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Abstract

It is shown that the restrictions of what can be inferred from classically-recorded
observational outcomes that are imposed by the no-cloning theorem, the Kochen-
Specker theorem and Bell’s theorem also follow from restrictions on inferences from
observations formulated within classical automata theory. Similarities between the
assumptions underlying classical automata theory and those underlying universally-
unitary quantum theory are discussed.
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1 Introduction

In 1956, Edward F. Moore proved that no finite sequence of observations of the input-
output behavior of a classical finite state machine (FSM) is sufficient to uniquely identify
the FSM [1]; similar results were published around the same time by Ashby [2] and others.
Moore, whose primary interest was in reverse engineering, remarked that this result “means
that it will never be possible to perform experiments on a completely unknown machine
which will suffice to identify it from among the class of all sequential machines” (p. 140)
but did not elaborate on the implications of this for experimental physics. Any finite
sequence of explicitly-specified discrete states of any system can, however, be described
formally as an execution trace of a classical FSM [3]; in such a description, the states
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of the FSM are identified with the observed system states, and the transition rule of the
FSM is specified explicitly as an ordered list of the observed state-to-state transitions. Any
finite sequence of observations of discrete states of any physical system S for which the
observational outcomes are explicitly recorded as classical information can, therefore, be
described formally as a sequence of observations of a classical FSM implemented by S.
Moore’s theorem shows that no such finite sequence of classically-recorded experimental
observations of discrete states of S is sufficient to uniquely specify which classical FSM S
implements, as an arbitrarily-large number of classical FSMs are consistent with any given
finite sample of state transitions. Moore’s theorem is, therefore, a classical forerunner of
later “no-go” results that characterize observations of the physical world: it demonstrates
an experimentally-unresolvable ambiguity in the formal characterization of any physical
system as a classical FSM on the basis of a finite number of classically recorded observational
outcomes.

This paper examines Moore’s theorem in the context of quantum theory. It shows that
Moore’s theorem together with the assumption that all information is at all times physically
encoded [4] blocks two assumptions that are commonly made regarding finite sequences of
classically-recorded observational outcomes: the assumption that the system that has been
observed can be fully characterized by a specified collection of physical degrees of freedom
and hence a specified Hilbert space, and the assumption that the recorded observational
outcomes all characterize a single system. These assumptions are blocked by Moore’s theo-
rem regardless of whether the “system” referred to is macroscopic or microscopic, observed
directly or observed through the use of an apparatus. The paper then shows that the infer-
ences from observational outcomes that are blocked by the well-known “no-go” theorems
of Wooters and Zurek [5], Kochen and Specker [6] and Bell [7] are instances of inferences
that are blocked by Moore’s theorem. These no-go results can, therefore, be regarded as
establishing in particular cases the restrictions on the inferences that can be drawn from
finite sequences of classically-recorded observational outcomes that are established more
generally by classical automata theory. That this should be so is prima facie surprising:
Moore’s theorem follows from an analysis of classical observation, while the quantum no-go
theorems follow from the assumption of unitary dynamics. Their correspondence suggests
that the inability to place upper bounds on the degrees of freedom of a system, and hence
the inability to rule out dynamical effects of previously-unobserved degrees of freedom that
is entailed by Moore’s theorem has the same consequences for observation as does the
existence of quantum entanglement.

2 Moore’s theorem in the context of quantum theory

Moore’s second theorem states:

“Given any machine S and any multiple experiment performed on S, there exist
other machines experimentally distinguishable from S for which the original
experiment would have had the same outcome.”



(1] p. 140)

For Moore, a “machine” is a classical, deterministic FSM: a finite set of explicitly-specified
states together with a deterministic transition rule that specifies, either explicitly or im-
plicitly, all of the state transitions that can be executed by the machine. To experimentally
characterize an FSM is to determine, by sequentially placing the machine in observationally-
distinct states and recording the state transitions that follow each such manipulation, the
complete transition rule. Moore’s theorem concerns an unknown machine - the object of
any exercise in reverse engineering - that is assumed to be a deterministic FSM but for
which neither the list of possible states nor the transition rule is available. Moore proves
his theorem by noting that any transition rule that is inferred from a finite number of ob-
servations, and which therefore specifies sequences of state transitions starting from a finite
number of observationally-distinct initial states, could either be the complete transition
rule of an FSM defined over only the states explicitly characterized by the observations,
or a partial transition rule of a larger FSM defined over a larger number of states. Hence
Moore’s theorem shows that even in the case of classical FSMs, no finite set of observations
is sufficient to conclusively identify the state space, and hence the behavioral degrees of
freedom, of the system being observed. In particular, Moore’s theorem shows that while
finite observations can establish that a system has particular degrees of freedom, and hence
can put a lower bound on the size of the system’s state space, they cannot establish that
a system has only those degrees of freedom, and hence cannot put an upper bound on the
size of the system’s state space.

It is important to emphasize that Moore’s theorem in no way blocks either the construction
of theoretical models of the behavior of a system that assume that the system has the
degrees of freedom that experimental observations indicate, or the design of further experi-
mental manipulations based on such models. Hence Moore’s theorem does not challenge the
de facto methods of experimental physics, or of any other science. What Moore’s theorem
does challenge is the theoretical assumption that a system has only the degrees of freedom
that have been characterized by experimental observations: it challenges the assumption
that any theoretical model is complete. Such completeness assumptions are typically im-
plicit, as they are typically embedded in and hence unavoidable consequences of employing
the formalism with which theoretical models are constructed. The primary practical con-
sequences of Moore’s theorem are, therefore, restrictions on the assumptions that can be
built into a model-building formalism. It will be shown in §4 below that these restrictions
encompass those imposed by the quantum no-go theorems; the present section examines
these restrictions and shows how imposing them alters the representation of observations
within the standard quantum-mechanical formalism.

As Moore’s theorem concerns what can be inferred from observations, it is useful to ex-
amine it using an explicit physical model of observation. Following Landauer [4], let us
explicitly assume that all information is physically encoded. Suppose an observer O is em-
bedded in an environment E, that O extracts classical information from E in the form of
N discrete observational outcomes that are obtained at N distinct times ¢;...ty, and that



these outcomes are recorded by O as a finite sequence of classical symbols k;...ky. These
N classical records can be regarded as completely specifying N states of a classical FSM,
and the N —1 transitions k; — k;;1 can be regarded as a complete, explicit specification of
the transition rule of this FSM. Moore’s theorem then applies, and states that the recorded
symbols ki...ky and transitions k; — k;;1 could instead be only partial specifications of
any of an arbitrarily large number of distinct classical FSMs. Moore’s theorem blocks, in
particular, the “Occam’s razor” inferences that the symbols ky...ky constitute a complete
specification of the state space of E and that the transitions k; — k;; constitute a complete
specification of the dynamical behavior of E, regardless of the size of V.

Nothing has been specified, in the above, about the interaction between O and E except
that it results in the encoding by O of the classical records k;...ky. Let us suppose that
O and E are described by distinct collections of quantum degrees of freedom {o;} and
{e;} respectively, and hence that their interaction can be represented by a Hamiltonian
Hog = Zij H;;, where H;; couples the i degree of freedom of O to the j™ degree of
freedom of E. As Moore’s theorem blocks the inference that the symbols ky...kx constitute
a complete specification of the state space of E, it clearly blocks the inference that the

symbols ki...ky provide sufficient information to completely specify Hog, again regardless
of the size of N.

It is standard, in quantum theory, to represent interactions between observers and their
environments not by Hamiltonians, but rather by generalized observables, i.e. positive
operator-valued measures (POVMs; [8] Ch. 2). Let us suppose, therefore, that the N
classical records ki...ky encode N outcomes E,EEEN obtained by deploying a POVM
{E¥F} defined over the Hilbert space Hg of E. As Moore’s theorem blocks the inference
that the symbols k;...ky constitute a complete specification of Hg, it clearly blocks the
inference that the symbols k;...kyx provide sufficient information to completely specify the
deployed POVM {EF}.

The above restrictions on inferences from a sequence of classically-recorded observational
outcomes ki...kxy make no particular assumptions about the size or structure of E; indeed
O’s inferences from ki...ky would be restricted by Moore’s theorem even if ki...ky as a
matter of fact was a complete specification of the state space of E. The restrictions on in-
ferences from a sequence of classical outcomes k;...ky that are imposed by Moore’s theorem
therefore apply not only to O’s interactions with E as a whole, but also to O’s interac-
tions with any components of E, i.e. to O’s interactions with any subsets of the degrees
of freedom {e;}. If S comprises such a subset of the quantum degrees of freedom of E,
Moore’s theorem blocks any inference that a set of classical symbols k;...ky recorded in
the course of interactions between O and S provides sufficient information to completely
specify the Hilbert space Hg, the Hamiltonian Hog, or the POVM {ES} that produced
ki...kxn as output.

A case of particular interest is that in which O employs one subset of the degrees of
freedom of E, those describing an “apparatus” A, to make measurements of another subset
of the degrees of freedom of E, those describing a “system of interest” S. In this case,
O employs some POVM {E#~} to observe A, and regards A as implementing a POVM
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{E®} that acts on S. This latter POVM yields observational outcomes k;...ky that are
classically recorded either by A directly or by O through the use of {EA}. If O cannot
completely specify Ha by observing A with {EA}, O clearly cannot completely specify
the Hamiltonian Hag via which A interacts with S, and so cannot completely specify the
POVM {E®} that A implements. In particular, O cannot specify on the basis of a sequence
of classically-recorded observational outcomes k;...ky generated by A that Hag = Ha¢ for

some particular quantum degree(s) of freedom ¢ within E, and hence cannot infer that the
POVM {EP} implemented by A is definable over H.

It is commonplace in applications of quantum theory to stipulate that some sequence of
classically-recorded observational outcomes k;...ky was generated by the action of a speci-
fied POVM {ES} defined over a specified Hilbert space Hg. Such stipulations may in some
cases reflect explicit hypotheses: it may be being hypothesized that k;...ky were generated
by the action of {ES}, or that the observed system has some particular set of degrees of
freedom and hence some particular Hg. Moore’s theorem clearly allows such hypotheses;
they are essential to the practice of science, and are falsified if the involvement of additional
degrees of freedom in the behavior of S is observationally confirmed. What Moore’s theorem
blocks is treating it as a physical fact that kq...ky were generated by the action of a partic-
ular { E8} defined over a particular Hg smaller than the environment in which the observer
is embedded. Zurek [9], for example, proposes as “axiom(o0)” of quantum theory that “the
Universe consists of systems” (p. 746) with which observers interact; “quantum Darwin-
ism” [10, 11] is based on the assumptions that decoherence acts on these specific systems to
create stable environmental encodings, and that it is these encodings that observers detect
[12, 13]. Defining a POVM {ES} over a specific Hilbert space Hg embeds this assumption
that observable systems exist as discrete entities in an observer-independent way into the
quantum formalism. Such a definition renders every observation system-specific: observing
the position of a particular desk D, for example, requires deploying a position observable
2P defined over the Hilbert space of that desk, while observing the position of its associ-
ated chair C requires deploying an Hc-specific operator £€. Within this formalism, any
sequence of outcomes ki...ky is guaranteed by definition to be generated by interactions
between O and the particular degrees of freedom over which the deployed POVM is defined;
the possibility that any other degrees of freedom are involved in any way in the production
of the observed outcomes is ruled out by fiat. The question with which Moore’s theorem
is concerned, that of how observers identify a particular collection of degrees of freedom as
a target of observations can no longer be raised: the identification of systems of interest
as particular collections of physical degrees of freedom - i.e. as particular Hilbert spaces
- is no longer a hypothesis, but is simply taken for granted whenever a specific POVM is
employed to represent the process of observation. This “taking for granted” represents an
enormous step beyond the standard [14] first axiom of quantum theory: it is the step from
“this observable system has some (to be determined) Hilbert space” to “this observable
system has, by definition, this Hilbert space.”

Moore’s theorem shows that this common assumption that system identification can be
taken for granted cannot be empirically justified, even in principle: no finite sequence of



classically-recorded observations, no matter how large, is sufficient to completely specify
the collection of physical degrees of freedom, and hence the “system” with which the ob-
server has interacted over the course of the observations. Only one formal response to this
predicament is consistent with both the fundamental assumption that observers can obtain
classical information only by deploying POV Ms, i.e. only by undergoing physical interac-
tions with their environments, and the formal requirement that POVMs be well-defined. It
is to treat any observer as equipped with a finite number of POVMs {EX}, {EY}, {EZ},
etc., all of which are defined over the complete Hilbert space Hg of the environment E in
which the observer is embedded. If O is equipped only with POVMs defined over all of E,
O has no choice but to identify as a “system” S, for example, whatever collections of de-
grees of freedom of E produce recordable outcomes when acted on by some available POVM
{ES}. With this alternative formalism, all observations are treated as system-nonspecific:
observing the position of a desk involves deploying a generic position observable 29°%k and
identifying as a “desk” whatever produces a recordable outcome. If the POVMs deployed by
an observer incorporate multiple commuting observables and hence yield as outcomes clas-
sical symbols that describe observations along multiple dimensions, their de facto specificity
in picking out systems of an intuitively coherent type may be high, but Moore’s theorem
blocks the inference that any finite POVM has unique specificity. This formal approach of
treating all systems, whether microscopic or macroscopic, as identified solely by fixed sets
of classically-recordable observational outcomes - i.e. as identified in the same way that
electrons or quarks are identified - has been proposed elsewhere on the basis of a formal
model of observers as finite information processing systems [15]. It is employed in what
follows to show that the restrictions on inferences from observations that are imposed by
the no-cloning theorem, the Kochen-Specker theorem and Bell’s theorem are special cases
of those imposed by Moore’s theorem.

3 Moore’s theorem implies an observable-dependent
exchange symmetry

Suppose an observer O is equipped with a Geiger counter with a 2 cm diameter aperture
and 0.8% detection efficiency for « rays, and is capable of recording counts/second in
integer units up to a saturation threshold of 100 counts per second. If the Geiger counter
is considered to be “part of” O, O can be regarded as deploying a POVM defined over Hg
that yields as recordable outcome values the integers 1, 2, ... 100, where these outcome
values depend, via the response function of the Geiger counter, on the flux of v radiation at
O’s location. Suppose O is equipped with an effectively-infinite memory and is allowed to
wander around the laboratory. If O happens to be 1 m from a 100 puCi ®Co source, O will
typically record an outcome of 3. If O happens to be 2 m from a 400 uCi *"Cs source, O
will also typically record an outcome of 3. For O, therefore, a 100 uCi %°Co source located
1 m away is indistinguishable from 400 pCi '37Cs source located 2 m away. Were O to be
equipped with additional POVMs - for example, ones that reported the direction that the



Geiger counter was pointing, O’s own direction of motion, or the distance O traversed from
one recorded observation to the next - O might be able to distinguish between these two
sources of radiation. If O is equipped only with the Geiger counter, however, these distinct
physical systems can be exchanged arbitrarily without altering O’s observational records.

As Moore’s theorem applies to any finite number of classically-recorded observational out-
comes, it guarantees that any observer equipped with only a finite number of POVMs will
be in the predicament of an observer equipped only with a Geiger counter: such an observer
will never be able to say how many distinct systems her recorded observational outcomes
refer to. In particular, an observer O that is equipped with a POVM {E®S}, defined over
all of O’s environment E, that reports states of some collection S of degrees of freedom
within E, but that lacks a POVM that reports the state of some other degree of freedom
¢ of E will be unable to distinguish S from S ® ¢, and hence unable to distinguish inter-
actions with S from interactions with S ® ¢. If the interaction Hg, between S and ¢ is
negligible, an exchange of S® ¢ for S in the environment of O will have no consequences for
future observational outcomes obtained by O through the use of {ES}. If the interaction
Hg, is not negligible, however, an exchange of S ® ¢ for S in O’s environment will po-
tentially have consequences for future observations that employ {EP}. A fixed observer O
equipped only with a Geiger counter, for example, cannot distinguish a constant, uniform
v-photon flux @, pervading all of space from a constant point 7 source at a fixed location
if the two sources produce the same event count rate at O’s location. The latter source,
however, has a positional degree of freedom that interacts with event count rate, through
which future observational outcomes from O’s location may be affected. Such an inability
to strictly specify the interaction between an observed system and its environment, and
hence the inability to strictly specify the POVM implemented by a system employed as an
experimental apparatus, can have practical consequences. The history of science includes
many instances in which functionally-significant changes in the degrees of freedom of an
experimental apparatus that went undetected by the POVMs employed by observers to
identify the apparatus led later to unexpected observational outcomes and reports of sur-
prising phenomena. Such historical instances indicate that, common assumptions regarding
observer-independent “emergence” to the contrary [16], our universe does not assign any
special status or stability to the collections of degrees of freedom identified as “systems” by
the POV Ms that are implemented by human observers.

Recognition of this observable-dependent exchange symmetry allows Moore’s theorem to
be restated in a way that appears stronger than the original but is in fact equivalent:
no finite sequence of classically-recorded observational outcomes ky...ky is sufficient to
demonstrate that each of the k; was produced by an interaction with the same collection
of physical degrees of freedom. Human observers tend to assume that if something looks
like the same thing that was observed previously - if it produces the same observational
outcome(s) using whatever POVM(s) they have available - then it is the same thing that was
observed previously. This application of “Leibniz’s Law” clearly contributes to the world
making sense. Moore’s theorem shows, however, that it is empirically unjustifiable: that
two observations are observations of the same system may in many cases be a reasonable



theoretical hypothesis, but it can never be regarded as a fact.

4 Quantum no-go theorems and observable-dependent
exchange symmetry

A steadily-increasing collection of “no-go” theorems demonstrate that the acquisition of
classical information by observers is severely restricted within quantum theory. These
quantum no-go theorems follow from the assumption of unitary dynamics; they require
no special assumptions about the process of observation. They can each, however, be re-
garded as blocking particular inferences about the states of quantum systems based on
finite observations of those systems. The inferences blocked by three of the best-known
“no-go” theorems, the “no-cloning” theorem of Wooters and Zurek [5], the Kochen-Specker
theorem [6], and Bell’s [7] theorem are considered here. The no-cloning theorem states
that an arbitrary quantum state cannot be precisely duplicated by a unitary operation;
hence it blocks the inference that any observed quantum state is a clone of any other
quantum state. As summarized by Mermin [17] following a comparative review of alter-
native statements and proofs, the Kochen-Specker theorem states that outcomes obtained
by measuring even mutually-commuting observables depend on the manner in which they
are measured, while Bell’s theorem states that the context-dependence established by the
Kochen-Specker theorem characterizes measurements of mutually-commuting observables
even when the measurement sites are distant. The Kochen-Specker theorem thus blocks
the inference that the state of a quantum system S obtained by making measurements
with a POVM {ES!} will be the same as that obtained by making measurements with a
POVM {EP?}, even if { ES1} and { ES2} are both defined over a single environment E and
report states of some subset S of the degrees of freedom of E. Bell’s theorem blocks the
inference that the outcomes obtained by acting on a spatially-extended collection of degrees
of freedom S with two POVMs {EP'} and {EP?} deployed at different locations can be
considered to be independent.

Let us consider no-cloning first. By prohibiting quantum cloning, the no-cloning theorem
blocks the assumption that a “faithful copy” of a quantum state can be employed to store,
confirm, or otherwise access quantum information that is also employed, via the copied
original, as an input to some other process. For such a faithful copy of a quantum state to be
of use, it must be possible to observationally access the copy, at some time after its creation,
with full confidence that it is a copy, even if the original state of which it is a copy has been
destroyed. Moore’s theorem clearly blocks the inference that any sequence of classically-
recorded observational outcomes obtained from any state |¢)) are sufficient to demonstrate
that |¢) is a faithful copy of any other quantum state, whether the other, “original” state
has been observed or merely described theoretically. In particular, observational outcomes
produced by any finite collection of POVMs are subject to observable-dependent exchange
symmetry, and hence insufficient to distinguish states |¢) of only the degrees of freedom
¥ reported by the deployed POVMs from composite states |1 ¢) that also involve degrees



of freedom ¢ undetected by any of the deployed POVMs. As discussed above, such a
composite state |1) ¢) may display behavior that is unpredictable from knowledge of |¢)
alone. Hence Moore’s theorem prevents any quantum state, regardless of its provenance,
from being regarded on the basis of finite observations as a clone of any other quantum
state. The strongest statement permitted by Moore’s theorem is that two quantum states
are indistinguishable by a finite set of observations that have either been performed or been
simulated theoretically; this weaker statement is clearly insufficient for “quantum cloning.”
Hence while Moore’s theorem does not prohibit quantum cloning dynamically - Moore’s
theorem does not concern dynamics at all - it prohibits treating any quantum state as a
clone; hence the consequences Moore’s theorem for any operations involving quantum states
include the consequences of the no-cloning theorem as a special case.

The Kochen-Specker theorem blocks the inference that two POVMs {ES!} and {ES?} will
produce the same sequence of classically-recorded observational outcomes ki...ky even if
they act on the same degrees of freedom within a single subset of degrees of freedom S.
Let us ask: under what circumstances would this inference be justified? Two POVMs
{ES1} and {E5?} can be expected to produce the same sequence of classically-recorded
observational outcomes k;j...ky only if it is known that they both act only on a particular
set of degrees of freedom {1, ¢,...x}, i.e. only on the Hilbert space spanned by {1, ¢, ...x}.
Observable-dependent exchange symmetry prevents this from ever being known about any
physically-implemented POVM; no finite sequence of observations can determine, for any
POVM, the complete set of degrees of freedom for which that POVM yields finite outcomes.
Hence for physically-implemented POVMs - the only POVMs of relevance to observers -
Moore’s theorem already prohibits observers from making the inference that is prohibited
by the Kochen-Specker theorem. As in the case of the no-cloning theorem, the Kochen-
Specker prohibition is based on a dynamical assumption - in particular, the presence of
entanglement - while Moore’s prohibition is based on a consideration of what can be inferred
from measurements even in a classical setting.

Bell’s theorem blocks the assumption that two POVMs { EP1} and { EP2} act independently
on spatially-distant components of a single system S. Let us again ask for the circumstances
under which such an assumption would be justified. Two POVMs {ES'} and {EP?} can
be expected to produce independent sequences of outcomes k;...kx and [y...I only if they
act on sets of degrees of freedom {v,¢,...x} and {¢/, ¢',...x'} that are separable within
the Hilbert space Hg over which {ES'} and {EP?} are defined. Observable-dependent
exchange symmetry prevents this from being known on the basis of observations about
any pair of physically-implemented POVMs. The presumed spatial separation between the
locations at which the operators are deployed is, moreover, irrelevant to this conclusion.
The two sets of outcomes ki...kx and [;...[;y must be jointly recorded at some location
in order for the question of their independence to arise; if the outcomes are obtained at
different locations by different observers as in the usual Bell’s theorem scenario, one or
both of the observers must communicate the outcomes obtained either to the other or to
some third party who records them both. If information must be physically encoded at
all times, a physical process must deliver the communicated outcome(s) to the recording



location. In this case the system S can be notionally expanded within E to include this
physical information-delivery process, and the operators { EP1} and {ES2} can be regarded
as acting on this expanded system at the location where the outcomes are jointly recorded.

Recognizing the restrictions that are imposed on inferences from classically-recorded ob-
servational outcomes by the no-cloning theorem, the Kochen-Specker theorem and Bell’s
theorem as restrictions already imposed on such inferences by Moore’s theorem leads natu-
rally to the question of why this should be so. The no-cloning theorem, the Kochen-Specker
theorem and Bell’s theorem all follow from the assumption of unitary dynamics and hence of
the possibility - indeed inevitability - of entanglement between interacting systems. These
theorems have no analogs in classical mechanics, in which interacting systems are assumed
to be separable at all times. Moore’s theorem, on the other hand, makes no explicit as-
sumptions about the dynamics of the systems being observed; it only assumes only that the
space of all possible classical FSMs can be considered to be well-defined. Hence Moore’s
theorem does not contradict classical mechanics by implying that classical systems are non-
separable. It only restricts the ability of observers to identify classical systems, and in
particular, to place upper bounds on their degrees of freedom. Hence what it contradicts is
an implicit assumption of classical physics that systems are “transparent” to observation,
that they have only the degrees of freedom that they are observed to have.

How Moore’s theorem subjects even classical observations to the prohibitions associated
with the quantum no-go theorems can be made clear by translating the assumption that the
space of all possible classical FSMs can be considered to be well-defined from mathematical
to physical terms. If Moore’s “machines” are regarded as physically implemented, then
Moore’s inference that “there exist other machines experimentally distinguishable from S”
requires the actual existence of other physical systems that have physical dynamics that
duplicate those of S to whatever extent the dynamics of S have been observed, but that can
diverge from those of S with the very next observation. With this physical interpretation,
Moore’s theorem becomes the statement that any finitely-recorded observational history
is consistent with arbitrarily many futures that reveal the dynamical effects of degrees of
freedom that were always present, but were previously “hidden” in the straightforward
sense of being not yet detected. The notion that a fixed observational history is consistent
with arbitrarily many distinct futures is a familiar one: it is the central notion of Everett’s
[18] model of the universe as a single Hilbert space in which unitary dynamics unfolds.
From the perspective of Moore’s theorem, “systems” are defined solely by observational
histories, and hence correspond to “branches” in a fully-unitary, Everettian conception of
quantum theory. Hence it is unsurprising that conclusions reached from Moore’s theorem
and from the assumption of unitary dynamics should be similar.

5 Conclusion

In a passage typical of many others, Schlosshauer characterizes classical physics as follows:
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“Here (i.e. in classical physics) we can enlarge our ‘catalog’ of physical properties
of the system (and therefore specify its state more completely) by performing an
arbitrary number of measurements of identical physical quantities, in any given
order. Moreover, many independent observers may carry out such measurements
(and agree on the results) without running into any risk of disturbing the state
of the system, even though they may have been initially completely ignorant of
this state.”

([19] p. 16)

To be “completely ignorant” of the state of a system is to not know the values of any of the
system’s state variables: to not know its size, shape, location, direction of travel, or anything
else about it. How, then, are observers to identify the system as a target of observations,
much less agree that they have observed the same system? To be identifiable as a target of
observations by “completely ignorant” observers, a system must be taken as given: given
by the laws of physics, the initial conditions of the universe, or some omnipotent power.
As characterized by Schlosshauer, classical physics takes the systems composing the world
as given. This assumption is familiar from §2: it is the assumption that any particular
set of observational outcomes can be attributed, by definition, to a particular collection of
physical degrees of freedom.

If dynamics are unitary and universal, one cannot take systems as given. One can choose to
ignore degrees of freedom that are not explicitly represented by one’s classically-recorded
observational outcomes, and one can trace out such degrees of freedom when performing
decoherence calculations, but one must remain aware that doing so has no effect on their
causal relevance in reality. Both Moore’s theorem and the quantum no-go theorems are
continual reminders of this fact.
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