was sampled with the 

largest step 0.017 m·s-1, which were sufficient to obtain in real-time fast and smooth robot 



motions within a workspace of 5×6 m2. Clearly, it is a trade-off between the robot motion 

quality and our hardware capacities. However, in future implementations, it is reasonable to 

adjust the discretization steps for both the path planning and trajectory generation in order to 

have a better adaptation to the robot working environment. It also should be mentioned that 

when the robot works in a wider workspaces like warehouses or factories, a hierarchical 

architecture will be applied to the path planner which includes a global one and a local one. 

The global path planner is event-based, not updated at each time step, and the local one uses 

the same moving window as the trajectory generator, whose computing time remains the 

same. Therefore, even in big workspaces, the computational effort of the proposed technique 

will not increase significantly. 

It is also worthy of mentioning that the main particularity of this work (dealing with 

the wheel-ground interaction modelling) is based on a number of assumptions simplifying the 

robot motion planning. For instance, the wheel-ground friction coefficient μ was assumed to 

be known and constant for all wheels while in the real working condition it can vary 

essentially. In practice, a simple way of selecting μ is to use the table including peak friction 

coefficient according to different road conditions, which is widely used in automotive field 

[35]. For example, on the dry concrete road, maximum μ can be 0.9, whereas 0.1 on the ice 

road. They are experimentally based, and sufficient for common road surfaces. A more 

accurate way is to estimate such coefficient in real-time while using speed and force sensors 

installed on wheel. It is usually implemented on vehicle electronic systems as ABS or ESP. In 

addition, in the current work, the wheel slip angles and the robot chassis sideslip angles are 

always assumed to be ignorable. Hence, it is reasonable in the future to expand the proposed 

technique by including a more precise tire model. 



6. Conclusion 

This paper proposes a new method to generate the fastest collision-free motion for an 

autonomous mobile robot in real-time. In contrast to the existing motion planning algorithms, 

the proposed one takes into account not only constraints from the robot environment and its 

kinematics/dynamics, but also some limits caused by the wheel-ground interaction to avoid 

excessive skidding. An experimental study confirms the validity and practical reasoning of 

the proposed technique. 

In the future, the developed approach could be enhanced by executing the perception 

and motion planning procedures with different time frequencies, which allows reducing the 

computational efforts and producing smoother trajectories. The circular expression of 

collision-free constraints for robots can be improved by using more accurate approximations, 

for example in [36]. Also, more accurate approximations of the known/unknown obstacles 

would be necessary, in order to have a better adaptation to various obstacles, such as walls or 

tables, which are currently approximated by different small circles at each time step.   

References  

[1] Ben-Ari M, Mondada F. Robots and Their Applications.  Elements of Robotics. 

Cham: Springer International Publishing; 2018. p. 1-20. 

[2] González D, Pérez J, Milanés V, Nashashibi F. A review of motion planning 

techniques for automated vehicles. IEEE Transactions on Intelligent Transportation 

Systems. 2016;17(4):1135-45. 

[3] Bacha A, Bauman C, Faruque R, Fleming M, Terwelp C, Reinholtz C, et al. Odin: 

Team victortango's entry in the darpa urban challenge. Journal of field Robotics. 

2008;25(8):467-92. 

[4] Bohren J, Foote T, Keller J, Kushleyev A, Lee D, Stewart A, et al. Little ben: The ben 

franklin racing team's entry in the 2007 DARPA urban challenge. Journal of Field 

Robotics. 2008;25(9):598-614. 



[5] McNaughton M, Urmson C, Dolan JM, Lee J-W, editors. Motion planning for 

autonomous driving with a conformal spatiotemporal lattice. 2011 IEEE International 

Conference on Robotics and Automation; 2011: IEEE. 

[6] Ziegler J, Stiller C, editors. Spatiotemporal state lattices for fast trajectory planning in 

dynamic on-road driving scenarios. 2009 IEEE/RSJ International Conference on 

Intelligent Robots and Systems; 2009: IEEE. 

[7] Elbanhawi M, Simic M. Sampling-Based Robot Motion Planning: A Review. IEEE 

Access. 2014;2:56-77. doi: 10.1109/ACCESS.2014.2302442. 

[8] Kuwata Y, Teo J, Fiore G, Karaman S, Frazzoli E, How JP. Real-Time Motion 

Planning With Applications to Autonomous Urban Driving. IEEE Transactions on 

Control Systems Technology. 2009;17(5):1105-18. doi: 10.1109/TCST.2008.2012116. 

[9] Mohammed H, Romdhane L, Jaradat MA. RRT* N: An efficient approach to path 

planning in 3D for Static and Dynamic Environments. Advanced Robotics. 2021;35(3-

4):168-80. 

[10] Motonaka K, Miyoshi S. Obstacle avoidance using buffered voronoi cells based on 

local information from a laser range scanner. Advanced Robotics. 2022:1-14. 

[11] Xiong C, Chen D, Lu D, Zeng Z, Lian L. Path planning of multiple autonomous 

marine vehicles for adaptive sampling using Voronoi-based ant colony optimization. 

Robotics and Autonomous Systems. 2019;115:90-103. doi: 

https://doi.org/10.1016/j.robot.2019.02.002. 

[12] Magid E, Lavrenov R, Afanasyev I, editors. Voronoi-based trajectory optimization for 

UGV path planning. 2017 International Conference on Mechanical, System and 

Control Engineering (ICMSC); 2017 19-21 May 2017. 

[13] Arnaoot HM, Abdin HA, editors. Visibility Graph-Based Path Planning Algorithm 

Safety Evaluation and Optimization. 2022 International Telecommunications 

Conference (ITC-Egypt); 2022: IEEE. 

[14] Kunchev V, Jain L, Ivancevic V, Finn A, editors. Path Planning and Obstacle 

Avoidance for Autonomous Mobile Robots: A Review2006; Berlin, Heidelberg: 

Springer Berlin Heidelberg. 

[15] Malone N, Chiang H, Lesser K, Oishi M, Tapia L. Hybrid Dynamic Moving Obstacle 

Avoidance Using a Stochastic Reachable Set-Based Potential Field. IEEE 

Transactions on Robotics. 2017;33(5):1124-38. doi: 10.1109/TRO.2017.2705034. 



[16] Minguez J, Lamiraux F, Laumond J-P. Motion Planning and Obstacle Avoidance. In: 

Siciliano B, Khatib O, editors. Springer Handbook of Robotics. Cham: Springer 

International Publishing; 2016. p. 1177-202. 

[17] Ge SS, Cui YJ. Dynamic Motion Planning for Mobile Robots Using Potential Field 

Method. Autonomous Robots. 2002;13(3):207-22. doi: 10.1023/a:1020564024509. 

[18] Kim TH, Kon K, Matsuno F. Region with velocity constraints: map information and 

its usage for safe motion planning of a mobile robot in a public environment. 

Advanced Robotics. 2016;30(10):635-51. 

[19] Molinos EJ, Llamazares Á, Ocaña M. Dynamic window based approaches for 

avoiding obstacles in moving. Robotics and Autonomous Systems. 2019;118:112-30. 

doi: https://doi.org/10.1016/j.robot.2019.05.003. 

[20] Kwakernaak H, Sivan R. Linear optimal control systems: Wiley-interscience New 

York; 1972. 

[21] Weiguo W, Huitang C, Peng-Yung W, editors. Optimal motion planning for a wheeled 

mobile robot. Robotics and Automation, 1999 Proceedings 1999 IEEE International 

Conference on; 1999: IEEE. 

[22] Shen P, Zhang X, Fang Y. Complete and Time-Optimal Path-Constrained Trajectory 

Planning With Torque and Velocity Constraints: Theory and Applications. 

IEEE/ASME Transactions on Mechatronics. 2018;23(2):735-46. doi: 

10.1109/TMECH.2018.2810828. 

[23] Petrinić T, Brezak M, Petrović I. Time-optimal velocity planning along predefined 

path for static formations of mobile robots. International Journal of Control, 

Automation and Systems. 2017;15(1):293-302. doi: 10.1007/s12555-015-0192-y. 

[24] Consolini L, Locatelli M, Minari A, Piazzi A. An optimal complexity algorithm for 

minimum-time velocity planning. Systems & Control Letters. 2017;103:50-7. doi: 

https://doi.org/10.1016/j.sysconle.2017.02.001. 

[25] Kim J, Kim BK. Cornering Trajectory Planning Avoiding Slip for Differential-

Wheeled Mobile Robots. IEEE Transactions on Industrial Electronics. 2019:1-. doi: 

10.1109/TIE.2019.2941156. 

[26] Xiong L, Fu Z, Zeng D, Leng B. An optimized trajectory planner and motion 

controller framework for autonomous driving in unstructured environments. Sensors. 

2021;21(13):4409. 

[27] Diachuk M, Easa SM. Motion Planning for Autonomous Vehicles Based on 

Sequential Optimization. Vehicles. 2022;4(2):344-74. 



[28] Okuyama I, Maximo MR, Afonso RJ. Minimum-time trajectory planning for a 

differential drive mobile robot considering non-slipping constraints. Journal of 

Control, Automation and Electrical Systems. 2021;32(1):120-31. 

[29] Micheli F, Bersani M, Arrigoni S, Braghin F, Cheli F. NMPC trajectory planner for 

urban autonomous driving. Vehicle System Dynamics. 2022:1-23. 

[30] Gao J, Pashkevich A, Claveau F, Chevrel P, editors. Optimal Motion Generation for 

Mobile Robot with Non-Skidding Constraint. 2019 IEEE International Conference on 

Mechatronics (ICM); 2019 18-20 March 2019. 

[31] Gao J, Pashkevich A, Claveau F, Chevrel P. Real Time Motion Generation for Mobile 

Robot. IFAC-PapersOnLine. 2019;52(13):265-70. doi: 

https://doi.org/10.1016/j.ifacol.2019.11.179. 

[32] Jazar RN. Vehicle dynamics: theory and application: Springer; 2017. 

[33] Rill G, editor TMeasy--A Handling Tire Model based on a three-dimensional slip 

approach. Proceedings of the XXIII International Symposium on Dynamic of Vehicles 

on Roads and on Tracks (IAVSD 2013), Quingdao, China; 2013. 

[34] Bobrow JE, Dubowsky S, Gibson J. Time-optimal control of robotic manipulators 

along specified paths. The international journal of robotics research. 1985;4(3):3-17. 

[35] Jin H, Zhou M, editors. On the road friction recognition based on the driving wheels 

deceleration. 2014 IEEE Conference and Expo Transportation Electrification Asia-

Pacific (ITEC Asia-Pacific); 2014: IEEE. 

[36] Ito N, Okuda H, Suzuki T. Configuration-aware model predictive motion planning for 

Tractor–Trailer Mobile Robot. Advanced Robotics. 2022:1-15. 

 


