
1. Supplemental Information

Appendix A. Sensor Synchronization and Kalman Filter Models

Linear Interpolation for Sensor Data Synchronization
Since one IMU is also active and exhibits a higher sampling rate than the always-on

RGB-D camera, it is selected as the reference sensor. Linear interpolation is utilized
to estimate the readings of other sensors at the IMU’s sampling points. Consider two
sensors: Sensor Z (e.g., RGB-D camera) with a lower sampling rate, and the IMU
with a higher sampling rate. Suppose Sensor Z has readings at times t1 and t2 (where
t1 < t2) as Z(t1) and Z(t2), respectively. The objective is to estimate Sensor Z’s
reading at time t (where t1 < t < t2) to synchronize it with the IMU reading at time
t.

The linear interpolation formula for Sensor Z at time t is expressed as:

Z(t) = Z(t1) +
(t− t1)

(t2 − t1)
× [Z(t2)− Z(t1)] (1)

where:

• Z(t) is the estimated reading of Sensor A at time t.
• Z(t1) and Z(t2) are the actual readings of Sensor Z at times t1 and t2, respec-

tively.
• t is the time at which Sensor Z’s reading is estimated, aligned with the IMU’s
sampling point.

This interpolation method allows for the estimation of Sensor Z’s readings at inter-
mediate times between its actual sampling points, enabling synchronization with the
higher frequency IMU data. Note that the EKF’s sampling rate is also set to 100 Hz.
The time complexity of this operation for each sensor is O(1).

(Baseline) Kalman Filter Elements:

xk State Vector: Represents dynamic variables like position and velocity.
Fk State Transition Matrix: Defines system dynamics.
uk Control Input Vector: Accounts for external control inputs.
Gk Control Matrix: Links control inputs to the state model.
zk Observation Vector: Sensor measurements.
Ck Observation Matrix: Relates state vector to observations.
Qk Process Noise Covariance Matrix: Uncertainty in the process model.
Rk Measurement Noise Covariance Matrix: Uncertainty in sensor measurements.
x0|0 Initial State: Starting state vector.
P0|0 Initial Covariance Matrix: Initial uncertainty.
Kk Kalman Gain: Adjusts the estimate during the measurement update.
yk Innovation: is the innovation (measurement residual).
Sk Innovation Covariance: is the innovation covariance.
Prediction Equations For predicting next state (xk|k−1) and covariance (Pk|k−1).
Measurement Update Equations For updating state (xk|k) and covariance (Pk|k)

with measurements.

1

Drag Force Fdrag with density ρ, frontal area A, and drag coefficient Cd:
This equation models the drag force acting on the vehicle in the ISS environment

Fdrag = −0.5 · ρ ·A · Cd · v2 (2)

State vector xk: The state vector includes position and velocity components in 3D
space to track the vehicle’s movement. Ultrasonic measurements need to be handled
differently, and the details for this representation are at the end of this section.

xT
k =

(
xk yk zk vxk

vyk
vzk

)
(3)

where

• x, y, z are the Cartesian coordinates.
• vx, vy, vz are the velocity components.

Initialization of the Kalman Filter: For the effective implementation of the
Kalman Filter, the initialization of the state vector x0|0 and the covariance matrix
P0|0 is critical. Given the context of our application, where the initial position is
known with 100% accuracy, the initializations are as follows:

Initial State Vector x0|0: The initial state vector is set to represent the system’s
known starting position and velocity. Since the initial position is controlled and ex-
plicitly defined, the initial state vector and covariance are initialized to zeros.

x0|0 =
(
0 0 0 0 0 0

)T
(4)

P0|0 = zero matrix (5)

This initialization approach ensures a precise starting point for the KF, contributing
to the accuracy and stability of the state estimation process in the initial phases of the
system’s operation. In our system, the initial state estimation depends on the starting
true position to be known.

Observation Vector zk: The observation vector represents measurements obtained
from active sensors.

zTk =
(
z1 z2 . . . zn

)
(6)

The observation vector represents the sensor measurements and is related to the
state vector through the observation matrix Ck and the observation noise vk.

zk = Ckxk + vk (7)

2

where vk is the observation noise, assumed to be zero-mean Gaussian white noise with
covariance matrix Rk, vk ∼ N (0,Rk).

Observation Matrix Ck: The observation matrix Ck relates the state vector to
the observation space. Each row of the matrix corresponds to a sensor’s measurement
model.

Ck =

c11 c12 . . . c1m
c21 c22 . . . c2m
...

...
. . .

...
cn1 cn2 . . . cnm

 (8)

Where n is the number of sensors and m is the size of the state vector.

State-space representation with drag, microgravity, and sensor feedback:
In this model, the state-space representation includes the effects of drag, micrograv-
ity, and sensor feedback. The observation model is implicitly included in the state
transition, reflecting the direct impact of sensor measurements on the state evolution.

xk+1 = Fk(xk, zk)xk +Gkuk (9)

State transition matrix Fk: The state transition matrix models the vehicle’s dy-
namics, incorporating the effects of drag.

Fk =

1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t

−CdAρ∆t
2m 0 0 1 0 0

0 −CdAρ∆t
2m 0 0 1 0

0 0 −CdAρ∆t
2m 0 0 1

 (10)

Control input vector uk in transpose form: This vector represents the external
control inputs to the system as affected by thrust Θ and microgravity µg environment.

uT
k =

(
Θx + µg Θy + µg Θz + µg

)
(11)

Control matrix Gk: The control matrix links the control input to the state-space
model.

3

Gk =

0 0 0
0 0 0
0 0 0
∆t 0 0
0 ∆t 0
0 0 ∆t

 (12)

Prediction Step: These equations represent the prediction phase of the Kalman
Filter, forecasting the next state and estimating error covariance.

xk|k−1 = Fkxk−1|k−1 +Gkuk (13)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk (14)

Update Step: The update phase of the Kalman Filter refines the predictions based
on new measurements from various sensors, incorporating the observation model.

yk = zk −Hkxk|k−1 (15)

Sk = HkPk|k−1H
T
k +Rk (16)

Kk = Pk|k−1H
T
k S

−1
k (17)

xk|k = xk|k−1 +Kkyk (18)

Pk|k = (I −KkHk)Pk|k−1 (19)

where yk is the innovation or measurement residual, Sk is the innovation covariance,
and Kk is the Kalman Gain.

Ultrasonic Sensor State Space Model

Ultrasonic sensors measure the time taken for an ultrasonic pulse to reflect back from
an object. The state space model for an ultrasonic sensor can be described as follows:

Observation Vector for Ultrasonic Sensor zk,US:

zk,US =
2dk
c

(20)

where dk is the distance to the object, and c is the speed of sound. The Observa-
tion Matrix places 1

c along the main diagonal to project the state vector into the
measurement space of the ultrasonic sensor.

Transition from KF to EKF

KF to EKF State Vector Inheritance: The state vector of the EKF is initialized
with the last estimated state vector from the KF to ensure continuity. The transition
formula is as follows:

4

{x, y, z, vx, vy, vz}EKF
k = {x, y, z, vx, vy, vz}KF

k (21)

The transition from the KF to the EKF involves adapting the state estimation
process to account for non-linear system dynamics and observation models. This is
achieved by:

• Inheriting the state vector from the KF as the initial state for the EKF.
• Defining the non-linear system dynamics function f(xk,uk) and the observation
model h(xk).

• Computing the Jacobians of these functions, Fk andHk, to linearize them around
the current state estimate.

• Implementing the EKF prediction and update steps using these non-linear func-
tions and their Jacobians.

Extended Kalman Filter (EKF)

Overview: The Extended Kalman Filter (EKF) is an extension of the standard KF,
designed to handle non-linear system dynamics and observation models through lin-
earization techniques. It is particularly useful in scenarios where the process or mea-
surement models do not follow linear behavior or a high amount of uncertainty exists.

EKF Variables with Definitions:

f() is the non-linear function that describes the system dynamics.
h() is the non-linear function that describes the observation model.
Fk is the Jacobian of f(), evaluated at the current state and control input.
Hk is the Jacobian of h(), evaluated at the current state.
Qk is the process noise covariance matrix.
Rk is the measurement noise covariance matrix.
Kk is the Kalman gain.
yk is the innovation (measurement residual).
Sk is the innovation covariance.
Pk is the state covariance matrix.

State Vector (EKF) with Definitions: The state vector in EKF represents the
estimated state of the system, including both position and velocity components in 3D
space.

xEKF,T
k =

(
x y z vx vy vz

)
(22)

The control input vector, observation vector, and observation matrix have the same
structure and definitions from the KF and are omitted here (please see above for
reference).

Prediction and Update Equations for EKF: The EKF prediction and update
equations are designed to estimate the state of the system at the next time step, taking
into account the non-linear dynamics.

5

Prediction (EKF): In the prediction phase, the EKF estimates the state of the
system at the next time step. This involves using a non-linear function f() to predict
the next state based on the current state and control inputs.

x̂EKF
k+1|k = f(x̂EKF

k|k ,uk) (23)

The uncertainty associated with the state prediction is also updated. This is done
by applying the Jacobian of the system dynamics function (Fk) to the current state
covariance, along with adding process noise (Qk).

PEKF
k+1|k = FkP

EKF
k|k FT

k +Qk (24)

Update (EKF): In the update phase, the EKF refines its prediction based on new
sensor measurements. The difference between the actual measurements and what the
model predicted is calculated, known as the innovation.

yk+1 = zk+1 − h(x̂EKF
k+1|k) (25)

The innovation covariance (Sk+1) is then calculated, which measures the confidence
in the predicted state.

Sk+1 = Hk+1P
EKF
k+1|kH

T
k+1 +Rk+1 (26)

The Kalman gain (Kk+1), which determines how much to adjust the prediction
based on the new measurement, is computed next.

Kk+1 = PEKF
k+1|kH

T
k+1S

−1
k+1 (27)

The state estimate is updated using this Kalman gain, applying it to the innovation.

x̂EKF
k+1|k+1 = x̂EKF

k+1|k +Kk+1yk+1 (28)

Finally, the state covariance matrix is updated, which reflects the new level of
confidence in the state estimate after considering the latest measurement.

PEKF
k+1|k+1 = (I −Kk+1Hk+1)P

EKF
k+1|k (29)

Unscented Kalman Filter (UKF)

Overview: The Unscented Kalman Filter (UKF) is an advanced form of the Kalman
Filter designed to handle non-linear system dynamics more effectively. Unlike the EKF,

6

which linearizes non-linear functions through Jacobians, the UKF employs a deter-
ministic sampling technique called Sigma Points. These points capture the mean and
covariance of the state estimate and are propagated through the non-linear system,
offering a more accurate representation of the state distribution. The UKF is par-
ticularly advantageous in systems where the non-linearity is severe or complex, and
linearization methods like those used in the EKF might lead to significant estimation
errors.
EKF to UKF Transition:

The Unscented Kalman Filter (UKF) inherits the initial state xinitial and covariance
matrix Pinitial from the KF or EKF (described using EKF variables below).

xUKF, initial = xEKF, final, PUKF, initial = PEKF, final (30)

Here, xEKF, final and PEKF, final are the final state and covariance matrix from the
EKF, which serve as the initial conditions for the UKF. These initial conditions are
then used to generate the Sigma Points Xinitial and proceed with the UKF’s predict-
update cycle.

The Sigma Points are especially beneficial for capturing higher-order system non-
linearity without requiring explicit differentiation of the system equations, which is
one of the main distinctions and advantages of UKF over EKF.
UKF Variables and Functions:

• Xk|k−1: Set of Sigma Points at time k based on previous state k − 1.
• X ′

k|k−1: Predicted Sigma Points at time k after applying the process model.

• Yk: Predicted measurements corresponding to X ′
k|k−1.

• x̂k|k−1: Predicted state vector at time k based on Sigma Points.
• ŷk: Predicted measurement at time k based on Sigma Points.
• Pk|k−1: Predicted error covariance matrix at time k.
• Pyy: Covariance of predicted measurements.
• Pxy: Cross-covariance between state and measurements.
• Kk: Kalman Gain at time k.
• Wm: Weights for computing the mean.
• Wc: Weights for computing the covariance.
• uk: Control input vector at time k.
• zk: Actual measurement at time k.
• Qk: Process noise covariance matrix at time k.
• Rk: Measurement noise covariance matrix at time k.
• λ: Scaling parameter for Sigma Point generation.
• f(·): Non-linear state transition function.
• h(·): Non-linear measurement function.
• GenerateSigmaPoints(·): Function to generate Sigma Points.
• WeightedMean(·): Function to compute weighted mean.
• WeightedCovariance(·): Function to compute weighted covariance.

UKF Function Descriptions:

• GenerateSigmaPoints(x,P, λ): This function generates the Sigma Points X
around the state x with covariance P and scaling parameter λ.

X0 = x, Xi = x+ (
√

(n+ λ)P)i, Xi+n = x− (
√

(n+ λ)P)i (31)

7

where i = 1, 2, ..., n and n is the dimension of the state vector. The matrix square
root is typically computed using the Cholesky decomposition.

• WeightedMean(X ,Wm): Calculates the weighted mean of the Sigma Points
X using weights Wm.

x̂ =

2n∑
i=0

Wm,iXi (32)

• WeightedCovariance(X , x̂,Wc): Computes the weighted covariance of the
Sigma Points X relative to the weighted mean x̂ with weights Wc.

P =

2n∑
i=0

Wc,i(Xi − x̂)(Xi − x̂)T (33)

These UKF functions are vital for capturing the non-linear dynamics of the system
and sensor measurements. The generation and manipulation of Sigma Points through
these functions enable the UKF to approximate the state distribution more accurately
than the EKF, especially in systems with significant non-linearities.
UKF Sigma Point Generation Sigma Points are generated to capture the mean
and covariance of the state estimate. This step is crucial for the UKF’s ability to
approximate non-linear transformations of the state.

Xk|k−1 = GenerateSigmaPoints(x̂k−1|k−1,Pk−1|k−1, λ) (34)

UKF Prediction Step: Each Sigma Point is propagated through the non-linear state
transition function to predict the next state.

X ′
k|k−1 = f(Xk|k−1,uk) (35)

The predicted state is then obtained by calculating the weighted mean of the trans-
formed Sigma Points.

x̂k|k−1 = WeightedMean(X ′
k|k−1,Wm) (36)

The predicted error covariance is calculated by the weighted covariance of the Sigma
Points, adding the process noise.

Pk|k−1 = WeightedCovariance(X ′
k|k−1, x̂k|k−1,Wc) +Qk (37)

UKF Update Step: Sigma Points are transformed through the measurement func-
tion to predict the observation.

Yk = h(X ′
k|k−1) (38)

The predicted measurement is the weighted mean of these transformed points.

ŷk = WeightedMean(Yk,Wm) (39)

8

The covariance of the predicted measurement is computed, adding the measurement
noise.

Pyy = WeightedCovariance(Yk, ŷk,Wc) +Rk (40)

The cross-covariance between the state and the measurements is also computed.

Pxy = WeightedCovariance(X ′
k|k−1, x̂k|k−1,Yk, ŷk,Wc) (41)

The Kalman Gain, which determines how much the predictions should be adjusted
based on the new measurements, is then calculated.

Kk = PxyP
−1
yy (42)

The state estimate is updated using the Kalman Gain and the difference between the
actual and predicted measurements.

x̂k|k = x̂k|k−1 +Kk(zk − ŷk) (43)

Finally, the error covariance matrix is updated.

Pk|k = Pk|k−1 −KkPyyK
T
k (44)

Transition from UKF to EKF/KF and EKF to KF

• State and Covariance Transfer: The final state (xUKF, final) and covariance matrix
(PUKF, final) from UKF are used as initial conditions for transitioning to EKF
or KF. Similarly, the EKF’s final state and covariance can be used as initial
conditions for KF.

• Decision Criteria: Transition based on system dynamics becoming more linear,
computational efficiency considerations, or improved sensor accuracy.

• Resetting Filters: Resuming EKF or KF with transferred state and covariance,
adjusting necessary parameters.

Appendix B. Decision Tree and Graph

9

Algorithm 1 Decision Trees for Sensor and Filter Activation

1: procedure SensorActivationDecisionTree(scenario, awareness scores, cur-
rent power, current cpu, distance from X)

2: Initialize all component activations to 0
3: camera active, imu active = 1, 1 ▷ Always ON
4: if scenario == ’non critical’ then
5: if dist[’goal’] > dist thresh[’goal’] then
6: kf active = 1 if awareness scores[′global′] < awareness threshold
7: end if
8: else if scenario == ’moderately critical’ then
9: if dist[’obstacle’] < dist thresh[’obstacle’] then

10: Activate EKF, Ultrasonic, IMU-Mesh based on quality data and current
thresholds

11: end if
12: else if scenario == ’highly critical’ then
13: if dist[’environment’] < dist thresh[’environment’] then
14: Activate IR, UKF, ToF, IMU-Mesh, Ultrasonic
15: Prioritize based on CPU utilization, power usage, and heat generation
16: end if
17: end if
18: Update current power and current cpu dictionaries based on activated compo-

nents
19: Update awareness scores based on activated components and their impact
20: return camera active, imu active, ir active, tof active,
21: kf active, ekf active, ukf active, ultrasonic active, imu mesh active
22: end procedure

Algorithm 2 Convert Decision Tree to Graph

1: procedure DecisionTreeToGraph(DecisionTree)
2: Initialize empty graph G
3: Initialize node queue Q
4: Enqueue root of DecisionTree to Q
5: while Q is not empty do
6: current node = Dequeue Q
7: Add current node to G if not already present
8: for each child of current node in DecisionTree do
9: Add edge from current node to child in G

10: Enqueue child to Q
11: end for
12: end while
13: return G
14: end procedure

10

Appendix C. Neural Network Details

GAT Architecture
The GAT model comprises two Graph Attention layers followed by a linear layer.

The operations performed by each layer are:

First GAT Layer:

h1i = ReLU

 ∑
j∈Neighbors(i)

α
(1)
ij W1xj

 (45)

where h1i is the hidden state of node i after the first GAT layer, α
(1)
ij is the attention

coefficient between nodes i and j for the first GAT layer, W1 is the learnable weight
for the first GAT layer, and xj is the feature vector of node j. Afterward, a ReLU
activation function is applied to h1.

Second GAT Layer:

h2i = ReLU

 ∑
j∈Neighbors(i)

α
(2)
ij W2h1j

 (46)

where h2i is the hidden state of node i after the second GAT layer, α
(2)
ij is the attention

coefficient between nodes i and j for the second GAT layer, W2 is the learnable weight
for the second GAT layer, and h1j is the hidden state of node j after the first GAT
layer. Afterward, a ReLU activation function is applied to h2.

Global Mean Pooling:

g =
1

N

N∑
i=1

h2i (47)

where g is the graph-level feature vector, N is the total number of nodes, and h2i is
the hidden state of node i after the second GAT layer. Next, dropout is applied to the
graph-level features g.

Linear Layer:

o = Wling (48)

where o is the output vector representing class probabilities and Wlin is the learnable
weight for the linear layer.

The GAT model is optimized using the Adam algorithm with a learning rate of
0.001 and a batch size of 32. The loss function employed is the weighted cross-entropy
to handle class imbalance.

11

Matching Network

This section describes the Matching Network model, utilizing the graph embeddings
inherited from the Graph Attention Network (GAT) to perform few-shot learning. The
procedure is mathematically defined as follows:

Functions and Variables

• Create Support Query Sets: Generates a support set and a query set.

support set = {embeddings[: N], labels[: N]} (49)

query set = {embeddings[N : N +M], labels[N : N +M]} (50)

Where N is the size of the support set, and M is the size of the query set.
• Compute Attention Weights: Computes the attention weights.

attention weights =
exp(similarities)∑
exp(similarities)

(51)

Where similarities is the cosine similarity between query and support embed-
dings.

• Predict with Attention: Predicts the labels of the query set.

weighted sum = attention weights× support labels (52)

predicted labels =

{
1 if weighted sum > 0.5

0 otherwise
(53)

Procedure

(1) The support and query sets are extracted via GAT graph embeddings.
(2) Cosine similarities are computed between embeddings in the query/support set.
(3) The attention weights are calculated via softmax function on the similarities.
(4) The weighted sum of the support labels is computed using the attention weights.
(5) A threshold of 0.5 is applied to predict binary labels for the query set.
(6) The mean accuracy of the predicted labels is calculated for evaluation.

Siamese Network

The section describes the training details for the Siamese Network. The Siamese Net-
work aims to minimize the distance between similar items and maximize the distance
between dissimilar items in the embedded space. The forward pass is given by:

Forward Pass: z1, z2 = fθ(x1), fθ(x2) (54)

Where fθ is the network with param θ, x1, x2 are inputs, and z1, z2 are embeddings.

12

Contrastive Loss

The Contrastive Loss function is defined as:

L(y, z1, z2) = (1− y)× ||z1 − z2||2 + y ×max(0,m− ||z1 − z2||)2 (55)

Where y is the label (1:similar, 0:dissimilar), z1, z2 are embeddings, and m is margin.

Triplet Loss Function

The Triplet Loss function aims to ensure that an anchor point A in the feature space
is closer to a positive point P than to a negative point N by a margin α. The loss is:

TripletLoss(A,P,N) = max
(
∥f(A)− f(P)∥22 − ∥f(A)− f(N)∥22 + α, 0

)
(56)

Where f(x) is the feature transformation (or embedding) of x, ∥·∥2 is the L2 norm, A
is the anchor point, P is the positive point, and N is the negative point.

K-Fold Cross-Validation

K-Fold Cross-Validation is used for model performance assessment. The data is divided
into k subsets, and the model is trained on k−1 subsets and validated on the remainder.

Average accuracy and F1 Score are calculated as follows:

Average Accuracy =
1

k

k∑
i=1

Accuracyi (57)

Average F1 Score =
1

k

k∑
i=1

F1 Scorei (58)

13

