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Starting with my acquaintance with W. Ross Ashby, this paper offers an account of one 

aspect of his work, information theory.  It shows his motivation to embrace information 

theory, how he extended it, where it failed while fertilizing reconstructability analysis, and 

what it took for a solution to emerge. Based on Ashby‘s recognition of the material limits of 

computation, the paper continues his concern for transcomputational phenomena and 

proposes a paradigm shift to cope with what probably is one of the most complex system we 

face today, cyberspace. Replacing the epistemological stance of discovery with that of design, 

the paper discusses how the enormous information quantities of cyberspace implicate human 

agency, a concept necessary to explain the ecology of electronic artifacts that populate 

cyberspace. It suggests a new direction for constructing theories of complex systems 

involving their human constituents not recognized by Ashby but derivable from his ideas. 
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1. Personal preliminaries 

In 1959, I spent a summer in Oxford England to learn English.  I was then a student at the 

legendary Hochschule für Gestaltung in Ulm, now closed which is typical of avant-garde 

institutions.  There, we heard about cybernetics, information theory, and other exciting intellectual 

developments.  Norbert Wiener had visited the Ulm school before my time.  At the famous Oxford 

bookstore Blackwell I bought two books, W. Ross Ashby‘s (1956) An Introduction to Cybernetics 

and Ludwig Wittgenstein‘s (1922) Tractatus Logicus Philosophicus.  I can‘t say I fully understood 

either of them at that time and I had no idea that both authors would have a profound effect on my 

academic future. 

Three years later I visited the University of Illinois in Urbana in search of a university to 

study.  I met Heinz von Foerster at his Biological Computer Laboratory.  He mentioned that Ross 

Ashby was teaching a course on cybernetics.  I had no idea that Ashby was in Urbana and the 

prospect of studying with him was decisive in becoming a student at U of I. I enrolled in Ashby‘s 

two-semester course in 1962-1963.  He became an important member on my dissertation 

committee.  The dissertation reconceptualized content analysis but in one chapter, I developed an 

information calculus for what may and what cannot be inferred by this methodology (Krippendorff, 

1967). 

Part of Ashby‘s Introduction to Cybernetics concerned variety and constraints in systems. 

Shannon‘s (Shannon and Weaver, 1949) entropy measures did not play an important role in this 

introduction except in arguing for his famous Law of Requisite Variety (1956:206-218).  This law 
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concerns the limit of successful regulation.  It states that disturbances D that affect the essential 

variables E of a system, which are to remain within limits of a system‘s viability, may be 

counteracted by a regulator R provided the variety R has at its disposal equals or exceeds the variety 

in the disturbances D.  In short, only variety can restrain variety.  He discussed two kinds of 

regulation, when regulators pick up the disturbances before they affect the essential variables, 

anticipatory regulation, and when regulators pick up the effects of the disturbances on the essential 

variables, error-controlled regulation, which involved a feedback loop.  Figure 1 shows these two 

kinds, T denoting what he called ―table,‖ a variable that responds to two effects, the solid lines 

representing the variety of disturbances and the variety that a perfect regulator would require. 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

                           Ashby‘s Regulators R and Two Versions of the Law of Requisite Variety 

                                                                             Figure 1 

Shannon‘s theorem states that communication through a channel that is corrupted by noise 

may be restored by adding a correction channel with a capacity equal to or larger than the noise 

corrupting that channel.  This may be seen in Figure 2, with solid lines representing the amount of 

noise that enters a communication channel, reduces what the receiver gets from the sender, and the 

required capacity of the correction channel R.  This is how far the Introduction to Cybernetics went. 

Today, Shannon‘s 10
th

 Theorem is considered a special case of Ashby‘s Law of Requisite Variety.   
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                                      Noisy Communication Channel and Correction Channel R 

                                                                          Figure 2 

 

2. Ashby’s information theory 

By the time I became his student, Ashby had developed many interpretations of his Law of 

Requisite Variety, including that the human ability to understand systems is limited by the variety 

available to the cybernetician‘s brain relative to the complexity of the system being experimented 

with.  Although the concept of second-order cybernetics (Foerster, et al. 1974; Foerster, 1979) was 

not known at this time, Ashby always included himself as experimenter or designer of systems he 

was investigating as observer.  

It is important to stress that Ashby defined a system not as something that exists in nature, 

which underlies Bertalanffy‘s (1968) General Systems Theory and fuelled much of the general 

systems movement. He did not distinguish systems from their environment and generalize what 

makes such systems viable. Ashby always insisted that anything can afford multiple descriptions 

and what we know of a system always is what he called an ―observer‘s digest.‖  For him a system 

consisted first of all of a set of variables chosen for attention and second of relationships between 

these variables, established by observation, experimentation, or design.  He built many mechanical 

devices and then explored their properties.  One was a black box – Heinz von Foerster later called it 

the ―Ashby Box‖ – which had two switches and two lights, each either on or off.  He asked his 

students of a preceding cohort to figure out its input-output relationships.  This must have been a 

most frustrating assignment because every hypothesis advanced to explain the input-output relations 

seemed to eventually fail in subsequent trials.  It turned out that – while the system was strictly 

determinate – the combinatorial number of possibilities that would have had to be explored far 

exceeded human capabilities.  There was a true answer, but one that could not be found by 

systematic explorations.  Pushing the limits of analyzing complex systems became an important part 

of Ashby‘s work. 

Before fully embracing information theory, Ashby had developed the idea of decomposing 

complex multivariate relations into simpler constituents, using set theory.  This culminated in his 

influential Constraint Analysis of Many-valued Relations (1964).  It defined a process for 

systematically testing whether a seemingly complex constraint (within many variables) could be 

decomposed into several simpler constraints (involving co-occurrences in fewer variables) and be 

recomposed to the original constraint without loss.  Figure 3, taken from Roger Conant‘s (1981a) 

account of constraint analysis, demonstrates in part (a) how the result of a constraint, the relation 

R(123), is projected onto three planes in two variables and what this implies about the whole when 

the missing variable is added.  (b) Shows three aggregations of pairs of two-variable projections, 

and the aggregation of the three one-variable projections, all in three variables.  Visually obvious is 

 Noise 

 T   Sender                                               Receiver   

 
 

 

                   R 
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that R(12)R(13) preserves the original relation, = R(123), whereas R(1)R(2)R(3) fails 

completely and the other two aggregations fail partially, in either cases R(123). This graphical 

illustration suggests that the original relation is not as complex is it may have seemed but not as 

simple to allow the three variables to be regarded as independent. 

R(123)

R(23)

R(13)

R(3)

R(1)R(12)

R(2)

Projections of R(123)

Intersections of Inverse Projections

R(1:2:3)

= R(1:23)

R(13:2)

= R(13:23)

R(12:23)

= R(12:3)
R(12:13) = R(123)

Geometrical Interpretation of the Constraint Analysis of a Three-Variable Relation

Figure 3
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Ashby was attracted to information theory, not only because of his Law of Requisite 

Variety, but also because it promised to generalize his constraint analysis to probabilistic systems 

and finding an elegant algebra of relations.  Shannon‘s theory had distinguished signals from noise 

and patterns from random variation, and raised the hope of separating the defining properties of a 

system from accidental or irrelevant variations – all of which to find hidden simplicities in 

apparently complex systems, a theme that guided much of Ashby‘s work.   

Shannon‘s entropies largely served to quantify communication between a sender and a 

receiver, measured at different points in time.  The entropy H in the sender A, the noise received by 

the receiver B gave rise to the amount of information transmitted T (stated in Ashby‘s terms): 

Entropy in sender A:                      


Aa aa plogp)A(H 2  

Entropy in receiver B:                    


Bb bb plogp)B(H 2  

Joint entropy in the channel AB:    


Aa abBb ab plogp)AB(H 2  

Noise:                                              










Aa Bb
a

ab

a

ab
aA

p

p
log

p

p
p)A(H)AB(H)B(H 2  

Transmission:                                )AB(H)B(H)A(H)B(H)A(H)B:A(T A   

McGill (1954) and Garner‘s (1962) Uncertainty Analysis extended Shannon‘s measures to 

three variables for analyzing psychological data. Entropies:  
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    


Aa Bb Cc abcabc plogp)ABC(H 2  

)A(H)ABC(H)BC(HA   

)AB(H)ABC(H)C(HAB   

Transmissions: 

)AB(H)B(H)A(H)B:A(T CCCC   

)ABC(H)C(H)B(H)A(H)C:B:A(T   

and, last but not least, the amount of interaction involving three variables: 

)C:B(T)C:B(T)C:A(T)C:A(T)B:A(T)B:A(T)ABC(Q ABC  . 

Guided by the idea of his constraint analysis, Ashby saw the possibility of decomposing 

complex unanalyzed systems into its constituent relationships among variables, manifest in non-

zero quantities of the information calculus.  McGill provided him this accounting equation:  

Q(ABC)  C):T(B  C):T(A  B):T(A  C):B:T(A  , 

showing the total amount of transmission within three variables as the algebraic sum of the three 

transmissions between pairs of variables plus the amount of interaction unique to all three.  Ashby 

explained the Q-measure as the amount due to the unique combination of a number of variables, not 

reducible to any of its subset.  To illustrate, he had made and wore a necklace consisting of three 

interlinked chains, schematically shown in Figure 4, which had the property of falling into separate 

chains once any one of them was cut.   

 

 

 

 

 

 

 

 

 

 

 

 

Ashby‘s Chain Necklace 

Figure 4 

Figure 5 shows a three-dimensional table of frequencies whose distribution is typical of a 

non-decomposable interaction between all three variables, which can be seen in the corresponding 

breakdown of the overall transmission measures.  The zero values of the binary transmission 

measures may be seen as justified as the projections of the three-dimensional distribution onto its 

three faces are uniform and exhibit no structure, and the three-dimensional distribution could not 

possibly have been predicted from them.   
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                 0                                           Q(ABC)   =  1.00 

200                                                        T(B:C)     =    .00 

                                    200                    T(A:C)     =    .00 

                      0                                      T(A:B)     =    .00 

               200                                         T(A:B:C) =  1.00 

  0  

   A                                            0 

                     200 

      

Frequency Distribution with Q(ABC) fully accounting for T(A:B:C) 

                                                 Figure 5 
 

The absence of interactions, we uncritically accepted, was indicated by zero values for the 

Q-measures, as exemplified in Figure 6. 

 

                 0                                           Q(ABC)   =    .00 

139                                                        T(B:C)     =    .35 

                                    694                    T(A:C)     =    .35 

                      0                                      T(A:B)     =    .35 

               139                                         T(A:B:C) =  1.05 

555 

                                      0 

                     139 

 

Frequency Distribution with zero Q(ABC) 

Figure 6 
 

As students we computed many of these accounts by hand, using an nlog2n table, which was 

tedious without electronic computers, and we followed Ashby lead to generalize information theory 

to any number of variables, which was easier.  This effort culminated in the publication of two lists 

of some 50 accounting equations (Ashby, 1969), the beginning of an information algebra.  The Q-

measures were Ashby‘s prime candidates.  By extending McGill and Garner‘s Q-terms to fewer and 

more than three variables 

)A(H)A(Q   

)A(H)A(Q BB   

)A(H)A(Q BCBC   

)B:A(T)B(Q)B(Q)A(Q)A(Q)AB(Q AB   

)B:A(T)B(Q)B(Q)A(Q)A(Q)AB(Q CCACCBCC   

)BC(Q)BC(Q)AC(Q)AC(Q)AB(Q)AB(Q)ABC(Q ABC   

)ABC(Q)ABC(Q)ABCD(Q D  = three other expressions by permutation of these variables 

)ABCD(Q)ABCD(Q)ABCDE(Q E  = four other expressions by permutation of these variables 

etc. 

C 
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a general accounting equation emerged (Ashby, 1969:6) by which we assumed able to decompose 

the total amount of transmission in a system of any number of variables into its unique interaction 

quantities Q: 

)AB(Q)B:A(T    by definition 

)ABC(Q)BC(Q)AC(Q)AB(Q)C:B:A(T   

)ABCD(Q)BCD(Q)ACD(Q)ABD(Q)ABC(Q)CD(Q)BD(Q)BC(Q)AD(Q)AC(Q)AB(Q
)D:C:B:A(T


  

etc.  

Stated generally: 

 


S
)(Q)S(T  

where S is the set of variables of a chosen system and  is a subset of S of two or more variables. 

Accounting for the complexity of a system in terms of additive quantities was appealing to 

many researchers (Ashby, 1965, 1970; Broekstra, 1976, 1977, 1979, 1981; Conant, 1973, 1976, 

1980).  I too developed equations and algorithms for simplifying complex systems in these terms 

(Krippendorff, 1974), and aimed at a spectral analysis of multi-valued relations (Krippendorff, 

1976; 1978).  Nevertheless, despite the compelling logic and obvious simplicity of these accounting 

equations, suggesting that Q-measures would quantify higher-order constraints, for example, 

present in the data of Figure 5 and absent in those of Figure 6, there remained something odd: Q 

could be negative, as may be seen in Figures 7 and 8. 

 
                 0                                           Q(ABC)   =  –1.00 

  0                                                          T(B:C)     =    1.00 

                                    400                    T(A:C)     =    1.00 

                       0                                      T(A:B)      =    1.00 

                 0                                           T(A:B:C) =    2.00 

400 

                                      0 

                       0 

 

          Frequency Distribution with negative Q(ABC) 

Figure 7 
 

 

                 69.5                                        Q(ABC)   =  –.25 

  69.5                                                         T(B:C)     =    .35 

                                    624.5                   T(A:C)     =    .35 

                     69.5                                    T(A:B)     =    .35 

               69.5                                         T(A:B:C) =    .80 

624.5 

                                     69.5 

                     69.5 

 

Frequency Distribution with negative Q(ABC)  

Figure 8 
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McGill (1954) had acknowledged this possibility and interpreted any deviation from zero a 

signal that interaction in the data existed. Ashby deferred to his interpretation, and we all continued 

developing this calculus.  The promises of an algebraic account of complexity were too appealing to 

be wrong. 

However, observe in Figure 7 that any two of the three projections onto the faces of the cube 

are sufficient to reconstruct or uniquely determine its three-dimensional distribution. The third 

projection is redundant, implied and not needed to obtain that distribution. If T(A:B:C) = 

T(A:B)+T(A:C), a third-order interaction should be absent by this conception, yet Q(ABC) has a 

value unlike zero. In fact, it seemingly corrects for redundant measures, here of T(B:C).  This 

suggested to me that the Q-measures did not only respond to higher-order interactions but also 

compensated for the over-determination by redundant lower-order interactions.  If true, this finding 

would cast serious doubt on the ability of Q-measures to indicate the presence or absence of higher-

order interactions.  For example, the projections of the distributions in Figures 6 and 8 onto its faces 

are the same, as evident in T(A:B)=T(A:C)=T(B:C)=0.35.  But the distribution in Figure 6 is most 

unlike chance or maximally entropic, satisfying the three two-dimensional distributions and 

therefore suggests the presence of an interaction, stronger than in Figure 8, but not measured by Q.  

We all seemed to follow a convenient logic with questionable interpretations. 

 

3. A gestalt switch 

Meanwhile, George Klir (1976) had picked up on Ashby‘s constraint analysis (Ashby, 

1964).  At the 1978 conference of the Society of General System‘s Research Klir (1978) presented a 

paper of his explorations.  Two seemingly unimportant things struck me.  First, whereas Ashby 

diagrammed systems in terms of his set theoretically motivated ―diagram of immediate effects‖ 

(Ashby,1967) between variables, the variables being represented by boxes and the effects by lines, 

as in Figures 1 and 2, Klir had inversed that convention, putting the effects among variables into 

boxes and showing variables as lines connecting them.  This simple gestalt switch allowed me to 

visualize interactions inside Klir‘s boxes, not in terms of lines connecting variables.  Second, 

whereas Ashby dealt with interactions algebraically, as an unordered list of quantities that summed 

to a total, Klir presented an algorithm for generating a lattice of simplifications of the models of a 

system from the most to the least complex one, covering the same set of variables in each case, 

shown in Figure 9 involving four. 
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Lattice of Simplifications of Models of Systems in Four Variables Without Loops 

Figure 9 

In effect, each of Klir‘s models consisted of several components which (a) were shown as 

linked through the variables they shared, (b) contained all subordinate interactions, and (c) could be 

―degraded‖ into simpler ones by removing the component defining interactions, one by one.  

Although Klir was not concerned with information theory, his lattice visualized the relationships 

between the components of a system and implied an ordering of the interactions to be removed.  

This suggested to me that each simplification could be linked to a specific information quantity.  

Indeed, with variables named A, B, C, and D, the leftmost path of six steps up the lattice in Figure 9 

amounts to this accounting equation: 

)B:A(T)C:A(T)D:B(T)C:B(T)D:A(T)D:C(T)D:C:B:A(T CDDC   

Another path through this lattice would have produced the same six terms save for their order and 

permutations of the variable names.   

But as a cybernetician, I could not help noticing the conspicuous absence of circular relations among 

Klir‘s models.  An examination of these models revealed that whenever an interaction among three or more 

variables was absent or analytically removed – Ashby‘s idea – all lower order interactions formed models with 

loops.  The accounting equations in terms of Q-measures hid these facts.  Figure 10 shows the lattice of all 

possible models involving four variables, half of which happen to be models with loops. 
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Lattice of All Possible of Models of Systems in Four Variables 

Figure 10 
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With such lattices, it became easy to reconceptualize the information quantities of interest, 

not in terms of Q-measures, but in terms of the differences between the quantities of information 

that can be handled by any two models, one being a descendent of the other.  Figure 11 shows a 

schematic lattice and the measures of interest where m0 is the unanalyzed whole system, mind is the 

model of that system with all of its variables regarded as independent, mi is a simplification of m0 

and mj is simplification of mi regardless of the number of steps involved.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generalized Lattice of all Possible Models of a System m0 and 

Information Measures of their Differences (with Interactions Successively Removed) 

Figure 11 

 

Figure 11 also shows how the total amount of information transmitted within a system can 

be algebraically decomposed into quantities along a path of simplifications of models of m0, within 

a lattice of possible models: 




 
1

0 10

indi

i iiindind )mm(I)mm(I)m(T  

This gestalt switch was conceptual and enormously convenient notationally.  But the 

information quantities could be applied only to Klir‘s models without loops. The biggest nut to 

crack was how to cope with systems that did contain loops. 

 

4. Information in circular (causal) systems 

Shannon called his theory A mathematical theory of communication and attended to 

processes that proceeded in one direction only.  A message received had no effect on the message 

sent. Noise that entered a channel could only degrade what was sent. A prior choice limited 

subsequent choices but could not have an effect on itself. This linearity may not have been intended 

mind 

m0 

mi 

mj 
I(m0mind)=T(mind)  

I(m0mi) 

I(mimj) 

I(m0mj) 



 11 

as Shannon constantly struggled with notions of feedback, how a corrupted message could be 

restored, which implied an observer who could refer back to the original. But it was grounded in a 

far more basic adoption: probability theory. That theory axiomatically requires that the probabilities 

in any one set sum to 1, and it combines probabilities from independent sets by multiplication.  

Shannon‘s 2
nd

 theorem (Shannon & Weaver, 1949:19) relied on the logarithm function to 

convert products into sums, and established that the entropy function was the only function that 

afforded the intuition of information being an additive quantity. As it turns out, the algebraically 

obtained Q-measures violate the axiom of probability theory. This may be seen when expressing Q 

in probabilistic terms: 

 


Aa aa )A(Hplogp)A(Q 2  

  


Aa Bb
ba

ab
ab )B:A(T

pp

p
logp)AB(Q 2  

cba

bcacab

abc

Aa Bb Cc abc

ppp

ppp

p
logp)ABC(Q     

 2  

      


Aa Bb Cc Dd

dcba

cdbdbcadacab

bcdacdabdabc

abcd
abcd

pppp

pppppp

pppp

p
logp)ABCD(Q 2  

etc.   

All numerators of these expressions and the denominator in Q(AB)=T(A:B) are probabilities 

proper:  


Aa Bb abp 1 and  


Aa Bb ba pp 1 . But the denominators, starting with Q(ABC), no 

longer qualify as such: 1    Aa Bb Cc
cba

bcacab

ppp

ppp
.  Thus, for three or more variables, Q‘s 

denominators are incompatible with an axiom of probability theory which underlies the 2
nd

 theorem 

of information theory.   

This incompatibility stems from the fact that separating the interactions that Ashby 

conceptualized as being unique to a system creates circularities that defy obtaining their probability 

distributions by multiplication. None of us who applied information theoretical measures to systems 

at this time realized this contradiction, which is all the more surprising as circularity is fundamental 

to much of cybernetics. 

However, the idea of additive quantities that measure the unique contributions of higher-

order interactions in systems (leaving circularities behind) can be retained by calculating the 

maximum entropy probability distribution, subject to the constraints of the probabilities of its 

components – not by multiplication – but by following the circularity iteratively, going around and 

around the circle, through each component, in either direction, until that joint probability is found.  

Solomon Kullback (personal communication) directed my attention to an algorithm developed by 

Darroch and Ratcliff (1972), which I could adapt for this purpose (Krippendorff, 1980a, 1980b).  

Omitting here a generalization of this algorithm to fixed and zero probabilities, which are 

considered elsewhere (Krippendorff, 1986), this algorithm is defined as follows:  
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 Let pabc… be the joint probabilities of variables A, B, C, … of a system m0 chosen 

for analysis  

 Given a model mi of m0 consisting of r components K1: K2: …:Ke: … :Kr (Klir‘s 

boxes), each defined by a subset of the system‘s variables, jointly covering all.  

 Let 
ekp be the probabilities within the e

th
 component Ke of mi obtained by 

summing over all values ee Kk  of variables not in Ke:  


ee
e Kk ...abck pp  

 Set all cells abc…ABC… to 
...ABC

)(
...abc N

10
 , where NABC… is the number of cells 

in ABC… 

            Iterate t = 0, 1, 2, … until )ert(
...abc

)ert(
...abc

1
  for all components Ke. 

  For all components:  Ke,  e = 1, 2, 3, …, r 

For all cells abc…ABC…, compute: 
 









e

e

k

)ert(
...abc

)ert(
...abc

k
)ert(

...abc
p

1

1

 

 

It yields the maximum entropy distribution of probabilities ...abc  (expected by chance) in 

the variables of a system m0, satisfying the constraints of components K1: K2: …:Ke: … 

:Kr of the model mi of m0. In terms of these maximum entropy probabilities the amount of 

information in the original system m0 excluded from mi becomes: 

  


...ABC...abc
...abc

...abc
...abci

p
logp)mm(I 20  

The difference between any two models mi and mj of the system m0, mj being a descendant 

of mi, then becomes: 

 
 





...ABC...abc

)m...(abc)m...(abc

...ABC...abc

)m...(abc)m...(abc

ijijji

jjii
loglog

)m(H)m(H)mm(I)mm(I)mm(I

22

00

 

which associates quantities of information with the expressions in Figure 11. 

Unlike what Q was thought to measure, Figure 8 exemplifies a system without ternary 

interactions, not Figure 5. With the new quantities in place, the correct account of the data in Figure 

5 are shown in Figure 12. Here, it may be observed that the information in the two bivariate 

components AB and AC add to the information in AB:AC, but the third BC (in this case any third 

binary component) adds less to a model consisting of all three bivariate components AB:AC:BC. 

The unique interaction (deviating from the distribution of frequencies in Figure 8) has a positive 

value.  
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                 0                              I(ABCAB:AC:BC)     = 0.25 bits    Q(ABC) = 0.00 

139                                           I(AB:AC:BCAB:AC) = 0.10 bits    T(B:C) = 0.35 

                                    694       I(AB:ACAB:C)          = 0.35 bits  =  T(A:C) 

                       0                         I(AB:CA:B:C)           = 0.35 bits  =  T(A:B)     

               139                            I(ABCA:B:C)            = 1.05 bits  =  T(A:B:C) 

555 

                                      0 

                     139 

 

Correct Accounts of the Interaction Information in Data in Figure 6 

Figure 12 

I presented these developments at the 1980 conference on cybernetics in Vienna 

(Krippendorff, 1980a), once and for all disposing of Q as a viable measure in information theory, 

showing that we all (McGill, 1954; Garner, 1962; Ashby, 1969; Broekstra, 1976, 1977, 1979, 1981; 

Krippendorff, 1974, 1976, 1978, 1979a, 1979b, and others, but not Roger Conant) were wrong in 

assuming we could account for interactions in systems with loops algebraically, when we should 

have followed the circularity in these system iteratively.  Thus, when mi is decomposed into mi+1 by 

removing just one interaction, the unique contribution of that interaction, which Ashby had 

conceptualized, is measurable not by Q but by I(mimi+1), the entropy in mi+1 less in its 

predecessor mi.   

While Q-quantities turned out not to measure interaction information in complex systems as 

assumed by the above mentioned information theorists, the resolution of this negative finding came 

with the discovery that Q(ABC) was the difference between the correct amount of interaction 

information I(ABCAB:AC:BC) and a measure of over-determination or redundancy 

R(AB:AC:BC): 

Q(ABC) = I(ABCAB:AC:BC) – R(AB:AC:BC) 

It shows Q not to be a stand-alone measure of either entropy or information but of the extent 

to which I exceeds R, explaining Q‘s odd behavior, and solving the problem of interpreting Q‘s 

negative values. This relationship gives rise to a more general measure of redundancy: 

R(m1) = I(m0m1) – Q(m0) 

For data in Figures 6 and 12: 

R(AB:AC:BC) = I(ABCAB:AC:BC) – Q(ABC) = 0.25 – 0 = 0.25 bits. 

One may recognize this amount of redundancy in the difference between T(B:C) = 0.35 bits 

and the information lost when BC is removed from the model of the data, I(AB:AC:BCAB:AC)= 

0.10 bits. T quantifies the interaction in BC without reference to its context, I quantifies the same 

interaction but in the context of the interactions in AB and AC that together form a loop and partly 

imply BC.   

The three-dimensional frequency distribution in Figure 7 can be reconstructed from any two 

faces of the data cube, a ternary interaction being absent and one binary interaction being redundant 

and ignorable without loss.  This is reflected in the amount of redundancy, R(AB:AC:BC) = 0 – (–1) 

= 1 bit, which equals the amount of information in any one redundant binary interaction, T(A:B), 

T(A:C), or T(B:C) = 1 bit each. 
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For data in Figure 5, redundancy measures R(AB:AC:BC) = 1 – 1 = 0 bits. Indeed, the 

ternary interaction in this data cube is unique. The three faces of the data cube, AB, AC, and BC tell 

the analyst nothing about the frequency distribution in ABC. It is noteworthy that the absence of 

redundancy is the only condition under which Q(m0) correctly measures the information of an 

interaction, I(m0m1).  

Whenever circularities exist in multi-variate data, Q-measures are confounded by the 

redundancy of their algebraic calculations. It should be noted that R(m1) can be negative, a 

condition that pertains when algebraic accounts of the interactions in a system underdetermine these 

interactions. I am grateful to Loet Leydesdorff (personal communication, 2009.4.17) for providing 

an example of this condition. I am sure Ashby would have been pleased to see this development, 

especially since it proved us all mistaken. 

The above algorithm added a new chapter to Shannon‘s theory: the possibility of measuring 

the information flows in systems with loops, which had heretofore defied adequate accounts and it 

added a meaningful measure of the complexity of systems.  Martin Zwick has put my original 

program calculating I(mimj) for up to ten variables and ten states each and several recent 

developments on his website http://www.pdx.edu/sysc/research-discrete-multivariate-modeling (last 

accessed 2009.4.24). It runs on UNIX and MacOS and probably on other systems as well. 

 

5. Material and informational numbers 

Shannon‘s information theory foremost is a theory of limits. It states limits on how much 

information can be transmitted through a noisy channel of communication, on the enciphering of 

encoded messages without knowledge of the key, and in Ashby‘s terms on the ability to regulate a 

system faced with disturbances.  However, it assumes and takes for granted the existence of 

differences. Gregory Bateson (1972:381) defined information as ―any difference which makes a 

difference in some later event.‖ But differences do not occur in nature. They result from acts of 

drawing distinctions, need to be recognizable as such, and only then can they enter explanations of 

their effects.  Thus, substituting ―difference‖ by ―recognizable change‖ leads one to something that 

responds to that change or to someone who can observes it. Ashby was interested in whether there 

was a limit to that recognition, a limit that cannot be overcome, even with all conceivable 

technological advances.  

It was fortuitous for Ashby to met Hans-Joachim Bremermann at the second conference on 

self-organizing systems. Bremermann (1962) recognized that information transmission or 

information processing systems need to respond to differences, which cannot be arbitrarily small, 

thus entailing a limit, not part of information theory. In terms of Einstein's mass-energy equivalence 

and Heisenberg‘s Uncertainty Principle, he argued that the transmission or processing capacity of 

any circumscribable system, artificial or living, cannot exceed 

mc
2
/n   bits per second, 

where  m = the mass of the system (including its power source)  

 c = the velocity of light 

 n = Plank‘s constant 

By inserting the two constants, Bremermann concluded that  

No material system can exceed a processing capacity of 

approximately 2 x 10
47

 bits per second per gram of its mass. 

To get a sense of this limit, Ashby presented us with several humbling numbers: 

http://www.pdx.edu/sysc/research-discrete-multivariate-modeling
http://en.wikipedia.org/wiki/Albert_Einstein
http://en.wikipedia.org/wiki/Heisenberg_Uncertainty_Principle
http://en.wikipedia.org/wiki/Bits_per_second
http://en.wikipedia.org/wiki/Gram
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Times:  A distinguishable atomic event takes                                                     10
-10

 sec 

One year                                                                                                   10
7
 sec 

Time since the earth solidified                                                                 10
20

 sec 

Mass:  Mass of the Earth                                                                                    610
27

 grams 

Counts: Number of atomic events since the earth solidified                                10
30

    

  Number of atoms in the visible universe                                                 10
73

    

  A computer the size of the entire Earth, operating at 

     Bremermann‘s limit could perform no more than       210
47
610

27
  10

75
 bits/sec 

     or                                                                                      10
75
10

7
  10

82
 bits/year 

Since the earth solidified, that ideal computer  

     could have computed no more than                                   10
20
10

75
  10

95
 bits 

From which he concluded (Ashby, 1968): 

Everything material stops at 10
100

. 

This is a pretty solid limit. But cyberneticians, he argued, are concerned mainly with another 

kind of number. True to his conception of cybernetics as the study of all possible systems that is 

informed (constrained) by what cannot be build or found in nature, he was led to enumerate 

possibilities rather than actual observations and the numbers that emerged may be called 

combinatorial, informational, or transcomputational. For example, 

Possibilities: Number of configurations displayable by an array 

    of 2020=400 light bulbs, which are either on or off            = 2
400

  10
120

 > 10
100

 

Number of non-trivial machines (Foerster, 1984)  

     with only 3 binary inputs and 4 internal states               2
13,297 

  310
4002

 >> 10
100

 

Number of images of a HDTV screen  

    with 19201080 pixels and 32 bits for color              2
2,073,632 

 10
624,000

 >>> 10
100

 

Number of distinctions between good and bad images 

    on that screen             2
1 followed by 624,000 zeros

 >>>> 10
100

 

The enormity of these numbers and the fact that they often appear as exponents of 2 is one 

reason for expressing them in log2 or ―bits‖ rather than in actual counts. Ashby (1968) concluded 

that 

Cyberneticians have to cope with numbers >> 10
100

  

with material resources for computation << 10
100

. 

——— o ——— 

In 1972, I attended a conference on cybernetics in Oxford, England where we learned from 

Gray Walter that Ashby was mortally ill with a brain tumor. Another former Ashby student from 

Switzerland by the name of Burckhardt (regrettably I am not recalling his full name) and I took a 

train to visit him. His wife told us to be brief and not to mention the seriousness of his situation. I 

gave him a copy of my conference paper (Krippendorff, 1974) drawing on his work. He was 

pleased and promised to read it when he felt better. We saw the working space he had set up after 

retiring in 1970 from Urbana to a beautiful old school house with a lovely garden. Asked what he 

planned to do, he told us of writing a book that would start with Bremermann‘s limit. Subsequent 

inquiries did not turn up notes of how he would have proceeded. But I kept his idea in mind. 

 

6. A paradigm shift 

http://en.wikipedia.org/wiki/Earth
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Meanwhile, computational technology made enormous leaps. Cybernetics became more 

self-reflective to the point of suggesting its evolution from first-order to second-order cybernetics. I 

pursued interests far removed from Bremermann‘s limit, the design of human interfaces with 

technology (Krippendorff, 2006). Such interfaces cannot be understood without the participation of 

human agency, the ability to draw distinctions, decide among the alternatives thus distinguished, 

and act creatively, i.e., without rational prescriptions or pre-established determinisms. 

Bremermann‘s finding implicates human agency by stating not what exists but by distinguishing 

what CAN or CANNOT be done within the laws of physics. 

Given that we can cope with numbers beyond available computational resources, Ashby‘s 

conclusion can signal two things. Either numbers > 10
100

 are meaningless or our dominant 

epistemology has not kept up with the technology we are facing today. I favor the latter and have 

distinguished elsewhere four epistemologies regarding understanding systems (Krippendorff. 2008).  

 Systems whose behavior is deducible from a finite history of recorded observations are 

observationally determinable. This reflects the epistemological stance of detached observers 

who seek to discover systems properties by testing all possible hypotheses about that systems 

structure against the data it produces 

 Systems that can be built and set in motion are synthetically determinable. This reflects the 

epistemological stance of designers who have access to the structure of a system having 

determined its makeup 

 Systems that can be lived with or utilized by interacting or communicating with them 

competently are hermeneutically determinable, for example computers as well as people 

 Systems that can be understood by participating in them are constitutively determinable. The 

latter especially applies to social systems, constitutively involving knowledgeable human 

participants. They also include what second-order cybeneticians do.  

Heinz von Foerster (1984) showed that observational determinability is limited to trivial 

machines – systems with few states and simple structures. Non-trivial machines, involving internal 

memories, including the above mentioned ―Ashby box‖, defy observational determinability but can 

be understood by building them (or dissembling them into trivial parts and reassemble them). 

Computers, for example, are non-trivial by this definition. They have internal loops and memories, 

can be built, but their operating structure is incomprehensible by merely observing what they do. 

Regarding computers, most competent computer users have no clue and do not need to care about 

how their machines actually function, their synthetic determinability, yet have no problems learning 

how to use them. Indeed, computers are designed for hermeneutic determinability. It is when users 

install software and reconfigure their interfaces that they approach being designers – at least of the 

contours of what is going on inside them.  

I suggest that understanding information processes of the kind we are facing today can no 

longer be accomplished by discovering and identifying interactions in observed systems. In fact, 

reconstructability analysis quickly runs into transcomputational numbers. In a little known paper 

Conant (1981b) found a way to bypass Bremermann‘s limit by not selecting a solution from all 

possible alternatives but constructing a solution based on a simpler representation of the problem. In 

effect, he moved beyond the limit of observational determinability by designing a solution. 

Technology is not discovered, it is designed. To understand complex technological systems requires 

an understanding of how they are designed, how their realities are constructed within the 

possibilities created by their designers. Bremermann‘s limit defines the space within which human 

agency is physically possible. 
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7. Cyberspace 

7.1 Space 

Considering the above, to me space is not a metaphor or a mathematical artifact. Space is 

created and recognized by human actors in the process of realizing (making real) their artifacts. It is 

a construct that is necessary to understand humans as having abilities, manifest in linguistic 

constructions with the auxiliary verb ―can‖ and becomes evident in material artifacts that cannot 

emerge from unattended nature or be explained causally or entropically. Space is constituted in the 

possibilities that human actors perceive in their world. Here are six obvious propositions concerning 

that concept of space. (i) Actions consume possibilities. For example, writing a document occupies 

a certain amount of space – on paper or in computer memory – thereafter not available for 

expressing other things. (ii) Choosing among possible actions has consequences, often social ones, 

i.e., pertaining to other actors. For example, dialing a telephone number establishes a connection 

with someone at the expense of connecting with someone else, or building a house not only changes 

a landscape, but where neighbors might build theirs. (iii) In using technologies one almost always 

trades constraints on less important possibilities for desirable possibilities that would not be 

available otherwise. For example, using the telephone limits communication to voice within a 

narrow bandwidth, but extends the ability to converse with people at distances far greater than could 

be reached acoustically. (iv) The human use of technology is limited to the possibilities it provides 

in the human interfaces with them. For example, use of the internet is limited to what computer 

interfaces enable their users to do. (v) Computers may amplify human intelligence (Ashby, 1956b) 

when the choices made by their users initiate processes that select among a far greater number of 

possibilities, for example, searching the world wide web within seconds for something that would 

take humans a lifetime to find.  (vi) The great number of possibilities that information processing 

systems provide to their users makes theorizing such systems (predicting its states and structure) 

difficult if not impossible. The openness that internet users experience is their primary motivation to 

engage that net. There can be no single elegant theory of cyberspace without human agency.  

7.2 History of Cyberspace.   

To me, cyberspace consists of technologically supported possibilities for human actions. So 

conceived, cyberspace originated when early humans found sticks, stones, and fire to be separable 

from where they could be found, movable to and usable where they accomplish something 

previously thought impossible. Thus, sticks, stones, and fire may have been the first human 

artifacts.  The path from that early beginning to where we are now took several millennia of 

technological development.  

What has changed during this remarkable history, in my view, is due less to an increase of 

information, as current writers on information society insist, than to an increase in our collective 

ability to draw more and finer distinctions, to handle, assemble, use, and communicate what we 

distinguished more efficiently than before, and to construct worlds that enhance our collective 

ability to realize ourselves. The great Cheops pyramid, built 5000 years ago during a 20 year period, 

amounted to moving  2.3·Billion stones into a very simple arrangement. The mass production of 

same-size bricks enabled the building of a great many and rather different kinds of buildings. 

Writing, using combinations of letters from a small alphabet of characters added choices not 

available to painting naturalistically. The largest library of ancient times, the Royal Library of 

Alexandria, destroyed by fire about 2000 years ago, is estimated to have held between 40,000 and 

700,000 books and scrolls among which users had about 10
6
 binary choices. For comparison, the 

collection of printed matter of the U.S. Library of Congress is estimated to contain 10-terra bytes 

(Lyman & Varian, 2003), including the characters its publications contain, about·10
14

 bits or 10,000 
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times the size of the library of Alexandria. The searchable World Wide Web contains about 136 

times the number of bits in the Library of Congress. Already the library in Alexandria featured 

principles of mechanics and hydraulics that could be combined to generate numerous technological 

inventions. The 2000 years between the library of Alexandria and the World Wide Web witnessed 

numerous milestones. Gutenberg‘s invention of movable type, mass production of freely 

combinable technological artifacts, the printing press, Hollerith punch cards, radio tube computers, 

and digital communication. All afforded us options previously unavailable or time consuming.  To 

me, the history of human technology is one of increasing the number of possibilities we can use to 

our advantage. Cyberspace began well before electronic possibilities emerged although the latter 

certainly have dwarfed all previous technologies in how much they offer. 

7.3 The Current Size of Cyberspace.  

Existing communication and computer technology operates far from Bremermann‘s limit. 

But one may appreciate the size of the space it collectively offers by estimating the unconstrained 

possibilities it currently provides.  

 A byte is an atomic unit of data in a computer, increasingly used by computer manufacturers to 

quantify information processing and storage capacities. It consists of an 8-bit sting of 0s and 1s 

or eight binary variables and can keep 256 different characters.  However, since I am interested 

in the choices human actors can collectively make rather than how data are stored inside a 

computer, I prefer to express possibilities in terms of the number of binary choices they enable. 

Accordingly one byte = 8 bits.  

 A contemporary 200 gigabyte computer can store 200·10
9
 bytes, or 20010

9
·8

 
=1.610

12
 bits. 

 With an estimate of one billion (10
9
) 200 gigabyte computers (personal and midrange servers) in 

use in 2008 worldwide (to err by exaggeration) one could collectively make 10
9
1.610

12
 binary 

choices or store 1.610
21

 bits of data. 

 Considering the speed of computation, say 1 GHz = 10
9
/sec, during one year of continuous 

processing – 1 year  10
7
 sec – we could collectively compute about 1.610

21
10

9
10

7
  

510
37

 bits, bringing the cyberspace that we can explore in 2008 to an upwardly rounded: 

10
38

 bits per year 

This growing number is large but far smaller than 10
82

, the capacity of a computer of the 

mass of the earth running at Bremermann‘s limit. According to Moore‘s law, which suggests that 

the capacity of computation doubles every two years, Bremermann‘s limit would be reached in 

about 150 years. Since 10
82

 is practically unachievable, Moore‘s law is soon doomed. Cyberspace 

may become more user-friendly and integrated in everyday life but no longer grow as fast as since 

the 1960s.  

There is of course much happening outside the global computer technology, not reflected in 

these numbers. People grow and eat food, drive cars to work, construct buildings and cities, publish, 

read, and talk with one another. However, as observed by Lyman and Varian (2003), most of what 

is happening outside the electronic world migrates into it. Economic transactions may still take 

place at a cash register but are recorded electronically and tracked in this medium. Cars operate 

outside the electronic media, but their production drawings, sales documents, and service 

instructions are transmitted among the manufacturer‘s computers. Cars occupy cyberspace also in 

the from of registration numbers, insurance, repair, and tax records. Books, newspapers and 

theatrical performances increasingly are available online. Web pages are read and inform decisions 

outside cyberspace but their results reenter cyberspace in terms of email, blogs, and online 

purchases.  Everything in cyberspace connects via its users to what I call externalities.  These 
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externalities are essential to keeping cyberspace meaningful and alive but they do not add 

significantly to its estimated size. 

7.4 Artifacts in Cyberspace.   

Unlike traditional machines, which are designed to occupy physical space and serve 

particular functions at their location, the utility of cyberspace depends on electronic artifacts with 

which it is furnished.  Such artifacts consist of documents, software, networks, plus plus that define 

dependencies among finite numbers of binary variables. As a matter of definition, artifacts in 

cyberspace 

(1) Occupy space (in bits of cyberspace) by relating individual bits, for example, the 

neighborhood relations among the pixels of images, the strings of characters comprising 

written documents, and the codes of computer software. The relations among otherwise free 

possibilities in which artifacts are manifest are precisely what Ashby had conceptualized as 

higher-order interactions and hoped to discover and quantify with the ill-fated Q-terms. 

Artifacts in cyberspace do occupy finite spaces, but identifying their structure by observation 

(observational determinability) is virtually impossible while their structure is easily 

established by design (synthetic determinability).  

(2) Are preserved under a variety of recursive transformations (Foerster, 1981), for example, in 

the course of their transmission. Artifacts cannot be experienced at their location but where 

they are reproduced, seen on computer interfaces, printed, controlling something, or doing 

actual work. They are relatively stable while their location often remains uncertain. 

(3) Can be controlled, installed, composed, removed, activated, monitored, and terminated by 

their users (not necessarily by everyone alike) 

(4) Interact with each other. Software, one kind of artifact, is applied to data, images, or records, 

another kind of artifact, and its results modifies the data, images, or records or produces 

different kinds of artifacts. Users‘ actions intervene in what amounts to an ecology of 

electronic artifacts 

(5) Are meaningful in their users’ lives in the sense of being understood and usable (hermeneutic 

determinability) and can be related to the externalities of cyberspace.  

Let me distinguish a few kinds of artifacts by their properties: 

The artifacts that determine the size of cyberspace are physical memories, hard drives, 

storage devices, media of communication, and networks. These artifacts do not physically move. 

The rates of their production less of their retirement determine the growth of cyberspace. 

A prerequisite of working computers are their operating systems. As each computer needs to 

be equipped with one, operating systems occupy a good deal of cyberspace. This also includes the 

software for running user interfaces with computers, usually part of a computer but doing no work 

other than providing users access to cyberspace by bridging user culture with the operation of 

computers. 

Data, textual, visual, and sound records, files, folders, and web pages, usually kept as whole 

bit packages, are the most common, most space consuming, and least intelligent artifacts. They 

largely inform individual users about externalities. Lyman and Varian (2003) estimated that most 

computers have no more that 1% original data, the remainder are duplicates, represent redundancies 

in cyberspace. Duplicates simulate traditional mass media products and compete with the ideas of 

libraries. Specialized software too belongs in this category of artifacts until it is instructed to 

cooperate with the operating system and become part of the ecology of electronic artifacts. 

Links among documents, web pages, and the organization of file systems occupy cyberspace 

as well, and so are transmissions, i.e., networks that temporarily coordinate computers for the 
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purpose of reproducing data from one location to another. Traffic in contemporary cyberspace from 

email to data transmission consumes a considerable amount of cyberspace. 

The need for privacy, allocating privileges, and protecting data bases has created security 

systems that organize and limit access to cyberspace around particular communities of users. Bank 

records, military communications, corporate accounts are thus protected.  

Another increasingly important category of artifacts is intelligent assistants or agents that 

either learn to serve user needs as a function of their habits or can be instructed to assume 

responsibilities that the user prefers not to assume or cannot undertake as speedily, reliably, or 

efficiently as that assistant. Commercial use of assistants is already widespread, visible and invisible 

by users.  

Finally, there are self-replicators, viruses, worms, and other artifacts substantially out of 

users‘ control. Often designed with malicious intents, they can make their way through cyberspace 

and create havoc to individual computers, hard drives, data bases, and networks. Self-replicators 

may be difficult to destroy, but because they occupy space, they often can be quarantined. 

One can argue over the categorization of such artifacts but not that they are designed, 

programmed, or captured to aid users‘ practices – except for the self-replicators. They provide 

access to possibilities generally not available otherwise. Without a diverse population of artifacts, 

cyberspace would by an empty shell. 

Despite valid claims that Shannon‘s quantities have little to say about everyday life, we 

experience these quantities everywhere. When buying a computer, we pay for the size of memory in 

bytes and speed. When considering the installation of software, we must be weary of how much 

valuable space it consumes. When attaching images of Kilobyte size to an email, we need to be 

concerned with how long it takes to send them and whether they can be received. Bits or bytes are 

measures of the space that the hardware of cyberspace makes available to computer users and that 

the artifacts they install exhaust by enabling them to do computational work, communicate with 

each other, and most importantly, to move among the artifacts in cyberspace and explore what they 

mean to them.  

7.5 Human Interface Capacities.   

The size of cyberspace exceeds by far several individual capacities, a fact that limits 

individual human interaction with computers and how we can operate in cyberspace. Whereas 

Bremermann‘s limit concerns physical responsiveness to differences, here I am addressing the 

implications of human responsiveness to bits in cyberspace. 

 Individual comprehension – for Ashby – must be accomplished by the 10
13

 to 10
15

 synapses of 

the human brain, most of which are occupied with coordinating human bodily functions. 

Experiments have suggested that human comprehension is about two bits per second or 2··10
7
 

bits per year. With one billion (10
9
) computers in use, attended to 10% per day, the current 

population of cyberspace users could comprehend about 2··10
7
·10

9
·10

-1
10

16
 bits of 

cyberspace annually.  

 Comprehension does not mean responding to every letter, pixel, or option available on computer 

screens. Perception is selective and what appears on an individual‘s computer screen necessarily 

is richer than is seen and can be responded to. A computer screen with 12801024 pixels, 32 

bits for colors, 75 Hz refresh rate, observed 10% of a year by one billion computer users would 

take up not more than 1280·1024·32·75·10
-1

··10
7
·10

9 
 10

22
 bits of cyberspace per year.  

 Typing probably is the fastest way to direct the performance of a computer. If a very good typist 

can write about one word/second, a word contains on average 5.5 characters (as in this paper), 
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each character amounts to log232=5 bits, then one year of typing, 10% of each day, by 10
9
 

cyberspace users could determine 5.5·5··10
7
·10

-1
·10

9 
 10

17
 bits of cyberspace annually – just 

ten times what one can comprehend. 

The order of magnitude of these differences, rough as they may be, is not surprising. First, 

typing instructs a computer just ten times as can be comprehended.  This may well be the difference 

between understanding whole words as opposed to individual letters. Second, the amount of 

information displayed on a monitor naturally is far greater than what can be comprehended. 

Perception is selective and each letter of an alphabet occupies more than 32 pixels plus 32 bits for 

colors.  As George A. Miller (1956) taught us, we see and think in chunks, not pixels. Third, 

although I do not dare to estimate the cyberspace occupied by all of its artifacts, (a) computer 

languages, data bases, software and networks have histories of cumulative growth that exceed the 

lifespan and creativity of individual users, thus naturally exceeding the 10
17

 bits per year of typing. 

(b) Many artifacts enter cyberspace not by individual construction but by being captured by 

powerful systems, digital cameras, video recorders, medical imaging, and surveillance systems that 

operate with minimal human involvement and represent externalities of cyberspace. Their details far 

exceed human ability to read and to enter them bit by bit. (c) The majority of artifacts in cyberspace 

are copies. Lyman and Varian (2003) estimate as much as 99% on individual computers. Copies are 

easy to produce. Directing a device to copy or transmit an artifact may require very few human 

actions.  The amount actually looked at and individually comprehended is a miniscule fraction of 

what occupies cyberspace.  Fourth, artifacts in cyberspace are packages of bits and organized to be 

controllable by users with a minimum of choices. Getting to an image may need no more than a few 

clicks with a mouse. Applying a familiar statistical program on available data does not require the 

user to know their computer code, what exactly it does, nor the data it analyses. The volumes 

searched on the internet remain largely hidden from the user‘s view.  

While by definition, cyberspace must be larger than the artifacts it houses, it is perfectly 

sensible to conclude that the space these artifacts jointly occupy far exceeds human ability to know 

them in all of their details, the actual bits, and the collective ability to design them bit by bit. In his 

information theory, Ashby talked about equivocation, the mathematical inverse of noise. 

Equivocation, chunking packages of bits into comprehensible distinctions, takes place on a massive 

scale at human computer interfaces. The increasing spaces that electronic artifacts occupy is at least 

one factor that drives the need of cyberspace to grow.   

Far more important and unique to this technology is the unoccupied cyberspace. This is a 

measure of the openness for users to exercise their agency, make individual choices without rational 

justification, do things not programmable by any computer language, travel paths nobody has paved 

for them, customize their interfaces, and construct novel artifacts that support their evolving 

practices of living together. As long as these artifacts do not consume the whole cyberspace or 

prevent access to willing users, human agency is preserved if not enhanced. 

 

8. Conclusion 

It should be clear that what we now call cyberspace cannot remotely approximate 

Bremermann‘s limit. Much of the earth‘s matter is hot or dull and much of our biomass is 

concerned with itself. Although computation has become indispensable to contemporary society and 

everyday life, it can always only be a part of it. Estimating the size of cyberspace is an important 

step in acknowledging human agency as a non-naturalist explanation of the world we construct. It 

invokes a new paradigm. Ashby‘s method of first considering possibilities and then exploring which 

are empirically sustainable and which are not is neither inductive – generalizing from many cases – 
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nor deductive – deriving knowledge from known theory – but evolutionary – rooted in the idea of 

the recursion of mutation and selection. Ashby defined cybernetics as the study of all possible 

systems notwithstanding what has not yet been built or evolved in nature.
1
 He modeled that 

definition after a theory of information that granted cyberneticians human agency. I suggest this 

ushered in a paradigm that enables us now to study the increasingly complex human use of 

information technologies which I describe as cyberspace.  

Ross Ashby could not experience the technology we live with, which rapidly evolved from 

the mainframe computers he knew. His conception of a system did not exhibit the fluidity we are 

now facing. His notion of higher-order interactions in systems of many variables has morphed into 

the artifacts in cyberspace – occupying finite spaces but are difficult to localize and no longer 

identifiable by algebraic accounting equations. Conceptualizing them as packages of bits, created by 

software companies, programmers, and users, captured by powerful devices for recording 

externalities of cyberspace, and manipulable and useful to us seems natural now.  This paper has 

shown that designing artifacts in cyberspace is not limited by the computational resources available 

to discover the complexities of the designed artifacts. The paradigm shift from computational 

methods of discovery to human methods of design has overcome Bremermann‘s limit and questions 

the approach taken by earlier systems theories. 
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