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Minimum Initial Marking Estimation of Labeled Petri Nets based on 

GRASP inspired method (GMIM) 

 

ABSTRACT: This paper deals with the problem of estimating the Minimum 

Initial Marking (MIM) of Labeled Petri Nets (L-PN). By the observation of a 

sequence of labels, we determine the set of possible MIMs related to a given L-

PN through an approach based on GRASP (Greedy Randomized Adaptive Search 

Procedure) inspired method – GMIM. The objective is to get the maximum of 

feasible MIMs by exploring the search space and giving best solutions for real 

time cyber systems in short time. We consider four basic assumptions during the 

reasoning: (i) the L-PN structure is known; (ii) for each transition of L-PN, a 

label is associated, (iii) the label sequence is known, and (iv) all transitions of L-

PN are observable. We show the validity and efficiency of our approach by 

applying the proposed GMIM metaheuristic to two validation examples: 

Initialization of two parallel machines (example widely cited in literature) and 

resources allocation in a monitoring problem via mobile robot network. 

Keywords: Labeled Petri Nets, Minimum Initial Marking, Estimation, GRASP 

inspired method (GMIM). 

1 Introduction 

Fast estimating and system state prediction are indispensable in a rapidly changing 

environment characterized by an economic context unstable with hard competition. The 

resource allocation problem is among the top challenging problem in project 

management. In the literature, many approaches are proposed to resolve such problem. 

Among them, divers methods and methodologies based on the Minimum Initial 

Marking (MIM) Estimation in Labeled Petri Net (L-PN) [1,2,3,4]. 

In [8], marking estimation problem of L-PN under a label sequence observation 

constraint is developed. Authors of this work prove that the determination of the 

feasible markings set is possible under some conditions on the L-PN structure when the 

size of the linear system does not depend on the size of the observed label sequence. 

Basile et al. propose an algorithm for estimating the marking of a Timed Petri Net (T-

PN) with unobservable transitions [5]. In this work, due to the "modified state class 



graph" (MSCG), the behavior and possible evolutions of the examined system can be 

obtained. In the same context, Abdellatif et al. [9] develop a technique for estimating 

the MIM of a real-time system under partial observation modeled by a P-Time labeled 

PN. Li et al., in [10], estimated via a labeled Petri net the least-cost planning sequences 

of a manufacturing system. The evolution of possible marking(s) is determined through 

the observation of labels sequences. Indeed, the marking evolution is obtained by 

following the low cost Transition Firing Sequence(s) (TFS).  

The work, in [11], develops a recursive algorithm able to find the MIM in L-PN. 

Authors propose also two heuristics to obtain an approximated subset of MIMs. The 

disadvantage of this approach is that the execution of the algorithm takes a long time. In 

order to reduce complexity and give a better solution in less running time, other 

published researches, with the same problem such [12], [13], have proposed solutions 

based on heuristics and metaheuristics. In fact, the problem of running time was solved 

with genetic algorithm metaheuristic to compute the MIMs in short time [13]. However, 

there are different limitations to these approaches, among them, producing much 

smaller solutions against exact methods. 

The presented work is motivated by real time problems dealing with control, monitoring 

and minimum resource allocation in complex and cyber systems. In fact, we search to 

determine the better solution in less running time. The principal aim of this paper is to 

propose a new perspective in the field of estimating the initial marking (considered 

unknown) of L-PN. Compared to the state of the art, the proposed approach in this work 

is based on the GMIM method inspired from the multi-start metaheuristic GRASP used 

generally for combinatorial problems [14]. 

The following four basic assumptions will be considered during the reasoning: 

(i) The PN structure is known; 

(ii) For each transition of L-PN, a label is associated; 

(iii) The label sequence is known; 

(iv) All transitions of L-PN are observable. 

In the next section, backgrounds on PN and L-PN notations will be presented. Section 3 

provides the definition of the considered problem. The GMIM method proposed for 

obtaining the MIM(s) is presented in section 4. In section 5, a validation will be 

achieved through two problems.   



2 Backgrounds on Labeled Petri Net 

A. Petri Net Notation 

In this section, we assume that readers know the Petri Nets. We will present only basic 

notions that will be used all over this paper. Further details on PNs are available in 

[15],[16]. 

The PN is a structure formed by Place/Transition (P/T net) and arcs, such as PN= 

(P,T,Pre,Post); where: 

P is a set of m places; T is a set of n transitions. 

𝑃𝑜𝑠𝑡: 𝑃 𝑇 → ℕ and 𝑃𝑟𝑒: 𝑃 𝑇 → ℕ are respectively the Post and Pre incidence 

functions that specify the arcs; C=Post−Pre is the incidence matrix. The postset and 

preset of a node 𝑋 ∈ 𝑃 ∪ 𝑇 are denoted ∘X and X∘. A marking is a vector 𝑀: 𝑃 → ℕ  

that assigns to each place pi of PN an integer positive number M(pi) (number of tokens 

on the place pi).  

A net system designated by 〈𝑃𝑁; 𝑀 〉 is a PN with an initial marking 𝑀 . A transition t 

is enabled by a marking M, iff 𝑀 𝑃𝑟𝑒 : , 𝑡 . When transition t is enabled at M, it may 

fire and producing the marking 𝑀’  𝑀  𝐶 : , 𝑡 .  

Let σ t t … t  t ∈ T, i ∈ 1,2, … , h , j ∈ 1,2, … , k  be a transition firing 

sequence; for example, t  is the second transition of the ith σ. A marking M is reachable 

in 〈N; M 〉 iff there exists a firing sequence σ  such that 𝑀 σ ⟩𝑀. The set of all 

sequences that are enabled at the initial marking 𝑀  is denoted L(N, 𝑀 ); i.e., L(N, 

𝑀 )={ σ∈𝑇∗|𝑀 [σi〉}, with 𝑇∗ the set of feasible firing sequence. We use 

0 ⃗(respectively, 1 ⃗) to denote the n×1 vector of all zeros (respectively, ones). The set of 

all markings reachable from 𝑀  defines the reachability set of 〈𝑁; 𝑀 〉 and is denoted 

𝑅 𝑁, 𝑀 .  

Let y be the firing vector that corresponds to 𝜎 and 𝑦 𝑡  is the total number of 

occurrences of transition t in σ. For a TFS that contains a single transition t, we use 𝑡̅ to 

denote its firing vector (i.e. 𝑡̅ is a unit vector). 

B. Labeled Petri Net 

A Labeled Petri Nets (L-PN) is a t-uple 〈𝑃𝑁; 𝑀 ; ℒℳ〉; where: 

〈𝑃𝑁; 𝑀 〉 is a PN with an initial marking 𝑀 , 



ℒℳ is the labels mapping. 

A labels mapping ℒℳ is associated with all transitions of the PN: 

ℒℳ: 𝑇 → Ω 

With, 𝛺 is a finite alphabet, and all transitions labels can be detected by an external 

observer. In this paper, the set of transitions is partitioned into two subsets. The first 

subset is called distinguishable transitions and denoted 𝑇 ; 𝑇  includes all transitions 

of the L-PN where the assigned label is not shared with at least one of the others 

transitions. The second subset is called indistinguishable; the subset is denoted 𝑇  and 

contains each transition sharing the same label 𝜁 ∈ 𝛺 with several transitions of the L-

PN. Two transitions 𝑡 , 𝑡  with 𝑡 𝑡  will be denoted 𝑡 , ∈ 𝑇  if: 

Lℳ 𝑡𝑥 Lℳ 𝑡𝑧 ζ. So, 𝑇 𝑇 ∪ 𝑇   and 𝑇 ∩ 𝑇 ∅. 

The extension of the label mapping can be realized over sequences, Lℳ: 𝑇∗ → Ω∗, 

recursively as follows: 

1. Lℳ 𝑡 𝜁 ∈ Ω if𝑡 ∈ T,  

2. Let σ ∈ 𝑇∗ and 𝑡 ∈ T then Lℳ 𝜎𝑡  Lℳ 𝜎 Lℳ 𝑡 ,  

3. Lℳ(λ)=ε where λ is the empty sequence and ε is the empty word.  

4. L= Lℳ 𝑡 Lℳ 𝑡 …Lℳ 𝑡  (where, 𝑡  , 𝑡 , … 𝑡 ∈  𝑇) an observed label 
sequence that can give us a finite number of TFS,  

3 Problem formulation 

The considered problem is a L-PN with unknown initial marking and an observed label 

sequence L. The observed label sequence L may generate a finite set of transition firing 

sequence, where 𝜎 𝑡 𝑡 . . . 𝑡  (where, Lℳ 𝑡 𝑙  ∈ ℒ and j is the index of the jth 

transition of 𝜎 ). The objective is to find the set of minimum initial marking(s) that: (i) 

enable the firing of at least one sequence of transitions that is coherent with both 𝛺 and 

the L-PN structure, and (ii) is (are) minimum (i.e., the marking(s) has (have) the lowest 

cumulative number of tokens). It is possible to find more than one MIM for the same 

given observation. 

Example: 

Consider the L-PN represented in figure 1 with a unit weight in all arcs, such that 

𝑝 , 𝑝 , 𝑝 , 𝑝 , 𝑝  is the places set and 𝑡 , 𝑡 , 𝑡 , 𝑡  is the transitions set. A labeling 

function is defined such that Lℳ 𝑡1 Lℳ 𝑡3 𝑎, Lℳ 𝑡2 𝑏, Lℳ 𝑡4 𝑐. 



 𝑡  and 𝑡  are indistinguishable transitions; 𝑡  and 𝑡  are distinguishable transitions. 

 

Figure 1: Simple L-PN used to demonstrate basic concepts 

Given the following label sequence L=abac. The determination of MIM(s) is done 

through the enumeration of all TFS which is demonstrated in figure 2. According to this 

sequence, there are four possible TFS: 𝑡 𝑡 𝑡 𝑡 ; 𝑡 𝑡 𝑡 𝑡 ; 𝑡 𝑡 𝑡 𝑡 ;  𝑡 𝑡 𝑡 𝑡 . The 

number of TFS is equal to the number of leaves in the tree shown in figure 2. This 

number increases exponentially compared to the size of the label sequence, and we call 

it the solution space (SS). More precisely, the number of TFS is SS = ∏ 𝑇 (where 

𝑇 denotes the transitions set associated with label ζ , and 𝑇  is the cardinality of this 

set); for more detail see [18]. Let’s take the label sequence of the first example L=abac; 

SS=|𝑇 | |𝑇 | |𝑇 | |𝑇 | 2 1 2 1 4. The exponential growth is related to 

labels that have more than one transition associated with them 𝑇 2.  

In this example, it is easily to calculate the initial marking and find its all results with 

respect to L: 00012 ; 00001 ; 11101 ; 11100 . Without difficulty, we can 

notice that the MIM is the following 00001  because it admits the lowest cumulative 

number (=1) of token(s) summed over all places. 

 

Figure 2: Enumeration of all firing sequences 

 



Obviously, the problem is upper bounded by a polynomial function in terms of the total 

number of possible firing vector. In this work, our aim is to propose a novel efficiency 

method reducing the complexity and the state explosion problem.  In the next section, 

the proposed GMIM metaheuristic inspired from the GRASP method will be presented. 

Further details on the principle of GRASP (Greedy Randomized Adaptive Search 

Procedure) method are available in [14]. 

4 GMIM metaheuristic for MIM estimation  

The objective is to have a consistent set of potential solutions (a couple of TFS and 

MIM) respecting the behaviour of real time cyber systems. The proposal of GMIM 

algorithm is based on the knowledge of the problem studied in order to generate and 

ameliorate iteratively the alternative solutions resulting from combinations of existing 

sequences.  

The principle of this method is based on two main functions: the initial marking 

computation (fitness function) and the mutation operator to generating new TFS.   

A. Fitness Function 

In the literature various methods are proposed to compute the initial marking of TFS in 

PN. In the sequel we use the exact method proposed by Giua et al. (in [6] and [7]) to 

compute the MIM for a given TFS. 

We consider this problem as the following triple (R,TFS,MIM); where: 

1. R=(P,T,Pre,Post) is a PN.  

2. TFS: σ 𝑡 𝑡 . . . 𝑡  (where σ ∈ TFS  for i= {1,..., h}and (𝑡 ∈ 𝑇) for j = {1,..., k}).  

3. MIM is the smallest total number of tokens that can have a TFS.  

Inspired from the famous method proposed in [6] and [7] to compute recursively the 

MIM of a PN, Li & Hadjicostisin (in [11]) proposed the following formula to resolve 

the same problem in a L-PN: 

𝑀 𝑚𝑎𝑥 𝑀 𝐶. 𝑦 , 𝑃𝑟𝑒 : , 𝑡 𝐶. 𝑦  (1) 

Where: 

𝑦𝑗 1 is the vector of the first 𝑗 1 elements of 𝜎 , 

𝑀0
1

 is an 0𝑛(i.e., n-dimensional vector of zeros),  

𝑦  is an 0𝑛(i.e., m-dimensional vector of zeros), 



𝑀0
𝑗  is the minimum initial marking estimated before firing 𝑡𝑖𝑗  and, 

𝑀0
𝑗 1 is the initial marking estimated after firing 𝑡𝑖𝑗. 

In the GMIM algorithm, equation (1) will be used as the fitness function to calculate the 

MIM of each generated σ . 

B. Mutation operator  

Considering the L-PN of figure 1 and the following label sequence L=abaca, figure 3 

presents the evolution of the steps performed in one cycle of the mutation function. 

In the beginning, we create a random population (of size ofTFS coherent with L 

and we put them in the first table (in the left of figure 3). The last column calculates the 

MIM  corresponding to 𝜎  by using the equation (1). 

After that, each sequence presented in the left table undergoes a mutation on only one 

random transition by another transition having the same label. Then, we place the new 

firing sequence 𝜎 in the line i of the second table (in the right of the figure) and we 

apply the same equation to compute 𝑀𝐼𝑀 . 

The table of selection step will be completed by (Best {i,i'}, Min{𝑖𝑚 ,𝑖𝑚 }).  

 

Figure 3: Mutation operator and selection of best MIMs 
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evaluation of the marking for initial population (one by one) will be done by performing 

the Equation (1). 𝑖𝑚  is the minimum initial marking of 𝜎 . The solution of the first 

execution of this equation provides only the necessary tokens allowing the firing of TFS 

created in R. 

Algorithm: GRASP Minimum Initial Marking (GMIM) 

Input: A free labeled Petri net PN and an observable label sequence L 𝑙 𝑙 . . . 𝑙 of 

length 𝑞, 

Output: The MIM that has (have) the lowest cumulative number of tokens over all 
places. 

1. Var 𝐼𝑀𝑃𝑅𝑂𝑉𝐸𝑀𝐸𝑁𝑇=TRUE 
2. Var NO 0 
3. MIM = ∞ 
4. V_sol = ∅ 

5. Generate randomly a set ‘𝑅’(of sizeof 𝜎coherent with L 

6. For each transition firing sequence 𝜎 ∈ 𝑅 Do 
7.         Compute 𝑖𝑚using Equation (1) (𝑖𝑚 : initial marking belonging to 𝜎 )  
8. End 
9. While 𝐼𝑀𝑃𝑅𝑂𝑉𝐸𝑀𝐸𝑁𝑇 Do 
10.         For each transition firing sequence 𝜎 ∈ 𝑅 Do 
11.                 Look for any 𝑇 and apply a random mutation for 𝜎:  
12.                 𝜎 → 𝜎  (i.e., 𝜎′ is the new firing sequence after mutation) 
13.                 Compute 𝑖𝑚′using Equation (1) (𝑖𝑚′  : initial marking belonging to 𝜎′ ) 
14.                 If 𝑖𝑚′≥ 𝑖𝑚 Then NO  = NO +1 
15.                 End 
16.         End 
17.         If 𝑁𝑂 |𝑅| 
18.                 𝐼𝑀𝑃𝑅𝑂𝑉𝐸𝑀𝐸𝑁𝑇  FALSE 
19.          End 
20. End 
21. For all marking in 𝑅 
22.         If 𝑖𝑚  MIM 
23.                 V_sol = V_sol ∪ 𝑖𝑚 
24.         Else if   𝑖𝑚  MIM 
25.                 V_sol = ∅ 
26.                 V_sol = MIM = 𝑖𝑚 
27.         End 
28. End 

 

At step 9, a while loop controlled by the variable 𝐼𝑀𝑃𝑅𝑂𝑉𝐸𝑀𝐸𝑁𝑇 is introduced. 

𝐼𝑀𝑃𝑅𝑂𝑉𝐸𝑀𝐸𝑁𝑇 is a Boolean variable initialized at 𝑇𝑅𝑈𝐸 in step 1, it will be set to 



𝐹𝐴𝐿𝑆𝐸 in step 18 when no improvement appears all over the population. The while 

loop continuing, through a randomly mechanism of mutation, running as long as 

𝐼𝑀𝑃𝑅𝑂𝑉𝐸𝑀𝐸𝑁𝑇 is performed. That means, when the current solution 𝑖𝑚  (in terms of 

marking) it become better than the previous one 𝑖𝑚  (i.e., at the current step (say, 𝑖),a 

new marking is obtained with 𝑖𝑚 𝑖𝑚 ; 𝑖𝑚  is stored at the previous step (say, 𝑖 1)). 

At step 10, each individual 𝜎  undergo a mutation operation performed to 

indistinguishable transition (i.e. we look for label that have more than associated with it, 

and then we do a random permutation between transitions). The principle of mutation 

and selection of best solution (Best {i,i'}, Min{𝑖𝑚 ,𝑖𝑚 }) is described in the previews 

subsection.  

With:  

IMPROVEMENT is a Boolean variable initialized at 𝑇𝑅𝑈𝐸 in step 1. It will be set to 

𝐹𝐴𝐿𝑆𝐸 in step 18 when no improvement accrues all over the population. NOIMP will be 

incremented when no improvement performed to the new firing sequence marking. 

MIM variable is initialized to ∞, and V_sol is empty befor we start looking for MIM. 

4 Validation examples 

The efficiency estimation properties of the proposed GMIM metaheuristic were tested 

on two examples: initialization of two parallel machines and resources allocation in a 

monitoring platform via mobile robot network. The required goal is to affirm the 

performance of the GRASM inspired metaheuristic by referring to the evolutionary 

strategies proposed in [11] (Algorithm Li & Hadjicostis, 2013 and Heuristic A-B Li & 

Hadjicostis, 2013). Simulations were performed on a computer with an Intel Core i7 

processor, 8 GB of RAM, and running under a Windows 10. 

A. Application 1: Initialization of two parallel machines 

The figure 5 represents the L-PN model of two parallel working machines [17, p. 132]. 

All transitions of L-PN are observable. We maintain the same label sequence of length 

40, generated randomly in [11], L=eeffababcddcbabbccaaddgghhdcbaabcdabcdha. 

Then, the aim is to estimate the set of minimum initial marking using GMIM and 

making a comparison with the results of generated solutions provided by the proposed 

methods of (Li & Hadjicostis, 2013)  in [11].  



 

Figure 5: L-PN Model of two parallel working machines  

The execution of GMIM is performed with a simulation strategy based on the increment 

of the size  of the initial set 𝑅  of TFS(generated randomly). In fact, the first 

simulation begins with 10 initial marking with respect to L, (i.e., =10). In the second 

simulation, we increase to 20 (i.e., =20); the set of new initial marking R2 is 

generated independently of R1.We continue to increase i until the number of MIM will 

be remarkably stable. For each level (i.e., i) we accrue twenty simultaneous 

executions, each one with new randomly input sequences. The simulation results are 

given by Table 1 and Figure 6. 

Table 1: Comparative table 

 R_size N_ DMIM N_MIME N_MIM Time 

Algorithm of  

Li & Hadjicostis 
- 5 12679 276 149(s) 

Heuristic A-B of  

Li & Hadjicostis 
- 3 5760 106 110(s) 

GMIM Algorithm 

50 2.1 50 4.8 0.25(s) 

100 3.5 100 16.5 0.6(s) 

150 4.6 150 32.9 1(s) 

200 4.8 200 53.9 1.5(s) 

250 5 250 81.5 2.24(s) 

500 5 500 236.7 6.5(s) 

1000 5 1000 684.8 15.82(s) 

2000 5 2000 1579.4 47.8(s) 
 

 “R_Size” is the size of randomly generated sequences set,  

 “N_ DMIM” is the average of the number of different output sequences of MIMs 

at each R_Size level after 20 simulations. For example, for R_Size=100, we 



obtained as solutions: 4 sub-results with 5 possible sequences of MIMs, 7 sub-

results with 4 possible sequences of MIMs, 6 sub-results with 3 possible 

sequences of MIMs, 2 sub-results with 2 possible sequences of MIMs, and one 

sub-result with one possible sequence of MIM; so, N_ DMIM is calculated as 

follow:  

𝑁_ 𝐷𝑀𝐼𝑀  3.5 , 

 “N_MIME” is the number of the MIMs estimated after 20 simulations in each 

R_Size, 

 “N_MIM” is the average of the MIMs obtained after 20 simulations. It is 

computed with same calculation principle of N_ DMIM. 

 “Time” is the running time. 

 

Figure 6: GMIM simulation (application 1) – R_size vs. N_ DMIM  

Before discuss the results of our proposed GMIM metaheuritic, we provide in Figure 7 

all possible MIMs obtained by the Algorithm of Li & Hadjicostis in [11].  

 

Figure 7: All possible MIMs obtained in [11] 



According to results shown in table 1 and figure 6, it is clear that when we increase the 

size of the initial population (R_Size), the effectiveness of the proposed metaheuristic 

becomes more improved in terms of the number of MIMs solutions. Indeed, moving 

from the first simulation (R_size=50) to the simulation with R_size=250 a concrete 

improvement is shown. In fact, the N_ DMIM and N_MIM increase, respectively, from 

2.1 to 5 and from 4.8 to 81.5. Despite that, we can remark that the running time (Time 

=2.24 s) is always applicable for real time systems. In figure 6, from the simulation with 

R_size=250 to the one with R_size=2000, we observe easily that there is a stability In 

terms of the number of N_ DMIM(=5); i.e., the N_ DMIM provided by the Algorithm of 

Li& Hadjicostis [11]. Also, the efficiency of our GMIM metaheuristic appears in the 

higher number of possible estimated MIM; it was increased to provide more possible 

MIM solutions than the proposed Heuristic A-B and Algorithm of Li & Hadjicostis [11]. 

In terms of fast estimation, it is clear that running time increases when we amplify the 

size of R. despite that, the running time in all simulations remains so much lower than 

that of Algorithm and Heuristic of Li & Hadjicostis [11] (respectively, 149 s and 110 s). 

The major advantage of our approach is that even with a small size of initial number of 

sequences, we can obtain the 5 different MIMs solutions provided in figure 7. For 

example, four sub-results with five possible sequences of MIMs were obtained for 

R_Size=100 after 20 simulations (i.e., in 20% of all simulations with R_Size=100). 

A. Application 2: problem of monitoring by mobile robot network 

A complex system application is required to prove the performance of the proposed 

metaheuristic. In this section, we propose to resolve a surface monitoring problem based 

on mobile robot network.  

Let a surface divided on finite number n of sub-surfaces. For each sub-surface, a 

physical parameter 𝛷  should be monitored; 𝛷: 𝛷 , 𝛷 , … , 𝛷  is a set of finite 

alphabet, when 𝛷  is the alphabet affected to jth parameter of the set 𝛷. Each mobile 

robot have the ability to move in its environment with not attachment to a physical 

location. 

The goal is to know the minimum number of mobile robots as well as their ideal 

location at t=0; to ensure the monitoring of the total surface with respect to a label 

sequence L. 



As application, we consider a square divided on 9 sub-surfaces (figure 8). Each sub- 

square is characterized by one parameter belonging to 𝛷, where 𝛷: 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 . 

The aim of this application example is to monitoring the square surface, via mobile 

robot network, according to a global constraint presented by the label sequence 

L 𝑓𝑏𝑒𝑏𝑎𝑒𝑑𝑓𝑐𝑏𝑑𝑏𝑐𝑏𝑎𝑏𝑐𝑏𝑐𝑑, of size 20 (SS ≃ 1,347 10  possible solutions). 

The following assumption is considered for this example: 

A robot can supervise all parameters, and must always be in monitoring state. I.e., a 

robot can only move from a sub-surface to another having direct borders with it. For 

example: a robot in S1 can move only to S2 and S4; a robot in S5 can move only to S2, S4 , 

S6 and S8. 

 
Figure 8: Surface to be monitored   

 

Figure 9: Surface S modeled with L-PN 

The Labeled Petri Net of figure 9 represents the modeling of our structure with respect 

to all constraints already mentioned. 



The objective is to minimize the number of robots (tokens) in the initial state as well as 

their positions (places). We execute the GMIM metaheuristic with the same simulation 

strategy described in the first application. Indeed, we begin the first simulation with 100 

initial marking with respect to L, (i.e., =100). We continue the increase (with a 

i=100) until the number of MIM will be stable. For each i we accumulate 20 

successive executions with new randomly input sequences. 

The simulation results are presented in the table2 and figure 10.  

Table 2: Comparative table 

 R_size N_ DMIM N_MIME N_MIM Time 

Algorithm of  

Li & Hadjicostis 
- - - - - 

Heuristic A-B of  

Li & Hadjicostis 
- 8 28622 875 382(min) 

GMIM Algorithm 

100 3.4 100 4.8 0.43(s) 

200 8.7 200 34 1.7(s) 

300 10.7 300 68.4 2.8(s) 

400 12.6 400 145.8 4.6(s) 

600 13.9 600 286 7.5(s) 

800 14 800 493.4 12.3(s) 

1000 14 1000 600.8 20.1(s) 

1500 14 1500 1107.3 41(s) 

2000 14 2000 1470.7 55.9(s) 

4000 14 4000 3200 2.34(min)

 
Figure 10: Figure 6: GMIM simulation (application 1) – R_size vs. N_ DMIM  

We note that we can’t reach a final result by running the Algorithm of Li & Hadjicostis 

with a simple computer. On the other hand, the running time to simulate Heuristic A-B 



of Li & Hadjicostis takes more than 6 hours to provide frustrating results (only 8 

estimated MIMs). 

Figure 11 presents the set of all possible MIMs obtained science the simulation with 

=800. In fact, the optimal number of mobile robots needed to monitoring this surface 

is 7 (= tokens in one MIM) with 14 possibilities of emplacement in the initial sate. 

 
Figure 11: All possible MIMs obtained with application of GMIM 

In fact, it is clear to interpret, from the table 2, the major advantage of our metaheuristic 

in terms of running time. By applying GMIM with initial population of 200 TFS the 

running time represents only 0,0074% compared to the running time of the Heuristic A-

B of Li & Hadjicostis. 

7 Conclusion 

In this paper, a GMIM metaheuristic was developed for MIM estimation in L-PN. The 

proposed approach is inspired on the principle of the GRASP multi-start metaheuristic.  

Parting from an initial phase based on the creation of a randomly feasible TFS 

respecting a given label sequence, an algorithm with two principal functions (mutation 

and fitness) is implemented until a local minimum solutions will be found during a local 

search phase. The complexity of GMIM depends on the L-PN model structure. 

The proposed GMIM metaheuristic was applied on two problems: Initialization of two 

parallel machines and resources allocation in a monitoring mobile robots platform. With 



comparison to the state-of-the-art approaches, the simulation results show major 

improvement of our proposed GMIM metaheuristic mainly in faster running time. 
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