
A Lifting Approach to Learning-Based Self-Triggered Control with Gaussian
Processes

Wang Zhijun Kazumune Hashimoto Wataru Hashimoto Shigemasa Takai

Abstract— This paper investigates the design of self-triggered
control for networked control systems (NCS), where the dynam-
ics of the plant is unknown apriori. To deal with the nature
of the self-triggered control, in which state measurements are
transmitted to the controller a-periodically, we propose to lift
the continuous-time dynamics to a novel dynamical model by
taking an inter-event time as an additional input, and then,
the lifted model is learned by the Gaussian processes (GP)
regression. Moreover, we propose a learning-based approach,
in which a self-triggered controller is learned by minimizing a
cost function, such that it can take inter-sample behavior into
account. By employing the lifting approach, we can utilize a
gradient-based policy update as an efficient method to optimize
both control and communication policies. Finally, we summa-
rize the overall algorithm and provide a numerical simulation
to illustrate the effectiveness of the proposed approach.

Index Terms— Event-triggered and self-triggered control,
Gaussian process regression, Optimal control

I. INTRODUCTION

In recent years, event-triggered and self-triggered control
have attracted much attention since they are known to be
useful strategies for saving resources in networked control
systems (NCSs) [1]. In contrast to a time-triggered control
that executes a feedback control law in a periodic manner,
the event and self-triggered control transmit sensor measure-
ments to the controller over the communication network only
when it is needed. Various event/self-triggered controllers
have been studied, see [2] for its survey paper. Early works
apply the input-to-state stability or L2 gain performance to
design event/self-triggered control [3] for linear systems.
More recently, some approaches integrate the event/self-
triggered control in optimal control [4]–[6]. In addition,
researches related to reachability and safety analysis have
been also provided in recent years [7].

In many previous works of the event/self-triggered control
framework, the dynamical model of the plant to be con-
trolled is assumed to be known apriori, which implies that
when designed controllers are applied to real-world control
systems, the achieved performance will heavily depend on
the modeling accuracy. However, physical dynamics of the
true system can be sometimes complex and highly nonlinear
(and thus it is unknown apriori). Motivated by this problem,
several works have suggested an event/self-triggered control
framework that can be applied for unknown transition dy-
namics; see [8]–[14]. For example, [8] provided an iterative
procedure of learning both the system dynamics and the

The authors are with the Graduate School of Engineering, Osaka Uni-
versity (e-mail: wang@is.eei.eng.osaka-u.ac.jp, hashimoto@eei.eng.osaka-
u.ac.jp, hashimoto@is.eei.eng.osaka-u.ac.jp,takai@eei.eng.osaka-u.ac.jp)

optimal policy based on training data. In particular, they
employed a Gaussian processes (GP) regression to learn the
dynamics and a self-triggered optimal policy was obtained
by solving a value iteration algorithm. Moreover, [14] inves-
tigates an approach to design an event-triggered controller
for input-affine systems, where communication time instants
are determined by evaluating a Lyapunov function candidate.
In addition, [9]–[13] investigated a model-free approach to
designing event/self-triggered controllers based on a deep
reinforcement learning framework.

The objective of this paper is to learn a self-triggered
controller based on an optimal control-based framework,
where the unknown transition dynamics is learned by the
GP regression. To the best of our knowledge, such an
objective was achieved by only one previous work [8].
However, we argue that this previous work has the following
drawbacks. First, since the value iteration was implemented
by discretizing the state-space into grid points so as to ap-
proximate the optimal policy, it requires heavy computational
resources in general. Second, [8] considers the dynamical
system of the form: xk+1 = f(xk, uk) (xk is the state
and uk is the control input), and then the function f is
learned based on the training data while executing the self-
triggered controller. However, when learning the function f
we require the training data as the consecutive states and
the control input (i.e., xk, xk+1, uk), which implies that the
training data is available only when the inter-event time step
is 1. This means that we have to throw away all the data
(state/control inputs) if the inter-event time step is selected
larger than 1, and thus it may not be of suitable for learning
the dynamics while executing the self-triggered controller.
Hence, the previous work has potential drawbacks in terms
of both the requirement of computational resources and the
inefficiency of data to learn the dynamics.

To address the issues as mentioned above, this paper pro-
poses a novel optimal control, learning-based approach to de-
signing the self-triggered controller with the GP regression.
In particular, the proposed approach has the following contri-
butions. First, in order to efficiently learn the dynamics and
take the follow-up designing of the self-triggered controller
into account, we choose not to learn the dynamics originally
defined as the ordinary differential or the difference equation
(which is typically done in previous works of literature), but
instead, we proposed to lift to a model, in which an inter-
event time is regarded as an additional control input, and
then such a lifted model is learned by the GP regression. As
will be detailed in later sections, this allows us to increase an
efficiency of learning the dynamics, since we can utilize all

ar
X

iv
:2

20
2.

10
17

4v
1

 [
ee

ss
.S

Y
]

 2
1

Fe
b

20
22

the state information received at the controller as the training
data to learn the dynamics. Second, we formulate a finite
horizon optimal control problem, in which we can penalize
the states between every adjacent triggering instants. For
example, this allows us to optimize an effective self-triggered
controller that can avoid colliding with obstacles, as will be
clarified in the numerical simulation. Finally, by employing
the lifted dynamics estimated by the training data, we show
that the self-triggered controller can be optimized via a policy
gradient algorithm, which is one of the computationally
efficient framework to derive the policy. This leads to a
significant reduction of the computational time in contrast
to the previous work [8].

As briefly mentioned above, our approach is also related
to several previous works [9]–[15], while the problem setup
considered in this paper is significantly different from them
in the following ways. [9]–[13] investigate an approach
to learn event/self-triggered controllers based on a deep
reinforcement learning. Our approach differs from these
works, in the sense that we here provide a model-based
solution, in which the (lifted) dynamics is learned by the
GP regression and the optimal self-triggered controller is
designed accordingly. Moreover, in constrast to [14] in which
an event-triggered controller is designed based on a Lya-
punov function candidate, our approach investigates a way to
design a self-triggered controller based on an optimal control
problem with a policy gradient technique. In addition, our
approach is related to [15], where an optimal control policy
is designed via policy gradient for the dynamics learned
by the GP regression. The proposed approach differs from
[15] in the following sense. First, while [15] investigates
a way to design only a control policy, we here investigate
a way to design a self-triggered controller that provides
both control and communication policies, which will be
achieved by introducing the lifted model. Second, we provide
several modifications on a computational graph for policy
evaluations and policy improvements. This is because we
modify a cost such that the inter-sample behavior of the states
can be taken into account while executing a self-triggered
controller (for details, see Section III-E,F).

Notation: Let N, N>0 be the set of non-negative integers
and positive integers respectively. Let R,R≥0,R>0 be the set
of reals, non-negative reals and positive reals, respectively.
Given xmin, xmax ∈ Rn, let [xmin, xmax] denote a hyper-
rectangle with the extreme (i.e., lower-left/upper-right) points
xmin, xmax. For a square matrix Q, we use Q � 0 to denote
that Q is positive define. Let diag(a1, a2, . . . , ah) be the
diagonal matrix whose elements are give by a1, . . . , ah ∈ R.
Let 0 be the matrix of all zeros and I be the identity matrix.

II. PROBLEM FORMULATION

A. System description

We consider the dynamical system of the form:

ẋt = f(xt, ut), ut ∈ U , x0 ∼ N (µ0,Σ0), (1)

for all t ∈ R≥0, where xt ∈ Rnx and ut ∈ Rnu are
the states and the control inputs at time t respectively, and

U = [umin, umax] ⊂ Rnu is the set of control inputs. We
assume that the initial state x0 follows the Gaussian with
a given mean µ0 and a covariance matrix Σ0. Moreover,
f : Rnx × Rnu → Rnx is a function representing the
transition dynamics, which is unknown apriori.

B. Overview of learning-based self-triggered control

Let t0, t1, t2, . . . with t0 = 0 be the communication
time instants when the plant transmits the state xtn to
the controller, and let τn = tn+1 − tn ∈ R>0, n ∈ N
be the corresponding inter-event times. In this paper, we
aim at designing a self-triggered controller so as to reduce
the number of communication between the plant and the
controller. The basic procedure of the self-triggered control
is summarized as follows: for each tn, n ∈ N,

(i) The state xtn is measured and transmitted to the
controller;

(ii) Based on some policy π : Rnx → U × R>0, the
controller computes the control input utn ∈ U and the
inter-event time τn ∈ R>0, i.e., [u>tn , τn]> = π(xtn);

(iii) The controller transmits {utn , τn} to the plant, and the
plant applies utn constantly until the next communi-
cation time, i.e., ut = utn , ∀t ∈ [tn, tn+1), where
tn+1 = tn + τn.

Due to the fact that the dynamical system (1) is unknown
apriori, in this paper we employ a learning-based approach,
in which the controller learns the dynamical system based
on training data and adaptively updates the policy π. A
rough sketch of the learning-based self-triggered control is
summarized as follows:
[Step 1] Using the current policy π, implement the self-

triggered control (i)–(iii) for a given time period
T ∈ R>0. While executing the self-triggered con-
troller, the controller stores a set of new training
data involving the information of states received
from the plant, control inputs and inter-event times.

[Step 2] Using the training data, the controller learns the
dynamical system and updates the policy π. Then,
go back to Step 1.

Our goal is to learn the optimal policy π that minimizes
a prescribed cost function (defined later in this paper).
Moreover, we will ensure that the designed policy leads to
satisfying τn ≥ τmin, ∀n ∈ N for a given lower bound of
the inter-event time τmin ∈ R>0, which aims at guaranteeing
the positive inter-event times. A concrete procedure of the
proposed approach is elaborated in the next section.

III. PROPOSED APPROACH

A. Motivation

A key challenge in learning-based self-triggered control
given in the previous section is that the state measurements
are transmitted to the controller only at the communication
time instants. Thus, the controller is able to utilize the
states that are received intermittently from the plant, i.e.,
xtn , n ∈ N, which indeed makes the learning of both
the dynamics and the optimal policy a difficult task. As

a naive approach, assuming that the lower bound of the
inter-event time τmin is close to 0, one could often set the
lowest inter-event time, say τn = τmin, so that the controller
obtains the consecutive state measurements xtn , xtn+1

and
use them to approximately learn the function f(xt, ut), i.e.,
ẋtn = f(xtn , utn) ≈ (xtn+τn − xtn)/τn

1. Hence, if the
controller receives the consecutive states xtn , xtn+1 with a
small enough inter-event time, these states can be utilized
as the training data to approximately learn f . However, this
approach is clearly inefficient, since the controller is able
to learn the dynamical system only for the case when the
inter-event time is small enough, i.e., if the inter-event time
is selected large, we need to possibly throw away the data
since (xtn+τn − xtn)/τn is not accurate enough to estimate
f(xt, ut). In addition to the above, even if f could be
learned, deriving the optimal policy π that minimizes a given
cost function is in general computationally hard based on
the knowledge about f . Indeed, the function f depends on
the control input u, but it does not depend on the inter-
event time τ (i.e., (1) fails to incorporate the information
about τ), although we need to optimize both u and τ for
each state x. This implies that the standard policy gradient
algorithm, which is known to be an efficient method to derive
the optimal policy, cannot be directly applied based on the
knowledge about f .

B. Lifting approach for learning-based self-triggered control

In order to efficiently and adaptively learn the dynamical
system and the optimal policy while executing the self-
triggered control, in this paper we propose to modify a
function to be learned as follows. First, note that we have

xtn+1
= xtn +

∫ tn+1

tn

f(xt, utn)dt, (2)

where we use the fact that the control input is constant for
all t ∈ [tn, tn+1). Then, letting the function g be given by
g(xtn , utn , τn) = xtn +

∫ tn+τn
tn

f(xt, utn)dt, we have

xtn+1
= g(xtn , vn), n ∈ N, (3)

where vn = [u>tn , τn]> denotes the extended control input
that incorporates both utn and τn. Instead of learning f , in
this paper we propose to learn the lifted function g based
on the training data. This approach is advantageous over
learning f in the following sense. First, in contrast to the case
of learning f , whose training data is available only when the
inter-event time is selected small enough as described above,
we can make use of all the state information xtn , n ∈ N
received at the controller as the training data to learn the
dynamics; for details, see Section III-C. Second, note that
the inter-event time τn is now explicitly given as one of the
inputs in vn and is incorporated in (3). As such, we can
employ a policy gradient algorithm to compute the policy π,
so that the optimal policy can be derived in a computationally
efficient way; for details, see Section III-F.

1Note that a direct access of f(x, u), or the derivative of the state ẋ, is
in general hard for digital computers. Hence, it is of practical to utilize the
consecutive states xtn+τn , xtn in order to estimate f .

C. Learning the lifted dynamics with Gaussian Processes

In this paper, we employ the GP regression in order
to learn the lifted dynamics (3). We independently pre-
dict each element of (3), which is denoted by xtn+1,j =
gj(xtn , vn), j = 1, 2, . . . , nx, where xtn+1,j and gj are the
j-th element of xtn+1

and g, respectively. We denote by
Dj = {X̃, Yj} the dataset to estimate gj , where

X̃ =

[[
x∗t0
v∗0

]
,

[
x∗t1
v∗1

]
, . . . ,

[
x∗tD−1

v∗D−1

]]
, (4)

Yj = [∆∗0,j ,∆
∗
1,j , . . . ,∆

∗
D−1,j]

>, (5)

with ∆∗n,j = x∗tn+1,j
− x∗tn,j for n = 0, . . . , D − 1 and D is

the number of the training data. Then, given Dj , an arbitrary
state xtn ∈ Rnx and an extended control input vn ∈ Rnu+1,
we can predict xtn+1,j by the Gaussian distribution as

p(xtn+1,j | xtn , vn,Dj) = N (xtn+1,j | µn+1,j , σn+1,j),

where µn+1,j = xtn,j +Eg[∆n,j], σn+1,j = varg[∆n,j] with
∆n,j = xtn+1,j −xtn,j are the mean and the variance of the
GP prediction, respectively, and these are given by

Eg[∆n,j] = kT∗,j
(
Kj + σ2

w,jI
)−1

Yj ,

varg[∆n,j] = kj(x̃tn , x̃tn)− kT∗,j
(
Kj + σ2

w,jI
)−1

k∗,j ,
(6)

where x̃tn = [x>tn , v
>
n]>, kj(·, ·) is a given kernel parameter-

ized by the hyperparameter θj , k∗,j = kj(X̃, x̃tn) ∈ RD×1,
and Kj ∈ RD×D is the kernel matrix whose p-q element is
defined as Kj,pq = kj(x̃

∗
tp , x̃

∗
tq), where x̃∗tn = [x∗>tn , v

∗>
n]>.

Moreover, σw = diag(σw,1, . . . , σw,nx) is a covariance of
the Gaussian distributed white noise for the observation.
After obtaining the predictions for all the elements of xtn+1 ,
the whole predictive distribution of xtn+1 is p(xtn+1 |
xtn , vn, {Dj}

nx
j=1) = N (xtn+1

| µn+1,Σn+1), where

µn+1 = [µn+1,1, . . . , µn+1,nx]>, (7)
Σn+1 = diag(σn+1,1, . . . , σn+1,nx). (8)

In other words, the obtained model provides, for given xtn
and vn = [u>n , τn]>, a prediction of the state at the next
communication time, i.e., xtn+1 with tn+1 = tn + τn. Note
that, by learning this model and as shown in (4) and (5), we
can utilize all the information of the states that are received
from the plant, the control inputs, and the inter-event time
as the training data to learn the dynamics.

D. Cost Function to Be Minimized

Let us now define the cost function to be minimized.
Again, note that the model obtained in the previous section
provides, for given xtn and vn = [u>n , τn]>, a prediction of
the state at the next communication time xtn+1

. Hence, as
a simple and natural way for defining the cost function, one
could consider the following: given N ∈ N,

J(πψ) =

N−1∑
n=0

Eπψxtn [c(xtn , τn)] , xt0 ∼ N (µ0,Σ0), (9)

where πψ : Rnx → Rnu+1 denotes a policy parameterized
by ψ, and Eπψxtn [·] denotes the expectation with respect to

xtn conditioned on the policy πψ , and c : Rnx × R≥0 →
R≥0 denotes a given stage cost. (9) implies that the stage
cost is added at the communication time instants tn, n =
0, . . . , N − 1, which is in accordance with the transitions
for the prediction model given in Section III-C. Defining
the cost function as above allows us to directly apply the
policy gradient algorithm (see, e.g., [15]) to optimize πψ .
However, this cost function has a crucial drawback that
only triggered instants are considered, which means what
happened between any adjacent triggered instants will not
be taken into account. For instance, it could happen that the
optimized policy makes the resulting state trajectory collide
with an obstacle between the triggering instances; for details,
see the simulation result in Section IV. To overcome this
shortcoming, we propose to modify the cost function as
follows: given M,N ∈ N>0,

J(πψ) =

N−1∑
n=0

Eπψxtn,m

[
λc1(τn) +

M−1∑
m=0

c2(xtn,m)

]
,

xt0 ∼ N (µ0,Σ0)

(10)

where tn,m = αmtn+1 + (1− αm)tn with αm = m
M for all

m = 0, . . . ,M − 1. Moreover, xtn,m , m = 0, . . . ,M − 1,
n = 0, . . . , N − 1 is the state of the system by applying
the control input utn constantly over the time length of
αmτn from xtn = xtn,0 , i.e., xtn,m = g(xtn , vn,m) with
vn,m = [u>tn , αmτn]> and [u>tn , τn]> = πψ(xtn). Moreover,
c1 and c2 represent the stage cost for the communication and
the state, respectively, and λ > 0 is the weight associated to
c1. Examples of these cost functions include polynomials
and mixtures of Gaussians, so that their expectations can
be computed analytically (see Section III-E). Intuitively, the
cost related with control performance linearly interpolates
M − 1 points between every adjacent triggering instants
(i.e., xtn,1 , . . . , xtn,M−1

). As such, we can take the behavior
of the states between every adjacent triggering instants into
account.

E. Long-term prediction and policy evaluation

To evaluate and minimize J in (10), we need to predict
the trajectory distribution

p(xtn,m), n = 0, . . . , N − 1, m = 0, . . . ,M − 1 (11)

conditioned on the policy πψ . The calculation of (11) re-
quires mapping a probability distribution through the GP
model, which is mathematically intractable. Hence, we uti-
lize a moment matching technique (see, e.g., [15]) to approx-
imate (11) by the Gaussians. While a basic procedure follows
the approach given in [15], some modifications are necessary
in terms of how to cascade the computations for p(xn,m)
(as detailed below). Here, we omit technical details of the
moment matching technique, and provide only its summary
and how the computational procedure is different from [15].

Suppose p(xtn,0) = p(xtn) is approximated by a Gaussian
distribution. Then, a Gaussian approximation for the distri-
bution p(vn) = p(πψ(xtn,0)) can be computed, and then
we can analytically compute Gaussian approximation for

Fig. 1. The computational graph of p(xtn,m) considered in this paper.

Fig. 2. The computational graph originally proposed in [15].

the joint distribution p(xtn,0 , vn) = p(xtn,0 , πψ(xtn,0)) (for
details, see Section 5.5 in [15]). Since p(vn) is Gaussian and
vn,m(= [u>tn , αmτn]>) is obtained from vn by the following
linear transformation

vn,m =

[
Inu×nu 0nu×1
01×nu αm

]
vn, (12)

it follows that p(vn,m) is also a Gaussian. Since p(xn,0)
is Gaussian, we can analytically compute Gaussian approx-
imation for the joint distribution p(x̃tn,m), where x̃tn,m =
[x>tn,0 , v

>
n,m]>. Finally, the distribution of xtn,m is computed

from p(xtn,0 , vn,m) as follows:

p(xtn,m) =

∫
p(xtn,m | x̃tn,m)p(x̃tn,m)dx̃tn,m . (13)

From the GP model given in Section III-C, it follows that
p(xtn,m | x̃tn,m) is Gaussian. Therefore, by analytically
computing the mean and covariance matrix of the right hand
side of (13), we can approximate the distribution of xtn,m
as a Gaussian distribution, i.e., p(xtn,m) ≈ N (µn,m,Σn,m).
Similarly, we have

p(xtn+1,0) =

∫
p(xtn+1,0 | x̃tn)p(x̃tn)dx̃tn , (14)

where x̃tn = [x>tn,0 , v
>
n]>. From the GP model given in

Section III-C, it follows that p(xtn+1,0
| x̃tn) is Gaussian.

Hence, we can approximate p(xtn+1,0) by the Gaussian
distribution by analytically computing the mean and the
covariance in the right hand side of (14). Since we can
iteratively cascade the above procedure, all of the required
state distribution (11) can be obtained with this scheme. The
computational graph that summarizes the above procedure is
shown in Fig.1.

For comparisons, in Fig.2 we illustrate the computational
graph originally proposed in [15]. Note that [15] considers a

periodic control execution (i.e., the time interval between
the time steps t and t + 1 in the above is always the
same) and thus it aims at learning only a control policy.
As shown in Fig.2, [15] considers computing the state
distribution iteratively based on the latest distributions of
the state and the control input (i.e., p(xt) is computed from
p(xt−1) and p(ut−1)). On the other hand, in our approach,
the state distribution at the communication time instant is
computed based on the distributions of the state and the
extended control input at the latest communication time (i.e.,
p(xtn+1,0

) is computed from p(xtn,0) and p(vn)). Moreover,
all the state distributions between the triggering instants, i.e.,
p(xtn,m), m = 1, . . . ,M − 1 are computed based on the
distributions of the state at the latest communication time
p(xtn,0) and the extended control input at tn,m, i.e., p(vn,m)
with vn,m = [u>tn , αmτn]>.

Finally, to evaluate the expected the total cost J in (10),
it remains to compute the expected values

Extn,0 [c1(τn)] =

∫
c1(τn)N (µn,0,Σn,0)dxtn,0

Extn,m [c2(xtn,m)] =

∫
c2(xtn,m)N (µn,m,Σn,m)dxtn,m

Since p(vn) = p(πψ(xtn,0)) is Gaussian, p(τn) follows also
a Gaussian. Hence, if the cost c1 and c2 are given by,
e.g., polynomials, mixtures of Gaussians, we can analytically
compute the above expectations.

F. Gradient Based Policy Improvement

To find policy parameters ψ minimizing J(πψ) in (10),
we use gradient information dJ(πψ)/dψ. As with the policy
evaluation given in the previous section, we need to provide
some modifications from [15], since the computational graph
for (10) is different from that of [15]. As a prerequisite,
assume that the moments of the control distribution µv and
Σv can be computed analytically and are differentiable with
respect to the policy parameters ψ. We obtain the gradient
dJ/dψ by repeatedly applying the chain rule. First, we use
the notation:

ζn = ληn +

M−1∑
m=0

εn,m,

ηn = Extn,0 [c1(τn)], εn,m = Extn,m [c2(xtn,m)].

(15)

Then the following equations is obtained from (10).

dJ(πψ)

dψ
=

N−1∑
n=0

dζn
dψ

,

dζn
dψ

= λ
dηn
dψ

+

M−1∑
m=0

dεn,m
dψ

,

dηn
dψ

=
dηn

dp(τn)

dp(τn)

dψ
,

dεn,m
dψ

=
dεn,m

dp(xtn,m)

dp(xtn,m)

dψ
.

(16)

We first discuss the term dεn,m/dψ by adopting
the shorthand notation dεn,m/dp(xtn,m) =

{dεn,m/dµn,m,dεn,m/dΣn,m} for taking the derivative
of εn,m with respect to both mean and covariance of
p(xtn,m) = N (µn,m,Σn,m) such that the following
equation could be derived.

dεn,m
dψ

=
dεn,m
dµn,m

dµn,m
dψ

+
dεn,m
dΣn,m

dΣn,m
dψ

. (17)

Next, the predicted mean µn,m and covariance Σn,m depend
on the moments of p(xtn,0) (see the computational graph
in Fig.1) and the controller parameters ψ. By applying the
chain rule to dp(xtn,m)/dψ in (16), we obtain

dp(xtn,m)

dψ
=
∂p(xtn,m)

∂p(xtn,0)

dp(xtn,0)

dψ
+
∂p(xtn,m)

∂ψ
,

∂p(xtn,m)

∂p(xtn,0)
=

{
∂µn,m
∂p(xtn,0)

,
∂Σn,m
∂p(xtn,0)

}
.

(18)

From here onward, we focus on dµn,m/dψ, see (17), because
the calculation of dΣn,m/dψ is similar. For dµn,m/dψ, we
calculate the derivative

dµn,m
dψ

=
∂µn,m
∂µn,0

dµn,0
dψ

+
∂µn,m
∂Σn,0

dΣn,0
dψ

+
∂µn,m
∂ψ

. (19)

And dp(xtn,0)/dψ in (18) is known from communication
time step n − 1 since xtn,0 can be viewed as xtn−1,M

. To
compute dµn,m/dψ, it remains to compute

∂µn,m
∂ψ

=
∂µn,m
∂p(vn,m)

∂p(vn,m)

∂ψ

=
∂µn,m
∂µvn,m

∂µvn,m
∂ψ

+
∂µn,m
∂Σvn,m

∂Σvn,m
∂ψ

,

(20)

where vn,m ∼ N (µvn,m,Σ
v
n,m). The partial derivatives of

µvn,m and Σvn,m, i.e. the mean and covariance of p(vn,m),
used in (20) depend on the policy representation. To evaluate
dJ(πψ)/dψ, we also need the information of dp(τn)/dψ in
(16), which could be computed by

dp(τn)

dψ
=

dp(τn)

dp(vn)

dp(vn)

dψ
= [01×nu 1]

dp(vn)

dψ
,

dp(vn)

dψ
=

∂p(vn)

∂p(xtn,0)

dp(xtn,0)

dψ
+
∂p(vn)

∂ψ
,

(21)

where dp(xtn,0)/dψ and ∂p(vn)/∂ψ has been discussed in
the previous content, and ∂p(vn)/∂p(xtn) depends on the
policy representation. The individual partial derivatives in
(16) to (21) need to apply chain rule to moment matching
(for their detailed computations, see the appendix of [15]).

G. Guaranteeing positive inter-event times and control con-
straint satisfaction via parametrization

One of the most desirable properties in self-triggered
control is to guarantee a positive inter-event time, i.e., there
exists a τmin > 0 such that τn ≥ τmin for all n = 0, 1, . . .
(see, e.g., [1]). In addition, we constrain that the control
input must belong to U = [umin, umax], i.e., utn ∈ U for all
n = 0, 1, In this section, we remark that these properties
can indeed be satisfied by a parametrization technique.

Let the policy πψ be decomposed as πψ(x) =
{πψτ (x), πψu(x)} where πψτ : Rnx → R≥0 denotes a policy

to compute the inter-event time τ , and πψu(x) : Rnx → Rnu
denotes a policy to compute the control input u. Now, let us
parametrize the policy πψτ as follows:

πψτ (x) =
τmax + τmin

2
+
τmax − τmin

2
στ (π̃ψτ (x)), (22)

for given τmin, τmax > 0 2 with τmax > τmin and
στ (·) is a given squashing function that satisfies στ (z) ∈
[−1, 1] for all z ∈ R (see Section 5.1 in [15]), and
π̃ψτ : Rnx → R denotes a preliminary policy with an
unconstrained amplitude, such as the one given by a radial
basis function (RBF). Parametrizing πψτ as above leads
to ensuring that πψτ (x) ∈ [τmin, τmax] for all x ∈ Rnx ,
and thus the optimized the policy ensures a positive inter-
event time. Similarly, we can ensure a constraint satis-
faction of the control input by parametrizing πψu(x) as
πψiu(x) =

umax,i+umin,i

2 +
umax,i−umin,i

2 σu(π̃ψiu(x)) for all
i = 1, . . . , nu, where umax,i and umin,i denote the i-th
element of umax and umin respectively, and πψiu denotes the
i-th element of πψu (i.e., it denotes a policy to compute the
i-th element of u), σu(·) ∈ [−1, 1] is a given squashing
function, and π̃iψu : Rnx → R denotes a preliminary
policy with an unconstrained amplitude. Parametrizing πψu
as above leads to ensuring that πψu(x) ∈ [umin, umax] for
all x ∈ Rnx , guaranteeing the control constraint satisfaction.

H. Overall Algorithm

Let us now introduce an overall implementation algorithm
that jointly learns the dynamics of the plant and the self-
triggered controller based on a model-based reinforcement
learning framework. The overall algorithm is shown in
Algorithm 1. For the initial iteration, the controller generates
random control signals (in a self-triggered manner) and apply
to the system to record the training data in the form of
{(x∗ti , v

∗
i), x∗ti+1

} according to Section III-C (line 3). Then,
using the recorded input and output data D, the controller
learns the lifted dynamics xtn+1

= g(xtn , vn) using GP
regression (line 5). Next, the algorithm utilizes the current
policy and the learned dynamics to predict future trajectory
distribution {p(xtn,m)} from an initial state distribution
p(xt0), and then calculates the expected total cost J (line 7).
Thereafter, the gradient information dJ/dψ is computed and
applied to minimize J , yielding an improved policy πψ . Then
execute the control system based on the improved policy, and
gather data {(x∗ti , v

∗
i), x∗ti+1

} during execution. The gathered
data is appended to the total training data, and back to line
5, the dynamical model xtn+1

= g(xtn , vn) is re-trained
using the additional training data. Finally, the loop ends and
outputs the optimal self-triggered control policy πψ when a
satisfactory performance is reached.

IV. SIMULATION

A. Inverted pendulum

To make comparisons with the previous work [8], we first
conducted a simple experiment of an inverted pendulum,

2Here, τmax could be selected arbitrary large so as to lengthen the inter-
event time.

Algorithm 1 Learning self-triggered controllers
1: Input: Characterization of the stage cost functions c1, c2,

prediction horizon N , Gaussian distribution of the initial state
N (µ0,Σ0), initial policy parameter ψ, step-size of the gradient
update α > 0;

2: Output: the optimal self-triggered control policy πψ;
3: Starting from x0 ∼ N (µ0,Σ0), apply the self-triggered

controller for a given time period T , in which the controller
generates a random extended control input vn for each commu-
nication time tn. Then, record the training data (Section III-C);

4: repeat
5: Using the recorded training data, estimate the lifted dynam-

ics by the GP regression (Section III-C);
6: repeat
7: Use the current policy πψ to predict future trajectory

distribution and calculate the expected total cost (10)
(Section III-E);

8: Compute gradient information dJ/dψ using (16) to (21);

9: Update the policy parameter as ψ ← ψ − αdJ/dψ;
10: until ψ converges
11: Using the improved policy πψ , apply the self-triggered

controller for a given time period T and then record the
training data;

12: until task learned

0 0.5 1 1.5 2 2.5
-4

-2

0

2

4
episode 1

episode 5

Fig. 3. Learned Controller Performance when λ = 0.01

whose dynamics is given of the form:

φ̈ =
u− bφ̇− 1

2mlg sinφ
1
4ml

2 + I
, (23)

where φ is the pendulum angle measured anti-clockwise
from the hanging down position, g is the acceleration of
gravity, b is a friction coefficient and I = 1

12ml
2 is

the moment of inertia of a pendulum around the pendu-
lum midpoint. In the experiment, we set m = 1kg, l =
1m, b = 0.01 and g = 9.82m/s2. We then define the
system state as xtn = [φ̇tn , φtn]>, and the extended control
input as vn = [utn , τn]>. The cost functions are given
by c1(τ) = τmax − τ , and c2(x) = − exp(− 1

2 (Tri(φ) −
Tri(π))>Q(Tri(φ) − Tri(π))), where Tri(·) is defined as
Tri(β) = [sinβ, cosβ]> for β ∈ R. Moreover, we set
Q = diag(4, 4), τmin = 0.02, τmax = 0.6 and M = 1. The
simulation result is given in Figs.3, 4. These results show
that the proposed algorithm can learn an effective controller
to stabilize the system towards the inverted position φ = −π
(red dotted line). We can also see from Fig.4 that the inter-
event time tends to be larger as λ is selected larger, which
is because we penalize more for the communication cost.

0 2 4 6 8 10 12

0

0.1

0.2

0.3

0.4

0.5

0.6

=0.01

=0.1

=0

Fig. 4. Inter-event time τn with λ = 0.01, 0.1, 0 when episode = 20

For comparisons, we also conducted the experiment using
[8], in which (23) is approximated by the discrete-time
system under the time period 0.02. Table I shows the number
of episodes and total execution time required to learn a
controller that can stabilize the system to φ = −π within an
error range 1%. The table shows that the proposed approach
achieves a significant reduction of the execution time to learn
the controller, which is due to the fact that the previous
approach [8] requires state-space discretization to solve the
value iteration algorithm. Moreover, the proposed approach
is more efficient, in the sense that it requires smaller episodes
to learn the controller than [8]. This is because [8] is able to
learn the dynamics only when the smallest inter-event time
is selected, while the proposed approach can utilize all the
data received at the controller to learn the dynamics during
execution of the self-triggered controller.

TABLE I
EXECUTION TIME AND NUMBER OF EPISODES TO ACHIEVE STABILITY

Previous approach [8] Proposed approach
Execution time 5678s 96s

Number of episodes 10 5

B. Vehicle navigation with collision avoidance

To test the benefits of incorporating the cost between the
adjacent triggering instants as explained in Section III-D, we
next consider the following vehicle dynamical model:

ẋ1 = u1 cos(θ), ẋ2 = u1 sin(θ), θ̇ = u2, (24)

where [x1, x2]> ∈ R2 is the two-dimensional coordinate of
the vehicle, θ ∈ [0, 2π) is the angle from the x1-axis to the
direction of the vehicle, u1 is the velocity of the vehicle,
and u2 ∈ [ωmin, ωmax] is the angular velocity. We then
define the system state as xtn = [x1,tn , x2,tn , θtn]> and the
system input as vn = [u1,tn , u2,tn , τn]>. The control goal
is to drive the vehicle to a target position in a certain map
where obstacles are placed, and it is assumed that the map
and obstacle information is known. In addition, the vehicle
is set to start from an initial zone and try to reach the target
position. The stage cost c2 is defined as

c2(x) = ctg(x) + cob(x),

ctg(x) = −Ktg exp

(
−1

2
(x− xtg)>Q(x− xtg)

)
,

cob(x) = Kob

∑
ob∈OB

exp

(
−1

2
(x− xob)>Qob(x− xob)

)
,

Initial Zone

Target Point

-1 0 1 2 3 4 5 6

-1

0

1

2

3

4

5

6

Fig. 5. The contour map of c2(x)

where Kob > Ktg > 0, Q � 0 is the weight matrix
of the state x, xtg ∈ R3 is the target state, OB is the
collection of all obstacles, and xob ∈ R3, Qob � 0 define
the position and shape of obstacles respectively. In this
simulation, we set Ktg = 1,Kob = 50, xtg = [5, 5, 0]T , and
Q = diag(0.04, 0.04, 0). The contour map of c2(x) is shown
in the Fig.5. As shown in the figure, we assume that there
exist 5 obstacles in the considered region. Moreover, the
stage cost c1 is given by c1(τ) = τmax− τ with τmax = 0.8,
and the minimum inter-event time is set to τmin = 0.02.

Performance of the controller learned from Algorithm 1
is given in Figs. 6 and 7. It can be seen that when M = 1,
the vehicle directly goes through an obstacle (i.e., it fails
to avoid an obstacle), which is attributed to the fact that
when M = 1, the expected total cost J degenerates to
(9) and, as discussed in Section III-D, it neglects state
trajectories between any two adjacent triggering instants.
Fig.7 describes the learning process, the learned system
dynamics initially learns from random data, and at this time
though the full dynamics has not been learned, it is enough
to make the vehicle move roughly towards the target, then
some unknown dynamics is detected, thus making the vehicle
move more accurately. Fig.8 depicts how inter-event times
change with λ = 0.01, 0.1, 0. It can be shown that regardless
of λ, the learned controller tends to choose large τn at the
beginning, which is mainly due to the fact that the total
cost in (10) is defined by summing the stage costs only
at the triggered instants and their interpolations. Reducing
the number of triggering leads to the reduction of the total
cost, and therefore, minimizing (10) leads to communication
reduction even for the case λ = 0 at the very beginning.
However, when the vehicle is about to arrive at the target
point, τn falls quickly for the case λ = 0, this is because the
learned controller chooses not to tune the control inputs u1
and u2 but the inter-event time τn to minimize (10). Using a
slightly larger λ helps solve this problem, but a too large λ
causes the algorithm difficult to learn an effective controller.

Finally, we perform a complexity analysis of the proposed
algorithm . The main complexity of the algorithm focuses at

-1 0 1 2 3 4 5 6

-1

0

1

2

3

4

5

6

Initial Zone

Target Point

episode 5

obstacle

triggered point

Fig. 6. Learned controller performance when M = 1, λ = 0.01.

-1 0 1 2 3 4 5 6

-1

0

1

2

3

4

5

6

Initial Zone

Target Point

episode 1

episode 5

obstacle

triggered point

Fig. 7. Learned controller performance when M = 5, λ = 0.01.

the policy improvement, namely lines 6-10 in Algorithm 1.
We use Fig.9 to show that how long running lines 6-10 takes
with different M . It can be seen that the running time is
approximately linear with M which is attributed to the fact
that increasing M will only complexify the computation of
J and dJ/dψ linearly.

V. CONCLUSION

In this paper, we studied the self-triggered control for
NCSs with unknown transition dynamics. To this end, we
lifted the original continuous dynamics to a novel discrete
model by taking time as an input and used the GPR to
learn the lifted dynamics of the plant. We formulated an

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1
=0.01

=0.1

=0

Fig. 8. Inter-event time τn with λ = 0.01, 0.1, 0 when episode = 5.

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

ti
m

e
(s

)

Fig. 9. Runtime to take line 6-10 in Algorithm 1 with different M .

optimal control problem where both the cost for the control
performance and the communication cost are taken into
account. Then, we illustrated that the minimization of the
cost will produce an optimal self-triggered controller. In the
simulation, detailed analysis of the simulation is given and
shows that the proposed approach is effective and enjoys a
low computational complexity.

REFERENCES

[1] W. Heemels, K. Johansson, and P. Tabuada, “An introduction to
event-triggered and self-triggered control,” in 2012 IEEE 51st IEEE
Conference on Decision and Control (CDC), 2012, pp. 3270–3285.

[2] C. Peng and F. Li, “A survey on recent advances in event-triggered
communication and control,” Information Sciences, vol. 457, pp. 113–
125, 2018.

[3] M. Mazo Jr, A. Anta, and P. Tabuada, “An ISS self-triggered im-
plementation of linear controllers,” Automatica, vol. 46, no. 8, pp.
1310–1314, 2010.

[4] T. Gommans, D. Antunes, T. Donkers, P. Tabuada, and M. Heemels,
“Self-triggered linear quadratic control,” Automatica, vol. 50, no. 4,
pp. 1279–1287, 2014.

[5] K. Hashimoto, S. Adachi, and D. V. Dimarogonas, “Event-triggered
intermittent sampling for nonlinear model predictive control,” Auto-
matica, vol. 81, pp. 148–155, 2017.

[6] K. Hashimoto, S. Adachi, and D. V. Dimarogonas, “Time-constrained
event-triggered model predictive control for nonlinear continuous-time
systems,” in 2015 54th IEEE Conference on Decision and Control
(CDC), 2015, pp. 4326–4331.

[7] K. Hashimoto, A. Saoud, M. Kishida, T. Ushio, and D. V. Dimarogo-
nas, “A symbolic approach to the self-triggered design for networked
control systems,” IEEE Control Systems Letters, vol. 3, no. 4, pp.
1050–1055, 2019.

[8] K. Hashimoto, Y. Yoshimura, and T. Ushio, “Learning self-triggered
controllers with gaussian processes,” IEEE transactions on cybernet-
ics, 2020.

[9] R. Wang, I. Takeuchi, and K. Kashima, “Deep reinforcement learn-
ing for continuous-time self-triggered control,” IFAC-PapersOnLine,
vol. 54, no. 14, pp. 203–208, 2021.

[10] D. Baumann, J.-J. Zhu, G. Martius, and S. Trimpe, “Deep reinforce-
ment learning for event-triggered control,” in Proceedings of 57th
IEEE Conference on Decision and Control (IEEE CDC), 2018, pp.
943–950.

[11] N. Funk, D. Baumann, V. Berenz, and S. Trimpe, “Learning event-
triggered control from data through joint optimization,” IFAC Journal
of Systems and Control, vol. 16, 2021.

[12] K. G. Vamvoudakis, A. Mojoodi, and H. Ferraz, “Event-triggered
optimal tracking control of nonlinear systems,” The International
Journal of Robust and Nonlinear Control, vol. 27, no. 4, pp. 598–
619, 2017.

[13] Y. Yang, K. G. Vamvoudakis, H. Ferraz, and H. Modares, “Dynamic
intermittent Q-learning for systems with reduced bandwidth,” in
Proceedings of 2018 IEEE Conference on Decision and Control (IEEE
CDC), 2018, pp. 924–931.

[14] J. Umlauft and S. Hirche, “Feedback linearization based on gaussian
processes with event-triggered online learning,” IEEE Transactions on
Automatic Control, vol. 65, no. 10, pp. 4154–4169, 2020.

[15] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes
for data-efficient learning in robotics and control,” IEEE transactions
on pattern analysis and machine intelligence, vol. 37, no. 2, pp. 408–
423, 2013.

	I Introduction
	II Problem Formulation
	II-A System description
	II-B Overview of learning-based self-triggered control

	III Proposed Approach
	III-A Motivation
	III-B Lifting approach for learning-based self-triggered control
	III-C Learning the lifted dynamics with Gaussian Processes
	III-D Cost Function to Be Minimized
	III-E Long-term prediction and policy evaluation
	III-F Gradient Based Policy Improvement
	III-G Guaranteeing positive inter-event times and control constraint satisfaction via parametrization
	III-H Overall Algorithm

	IV Simulation
	IV-A Inverted pendulum
	IV-B Vehicle navigation with collision avoidance

	V Conclusion
	References

