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Multi-View Dreaming:
Multi-View World Model with Contrastive Learning

Akira Kinose!*, Masashi Okada?, Ryo Okumura?, Tadahiro Taniguchi®?3

Abstract—1In this paper, we propose Multi-View Dreaming,
a novel reinforcement learning agent for integrated recognition
and control from multi-view observations by extending Dream-
ing. Most current reinforcement learning method assumes a
single-view observation space, and this imposes limitations on
the observed data, such as lack of spatial information and oc-
clusions. This makes obtaining ideal observational information
from the environment difficult and is a bottleneck for real-world
robotics applications. In this paper, we use contrastive learning
to train a shared latent space between different viewpoints,
and show how the Products of Experts approach can be used
to integrate and control the probability distributions of latent
states for multiple viewpoints. We also propose Multi-View
DreamingV2, a variant of Multi-View Dreaming that uses a
categorical distribution to model the latent state instead of
the Gaussian distribution. Experiments show that the proposed
method outperforms simple extensions of existing methods in
a realistic robot control task.

I. INTRODUCTION

It would be desirable to have a vision-based control system
that can manipulate objects in environments where there are
many blind spots and image observation is limited. In the
case of a robot grasping an object on a complicated shelf,
the robot must be able to control it by observing images from
various cameras.

By contrast, most current reinforcement learning method
assumes a single-view observation space, and this imposes
limitations on the observed data, such as lack of spatial
information and occlusions. This makes obtaining ideal ob-
servational data from the environment difficult, resulting in
problems like missing observational data. This problem has
become a bottleneck for real-world robotics applications.

Therefore, our goal in this research is to realize a method
for learning control based on observations from multiple
viewpoints. When solving this problem, it will be more
useful for robot control in factories where multiple cameras
can be installed, as well as automatic driving control where
viewing information from multiple directions is required.
Multi-view reinforcement learning can also be applied to
research problems such as robustness to sensor degradation
and multimodal data fusion. To address this problem, it
is crucial to develop a model-based reinforcement learning
method, which enables integrated recognition and control
from multi-view observations.
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Fig. 1. Overview of Multi-View Dreaming, the proposed world models
approach. Multi-View Dreaming trains a shared latent space between
different viewpoints using contrastive learning. Then, Multi-View Dreaming
infers the global latent state by the Product of Experts for multiple latent
state distributions. By using the global latent state as input observations, the
agent can train a policy based on multiple viewpoint observations through
reinforcement learning.

However, model-based reinforcement learning frameworks
for multi-view control have not yet been established. TCN [1]
and mfTCN [2], but both of them do not consider the partial
observability of the environment and do not train latent
state dynamics. MuMMI [3] is multimodal reinforcement
learning, which is highly relevant to this research. Compared
to MuMMI, our focus is to (1) proposing “multi-view”
world model which is highly needed in real-world robotics
applications, and (2) systematically applying the theory to
Dreaming [4] and DreamingV2 [5] to verify its effectiveness.

In this paper, we propose Multi-View Dreaming, a model-
based reinforcement learning for control based on multi-
view observations. Multi-View Dreaming is a novel world
model approach for integrated recognition and control from
multi-view observations by extending Dreaming. Fig. [I]
shows an overview diagram of Multi-View Learning. We use
contrastive learning to train a shared latent space between
different viewpoints, and show how the Products of Experts
approach can be used to integrate and control the probability
distributions of latent states for multiple viewpoints.
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Fig. 2. Detailed diagram of multi-view contrastive learning. The image pairs of each viewpoint at the same time (green arrows <) are positive samples,
and the latent space is learned so that these images are located close to each other. The image pairs of the same and different viewpoints at different times
(red arrows <) are negative samples, and the latent space is learned so that these images are located far from each other.

The proposed method is the extension of Dreaming [4] and
DreamingV2 [5] to multi-view control. DreamingV2 focuses
on representing latent states as categorical variables, while
Dreaming focuses on making the dreamer decoder-free. The
goal of this paper is to develop a multi-view approach to
these approaches.

The key contributions of this paper are summarized as
follows:

o Learning world models from multi-view observa-
tions. Using contrastive learning, the proposed Multi-
View Dreaming and its categorical version variant,
Multi-View DreamingV2, train a shared latent space
between different viewpoints. They then use the Product
of Experts to infer the global latent state for multiple
latent state distributions.

« Practical experiments for visual control. We demon-
strate the effectiveness of the proposed method in some
scenarios, which correspond to real-world problems and
realistic robot control tasks.

The remainder of this paper is organized as follows. In
Seclll] key differences from related work are discussed. In
Sec. our proposed method Multi-View Dreaming / Multi-
View DreamingV?2 is specified. In Sec. the effectiveness
of our proposed methods is demonstrated via simulated
evaluations. Finally, In Sec. [V] concludes this paper.

II. RELATED WORKS
World Models

Our research focused on learning world models and poli-
cies from high-dimensional observations in partially observ-
able Markov decision process (POMDP [6]). Several ap-
proaches have been proposed to learn latent space dynamcis
models and use them to solve POMDP in model-based RL
(71, [8].

World models are a model-based reinforcement learning
that uses observation data to learn a predictive model based
on the agent’s behavior. World model trains a latent state
dynamics model from the agent’s experience, which is used
to learn behavior. It is advantageous to learn a compact state
representation for high-dimensional input information such

as images and to use world models to predict the future in
latent space. Representative studies are the World Models
[9], SLAC [10], PlaNet [11], PlaNet-Bayes [12] Dreamer
[13], DreamerV2 [14], Dreaming [4], DreamingV2 [5], etc.
Learning from multiple observations is important in real-
world robotics applications, but these methods do not address
this issue.

The proposed method can also be seen as an extension
of the world model to multi-view control, as it can infer
the state representation from image observations and predict
the future state of the environment in time series using a
latent dynamics model. Our method is especially based on
Dreaming [5].

Contrastive Learning in RL

Contrastive learning [15], [16] is a self-supervised learning
framework for learning useful representations by imposing
similarity constraints on the latent space between training
data.

In contrastive learning, the distance of image pairs in the
latent space is represented as a loss function. Contrastive
Learning trains image pairs with similarity constraints in the
latent space so that they are close to each other if they are
data augmented instances, and far from each other if they
are different instances.

Works that using contrastive learning for reinforcement
learning include CURL [17], Dreaming [4], CFM [18],
CVRL [19], TPC [20].

Multi-View Learning in RL

Several reinforcement learning methods have been pro-
posed to train a policy based on observed data from multiple
modalities [1]-[3], [21], [22].

MuMMI [3] is a research that is particularly relevant
to this paper. In contrast to MuMMI, what is particularly
important in this work is that (1) this focuses on “multi-
view”, which is highly needed in real applications to robots,
and (2) systematically applies the theory to Dreamer(V2) and
Dreaming(V2) to verify its effectiveness.



TCN [1] and mfTCN [2] are examples of research dealing
with multi-view contrastive learning, but both of them treat-
ing multi-view image embeddings as states, and using them
to learn a policy. However, they do not sufficiently account
for the fact that the environment is a POMDP and do not train
a latent dynamics model. The difference between our method
and these studies is that our method is model-based and can
predict future states in time series, and it can integrate state
representations deduced from multiple viewpoints.

III. MULTI-VIEW DREAMING

In this paper, we present Multi-View Dreaming, a model-
based reinforcement learning method with world models
that learns latent dynamics and a policy from multi-view
observations, as an extension of Dreaming [4]. Fig. [2]shows a
detailed diagram of the proposed method. In this method, we
apply contrastive learning between multi-view observations
to train a world model, based on the idea that images
obtained from multi-view observations are augmentations
of the same environment instance. Therefore, images from
multi-view observations are trained to be close to each
other in latent space at the same time. To recognize that
observations from different viewpoints have the same latent
state, the agent learns world models.

World Model learning based on RSSM

The world model can learn a predictive model from the
agent’s experience and use the prediction model to learn the
behavior. Compact state representations are learned when
trained on high-dimensional observations as images, allow-
ing forward predictions in the learned latent space. This
kind of model that predicts the future on latent space is
called the latent dynamics model. By modeling the latent
dynamics model of the environment, the agent can predict
the long-term future and optimize its behavior without image
reconstructions.

Multi-View Dreaming consists of a recurrent state-space
model (RSSM) to predict forward dynamics in partially
observable environments, and a reward predictor. RSSM is
an important component for learning latent dynamics, and
it has been used in many world models [4], [13], [14]. The
model components are:

Recurrent model:
he = fg (hi—1, 2e—1,a4—1)
Representation model:

RSSM 1
2t~ qgp (2t | ey 1) M
Transition predictor:

2t~ py (2t | ht)
Reward predictor: )

Tt~ p (P | he, 20)

Actor: Gy ~ py (Gr | 2t)
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Critic:  ve (2¢) & Ep, p, |>_ 4777
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Fig. 3. Model Architecture of Multi-View Dreaming. In this figure, assume
that the model observes images from two viewpoints at the same time.
The training image z}, x? for each viewpoint is encoded using a shared
encoder. The RSSM uses a sequence of deterministic recurrent states h¢ . At
each step, this model infers global posterior probability states z; and prior
probability states Z;. The representation model infers posterior probability
states ztl and zf for each viewpoint from current images :vtl, x? for each
viewpoint and recurrence states hy. The global posterior probability state
z¢ is calculated from the posterior probability states zt1 and z? of each
viewpoint by Product of Experts. The Transition predictor calculates ¢, a
prior probability state that attempts to predict the posterior probability state
without accessing the current image. This method uses the same decoder-
free world model as Dreaming, but we train the decoder experimentally
without computing the gradient to the loss function.

Fig. 3 illustrates the detailed model architecture of Multi-
View Dreaming. In the proposed model, latent states of the
multiple viewpoints z}, 2? are integrated (details in the next
section) to global stochastic latent state z;.

Integration of latent state distributions

In this section, we explain how to integrate multiple latent
state distributions.

1) Multi-View Dreaming (Gaussian): The RSSM based
on Dreamer assumes a Gaussian distribution for the latent
state distribution. By integrating the latent states of each of
the multiple viewpoints into the global latent state, the global
latent state can be seen as representing the true latent state of
the environment. The stochastic state z; integrates the states
of multiple viewpoints by taking a weighted harmonic mean
over the mean p and variance o of the normal distribution,
as shown in the following equation:
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Zv:l Z'u:l é
where V' denotes the number of viewpoints.
It is inspired by the Products of Experts [23] proposed
by Hinton. The idea is to multiply the density functions of
multiple probability distributions (experts) to combine them.
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In this way, the agent can choose an action based on several
dimensions without covering the full dimensionality of the
latent state.

2) Multi-View DreamingV?2 (Categorical): In this paper,
we also propose a variant of Multi-View Dreaming that uses
a categorical distribution to model the latent state instead
of the Gaussian distribution that was proposed in Dream-
erV2. There has been no prior research that uses categorical
distributions for latent states of the world model to learn
multi-view observations to our knowledge. In this paper,
we call this method Multi-View DreamingV2. Multi-View
DreamingV?2 is based on DreamingV2 instead of Dreaming
and is extended to multi-view observations. Because the
latent state in Multi-View DreamingV2 is categorical rather
than Gaussian, the Product of Experts is calculated by
averaging each dimension of the categorical distribution.

Multi-View Contrastive Learning

As described in the previous section, to integrate the
latent space in multiple viewpoints, it is necessary to learn
a common world model across all viewpoint. We propose
to learn a common world model for all viewpoints by using
contrastive learning between viewpoints for representation
model.

The objective function of Multi-View Dreaming is basi-
cally the same as that of Dreaming [4]. Dreaming introduces
a reconsruction-free objective derived from the ELBO objec-
tive:

K
jDreaming — Z (jli\ICE + ijL) (5)
k=0

where K represents the overshooting distance. J, ,f( Lis a
multi-step objective and JY“F is a categorical cross entropy

objective to discriminate positive pair (z;, x;) and negative

Reacher-easy task uses a continuous action space with 2 dimensions (left). viewpoint 1 blinds the right half of the screen, and viewpoint 2
blinds the left half. Pendulum-swingup task uses a continuous action space with 1 dimensions (center). viewpoint 1 observes the pendulum from directly
above, and viewpoint 2 observes the pendulum from directly beside. Lift-Panda task uses a continuous action space with 7 dimensions (right). viewpoint
1 observes the table from the front, and viewpoint 2 observes the table from the side.

pair (z¢, z'(# x;)) as shown below:

NCE ._
JNCE .—

Epylzpaciatz i) | 108D (20 | 20) —log Y p (= | ')
:1:/
(6)

Dreaming calculates J¥°F by random image augmentation
using image cropping.

In our method, images from each viewpoint observed at
the same time are selected in addition to random cropping
data augmentation to increase the number of positive sample
pairs. The negative samples are also sampled from images
from different viewpoints observed at different times. This
is based on the intuition that random cropping in contrastive
learning can be regarded as equivalent to a change in
viewpoint in a reinforcement learning task. Even when the
viewpoint and observation image are different, we believe
that the latent space representations of the same scene should
be close together. Therefore, by embedding the latent states
of different viewpoints at the same time in close proximity,
these integrated latent states will be closer to the true
latent states. We call this approach as multi-view contrastive
learning.

As shown Fig[2] the image pairs of each viewpoint at the
same time are positive samples, and positive samples are
image pairs taken from each viewpoint at the same time,
and the latent space is learned so that these images are close
to each other. Negative samples are image pairs of the same
and different viewpoints at different times, and the latent
space is learned so that these images are far apart.

IV. EXPERIMENTS

As shown Fig. 4, we evaluated Multi-View Dreaming’s
effectiveness in two scenarios that mimic real-world prob-
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Fig. 5. Training progress of Blind Reacher scenario
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Fig. 7. Training progress of Robosuite Lift scenario

lems. We also used Robosuite to demonstrate the proposed
method’s effectiveness in a real-world robot control task.

Experimental Settings

Our main baselines are Dreamer [13], DreamerV2 [14],
Dreaming [4], DreamingV2 [5], the representative model-
based reinforcement learning methods. However, we did not
simply compare the single-view and multi-view approaches,
but also extended the baseline as follows: a simple exten-
sion of the baseline by overlaying multi-view images in
the color channel direction as input images. For example,
if the image of the 64(height)x64(width)x3(color) array
is observed from two viewpoints, the agent will observe
the image of the 64(height)x64(width)x6(color) array af-
ter overlaying. Multi-View Dreaming is implemented based
on DreamingV2. Therefore, the elements proposed in the
research up to DreamingV2 will be inherited in this method.

We experimented with the three tasks shown in Fig. 4. In
all tasks, observations are pixel inputs (64 x64) only. Reacher
task and Pendulum task are provided from the DeepMind
Control Suite [24], Lift task is provided from the Robosuite
[25], but environments were augmented to provide images
from multiple viewpoints.

Scenario: Blind Reacher

In this experiment, we assume that occlusion occurs on the
observed images and that the critical information required for
the task is not available from a single viewpoint. Specifically,

i
Reconstruction

Viewl View2

Fig. 8. Observed image from viewpoint 1 (left). Observed image from
viewpoint 2 (center). Reconstructed image from the global latent state
(right).

as Fig. 4 shows, viewpoint 1 blinds the right half of the
screen, and viewpoint 2 blinds the left half. We handle
blinds by filling them with black pixels, so the image size is
unchanged. In this scenario, learning the policy from a single
viewpoint image is insufficient to complete the task; instead,
the policy must be learned by combining information from
multiple viewpoints.

Scenario: Dual View Pendulum

In this experiment, we assume a scenario where the camera
position in the environment is changed from the default
and only limited information of the task is available from a
single viewpoint. Viewpoint 1 observes the pendulum from
directly above, while viewpoint 2 observes the pendulum
from directly beside, as shown in Fig. 4. It is difficult to
achieve any of these viewpoints with only a single camera
in one direction, and it is necessary to learn the policy
by combining information from two viewpoints located in
different places.

Scenaro: Robosuite Lift

We used Robosuite in this experiment to test the effec-
tiveness of our method in a realistic robot control task. In a
realistic robot task, the robot’s body and arms act as obstacles
in the observation space, necessitating multi-modal control
from multiple viewpoints.

Experimental Results

Fig. ] [6] [7] show the training progress for each scenario,
and the final performance scores are shown in Table 1.

In the Blind Reacher scenario, Multi-View DreamingV?2
learned policies by using the images from the two view-
points well. However, the performance was comparable to
simple extensions of Dreamer, Dreaming, and DreamingV?2.
Multi-View Dreaming did not perform as well as the full
observation.

In the Dual View Pendulum scenario, all methods except
DreamerV2 and Multi-View DreamingV?2 performed equally
well in learning.

In the Robosuite Lift scenario, Multi-View DreamingV?2
outperformed all other approaches by a significant difference.
Whereas the previous two experiments did not differ from
baseline, Multi-View DreamingV2 was particularly effective
in this task.

This suggests that it is difficult to separate the necessary
information for a task like Lift, which involves complex



TABLE I

Comparison of Multi-View Dreaming / V2 to simple extension of conventional model-based reinforcement learning by final performance score.

MVDreaming MVDreamingV2 Dreamer DreamerV2 Dreaming DreamingV2
(ours) (ours) [13] [14] [4] [5]
Multi-View v v
Gaussian Latent v v v
Categorical Latent v v v
Decoder-free v v v v
Reacher (multi-view) 588.6£356.0 936.1+£95.9 685.0+£410.7 4224733  841.3+316.7  860.91+285.6
Pendulum (multi-view)  812.2+130.4 256.54+304.5 801.2£110.4 10.8424.5  831.6£126.4 410.44+413.99
Lift (single-view) — — 133.5£64.28  132.6+62.4 150.5£78.5  330.9+113.6
Lift (multi-view) 110.14+44.6 345.0+133.6 102.9+82.8  120.8451.58  177.0+£80.9  254.7+£104.2
image information and different dynamics between view- REFERENCES

points, using a simple method of overlaying images in the
color channel direction, and that the proposed method is
effective in estimating the latent state for each viewpoint.
A reconstructed image from the global latent state is shown
in Fig. 8. The global latent state combines and embeds both
the important information of viewpoint 1 and viewpoint 2.
This can be qualitatively confirmed.

V. CONCLUSION

In this paper, we proposed a novel world model approach
for integrated recognition and control from multi-view obser-
vations by extending Dreaming. We used contrastive learning
to train a shared latent space between different viewpoints,
and showed how the Products of Experts approach can be
used to integrate and control the probability distributions of
latent states for multiple viewpoints.

We demonstrated the effectiveness of the world model
using multi-view observations in two scenarios that corre-
spond to problems in real environments and in realistic robot
control tasks. In conclusion, simple extensions of methods
of overlapping images are effective for simple tasks, but a
multi-view contrastive learning approach is more effective
for tasks with complex images and dynamics. Understanding
the features of these methods revealed in this study, as
well as making effective use of multi-view, is important for
practical applications in robotics. Theoretical causes of these
differences will be the subject of future research.

Our method can be seen as an example of a multi-
view version of the generalized multimodal world model. In
addition to multi-view images, world models that incorporate
more modalities such as audio, tactile sensing, and depth
sensors would be an intriguing one which could be usefully
explored in further research. In addition, embedding domain
information such as camera coordinates and robot proprio-
ception into the latent state of each viewpoint would be a
fruitful area for further work.

We were not able to experiment with the real robot in
this paper, but we are currently working on real robotics
application, and evaluating it will be a future issue.
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