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Abstract

Nowadays data sets are available in very complex and heterogeneous
ways. Mining of such data collections is essential to support many real-
world applications ranging from healthcare to marketing. In this work,
we focus on the analysis of “complex” sequential data by means of inter-
esting sequential patterns. We approach the problem using the elegant
mathematical framework of Formal Concept Analysis (FCA) and its ex-
tension based on “pattern structures”. Pattern structures are used for
mining complex data (such as sequences or graphs) and are based on a
subsumption operation, which in our case is defined with respect to the
partial order on sequences. We show how pattern structures along with
projections (i.e., a data reduction of sequential structures), are able to enu-
merate more meaningful patterns and increase the computing efficiency of
the approach. Finally, we show the applicability of the presented method
for discovering and analyzing interesting patient patterns from a French
healthcare data set on cancer. The quantitative and qualitative results
(with annotations and analysis from a physician) are reported in this use
case which is the main motivation for this work.

Keywords: data mining; formal concept analysis; pattern structures;
projections; sequences; sequential data.

1 Introduction

Sequence data is present and used in many applications. Mining sequential pat-
terns from sequence data has become an important data mining task. In the
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last two decades, the main emphasis has been on developing efficient mining
algorithms and effective pattern representations [Han et al., 2000, Pei et al.,
2001a, Yan et al., 2003, Ding et al., 2009, Räıssi et al., 2008]. However, one
problem with traditional sequential pattern mining algorithms (and generally
with all pattern enumeration algorithms) is that they generate a large number
of frequent sequences while a few of them are truly relevant. To tackle this
challenge, recent studies try to enumerate patterns using some alternative in-
terestingness measures or by sampling representative patterns. A general idea in
finding statistically significant patterns is to extract patterns whose characteris-
tics for a given measure, such as frequency, strongly deviates from its expected
value under a null model, i.e. the value expected by the distribution of all data.
In this work, we focus on complementing the statistical approaches with a sound
algebraic approach trying to answer the following question: can we develop a
framework for enumerating only relevant patterns based on data lattices and its
associated measures?

The above question can be answered by addressing the problem of analyz-
ing sequential data using the framework of Formal Concept Analysis (FCA),
a mathematical approach to data analysis [Ganter and Wille, 1999], and pat-
tern structures, an extension of FCA that handles complex data [Ganter and
Kuznetsov, 2001]. To analyze a dataset of “complex” sequences while avoiding
the classical efficiency bottlenecks, we introduce and explain the usage of projec-
tions, which are mathematical mappings for defining approximations. Projec-
tions for sequences allow one to reduce the computational costs and the volume
of enumerated patterns, avoiding the infamous “pattern flooding”. In addition,
we provide and discuss several measures, such as stability, to rank patterns with
respect to their “interestingness”, giving an expert order in which the patterns
may be efficiently analyzed.

In this paper, we develop a novel, rigorous and efficient approach for work-
ing with sequential pattern structures in formal concept analysis. The main
contributions of this work can be summarized as follows:

• Pattern structure specification and analysis. We propose a novel way of
dealing with sequences based on complex alphabets by mapping them to
pattern structures. The genericity power provided by the pattern struc-
tures allows our approach to be directly instantiated with state-of-the-art
FCA algorithms, making the final implementation flexible, accurate and
scalable.

• “Projections” for sequential pattern structures. Projections significantly
decrease the number of patterns, while preserving the most interesting
ones for an expert. Projections are built to answer questions that an
expert may have. Moreover, combinations of projections and concept sta-
bility index provide an efficient tool for the analysis of complex sequential
datasets. The second advantage of projections is its ability to significantly
decrease the complexity of a problem, saving thus computational time.

• Experimental evaluations. We evaluate our approach on real sequence
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Table 1: A toy FCA context.

m1 m2 m3 m4

g1 x x
g2 x x
g3 x
g4 x x

dataset of a regional healthcare system. The data set contains ordered
sets of hospitalizations for cancer patients with information about the
hospitals they visited, causes for the hospitalizations and medical proce-
dures. These ordered sets are considered as sequences. The experiments
reveal interesting (from a medical point of view) and useful patterns, and
show the feasibility and the efficiency of our approach.

This paper is an extension of the work presented at CLA’14 conference [Buz-
makov et al., 2013]. The main differences w.r.t. the CLA’14 paper are a more
complete explanation of the mathematical framework and a new experimental
part evaluating different aspects of the introduced framework.

The paper is organized as follows. Section 2 introduces formal concept analy-
sis and pattern structures. The specification of pattern structures for the case of
sequences is presented in Section 3. Section 4 describes projections of sequential
pattern structures followed in Section 5 by the evaluation and experimentations.
Finally, related works are discussed before concluding the paper.

2 FCA and pattern structures

2.1 Formal concept analysis

FCA is a formalism that can be used for guiding data analysis and knowledge
discovery [Ganter and Wille, 1999]. FCA starts with a formal context and builds
a set of formal concepts organized within a concept lattice. A formal context is
a triple (G,M, I), where G is a set of objects, M is a set of attributes and I is
a relation between G and M , I ⊆ G×M . In Table 1, a cross table for a formal
context is shown. A Galois connection between G and M is defined as follows:

A′ = {m ∈M | ∀g ∈ A, (g,m) ∈ I}, A ⊆ G
B′ = {g ∈ A | ∀m ∈M, (g,m) ∈ I}, B ⊆M

The Galois connection maps a set of objects to the maximal set of attributes
shared by all objects and reciprocally. For example, {g1, g2}′ = {m4}, while
{m4}′ = {g1, g2, g4}, i.e. the set {g1, g2} is not maximal. Given a set of objects
A, we say that A′ is the description of A.
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(; {m1,m2,m3,m4})

(g2; g4; {m3,m4})({g1} ; {m1,m4}) ({g3} ; {m2})

({g1, g2, g4} ; {m4})

({g1, g3, g2, g4} ; )

Figure 1: Concept Lattice for the toy context

Definition 1. A formal concept is a pair (A,B), where A ⊆ G is a subset of
objects, B ⊆ M is a subset of attributes, such that A′ = B and A = B′, where
A is called the extent of the concept, and B is called the intent of the concept.

A formal concept corresponds to a pair of maximal sets of objects and at-
tributes, i.e. it is not possible to add an object or an attribute to the concept
without violating the maximality property. For example a pair ({g1, g2, g4} , {m4})
is a formal concept. Formal concepts can be partially ordered w.r.t. the
extent inclusion (dually, intent inclusion). For example, ({g1} ; {m1,m4}) ≤
({g1, g2, g4} , {m4}). This partial order of concepts is shown in Figure 1. The
number of formal concepts for a given context can be exponential w.r.t. the
cardinality of set of objects or set of attributes. It is easy to see that for context
(G,G, IG), where IG = {(x, y) | x ∈ G, y ∈ G, x 6= y}, the number of concepts
is equal to 2|G|.

2.2 Stability index of a concept

The number of concepts in a lattice for real-world tasks can be large. To find
the most interesting subset of concepts, different measures can be used such as
the stability of the concept [Kuznetsov, 2007] or the concept probability and
separation [Klimushkin et al., 2010]. These measures help extracting the most
interesting concepts. However, the last ones are less reliable in noisy data.

Definition 2. Given a concept c, the concept stability Stab(c) of c is the relative
number of subsets of the concept extent (denoted Ext(c)), whose description, i.e.
the result of (·)′, is equal to the concept intent (denoted Int(c)).

Stab(c) :=
|{s ∈ ℘(Ext(c)) | s′ = Int(c)}|

|℘(Ext(c))|
(1)

Here ℘(P ) is the powerset of P . Stability measures how a concept depends on
objects in its extent. The larger the stability is the more combinations of objects
can be deleted from the context without affecting the intent of the concept, i.e.
the intent of the most stable concepts is likely to be a characteristic pattern of a
given phenomenon and not an artifact of a dataset. Of course, stable concepts
still depend on the dataset, and, consequently some important information can
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Table 2: A toy formal context

m1 m2 m3 m4 m5 m6

g1 x x
g2 x x
g3 x x
g4 x x
g5 x

({g1} ; ∗)[0.5] ({g2} ; ∗)[0.5] ({g3} ; ∗)[0.5] ({g4} ; ∗)[0.5] ({g5} ; ∗)[0.5]

(∅; ∗)[1.0]

( {g1, g2, g3, g4} ; {m6})[0.69]

({g1, g2, g3, g4, g5} ; ∗)[0.47]

Figure 2: Concept Lattice for the context in Table 2 with corresponding stability
indexes.

be contained in the unstable concepts. However, the stability can be considered
as a good heuristic for selecting concepts because the more stable the concept
is the less it depends on the given dataset w.r.t. to object removal.

Example 1. Figure 2 shows a lattice for the context in Table 2, for simplic-
ity some intents are not given. Extent of the outlined concept c is Ext(c) =
{g1, g2, g3, g4}, thus, its powerset contains 24 elements. Descriptions of 5 sub-
sets of Ext(c) ({g1} , . . . , {g4} and ∅) are different from Int(c) = {m6}, while
all other subsets of Ext(c) have a common description equal to {m6}. So,

Stab(c) = 24−5
24 = 0.69.

One of the fastest algorithm processing a concept lattice L is proposed
in [Roth et al., 2008] with the worst-case complexity of O(|L|2) where |L| is
the size of the concept lattice. The experimental section shows that for a big
lattice, the stability computation can take much more time than the construction
of the concept lattice. Thus, the estimation of concept stability is an important
question. Here we present an efficient way for such an estimation. It should be
noticed that in a lattice the extent of any ancestor of a concept c is a superset of
the extent of c, while the extent of any descendant is a subset. Given a concept
c and an immediate descendant d, we have ∀s ⊆ Ext(d), s′′ ⊆ Ext(d), which
means that s′ ⊇ Int(d) ⊃ Int(c), i.e. s′ 6= Int(c). Thus, we can exclude in the
computation of the numerator of stability in (1) all subsets of the extent of a
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direct descendant c. Thus, the following bound holds:

Stab(c) ≤ 1− max
d∈DD(c)

1

2∆(c,d)
, (2)

where DD(c) is the set of all direct descendants and ∆(c, d) is the set-difference
between extent of c and extent of d, ∆(c, d) = |Ext(c) \ Ext(d)|.

Example 2. With help of (2) we can find all stable concepts (and some un-
stable), i.e. the concepts with a high stability w.r.t. a threshold θ. If θ = 0.97,
we should compute for each concept c in the lattice the following value md(c) =
min
d∈DD(c)

∆(c, d) and then select concepts verifying md(c) ≥ − log(1−0.97) = 5.06.

2.3 Pattern structures

Although FCA applies to binary contexts, more complex data such as sequences
or graphs can be directly processed as well. For that, pattern structures were
introduced in Ganter and Kuznetsov [2001].

Definition 3. A pattern structure is a triple (G, (D,u), δ), where G is a set
of objects, (D,u) is a complete meet-semilattice of descriptions and δ : G→ D
maps an object to a description.

The lattice operation in the semilattice (u) corresponds to the similarity
between two descriptions. Standard FCA can be presented in terms of a pat-
tern structure. In this case, G is the set of objects, the semilattice of descrip-
tions is (℘(M),u) and a description is a set of attributes, with the u operation
corresponding to the set intersection (℘(M) denotes the powerset of M). If
x = {a, b, c} and y = {a, c, d} then x u y = x ∩ y = {a, c}. The mapping
δ : G → ℘(M) is given by, δ(g) = {m ∈ M | (g,m) ∈ I}, and returns the
description for a given object as a set of attributes.

The Galois connection for a pattern structure (G, (D,u), δ) is defined as
follows:

A� :=
l

g∈A
δ(g), for A ⊆ G

d� := {g ∈ G | d v δ(g)}, for d ∈ D

The Galois connection makes a correspondence between sets of objects and
descriptions. Given a subset of objects A, A� returns the description which
is common to all objects in A. Given a description d, d� is the set of all
objects whose description subsumes d. More precisely, the partial order (or
the subsumption order) on D (v) is defined w.r.t. the similarity operation u:
c v d⇔ c u d = c, and c is subsumed by d.

Definition 4. A pattern concept of a pattern structure (G, (D,u), δ) is a pair
(A, d) where A ⊆ G and d ∈ D such that A� = d and d� = A, A is called the
concept extent and d is called the concept intent.

6



Table 3: Toy sequential data on patient medical trajectories.

Patient Trajectory
p1 〈[H1, {a}]; [H1, {c, d}]; [H1, {a, b}]; [H1, {d}]〉
p2 〈[H2, {c, d}]; [H3, {b, d}]; [H3, {a, d}]〉
p3 〈[H4, {c, d}]; [H4, {b}]; [H4, {a}]; [H4, {a, d}]〉

As in standard FCA, a pattern concept corresponds to the maximal set of
objects A whose description subsumes the description d, where d is the maximal
common description for objects in A. The set of all concepts can be partially
ordered w.r.t. partial order on extents (dually, intent patterns, i.e v), within a
concept lattice.

An example of pattern structures is given in Table 3, while the corresponding
lattice is depicted in Figure 3.

As stability of concepts only depends on extents, it can be defined by the
same procedure for both formal contexts and pattern structures.

3 Sequential pattern structures

Certain phenomena, such as a patient trajectory (clinical history), can be con-
sidered as a sequence of events. This section describes how FCA and pattern
structures can process sequential data.

3.1 An example of sequential data

Imagine that we have medical trajectories of patients, i.e. sequences of hospi-
talizations, where every hospitalization is described by a hospital name and a
set of procedures. An example of sequential data on medical trajectories with
three patients is given in Table 3. We have a set of procedures P = {a, b, c, d}, a
set of hospital names TH = {H1, H2, H3, H4, CL,CH, ∗}, where hospital names
are hierarchically organized (by level of generality). H1 and H2 are central
hospitals (CH), H3 and H4 are clinics (CL), and ∗ denotes the root of this
hierarchy. The least common ancestor in this hierarchy is denoted by h1 u h2,
for any h1, h2 ∈ TH , i.e. H1 u H2 = CH. Every hospitalization is described
by one hospital name and may contain several procedures. The procedure or-
der in each hospitalization is not important in our case. For example, the first
hospitalization [H2, {c, d}] for the second patient (p2) was a stay in hospital H2

and during this hospitalization the patient underwent procedures c and d. An
important task is to find the “characteristic” sequences of procedures and asso-
ciated hospitals in order to improve hospitalization planning, optimize clinical
processes or detect anomalies.

We approach the search for characteristic sequences by finding the most sta-
ble concepts in the lattice corresponding to a sequential pattern structure. For
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the simplification of calculations, subsequences are considered without “gaps”,
i.e the order of non consequent elements is not taken into account. This is rea-
sonable in this task because experts are interested in regular consecutive events
in healthcare trajectories. A sequential pattern structure is a set of sequences
and is based on the set of maximal common subsequences (without gaps) be-
tween two sequences. Next subsections define partial order on sequences and
the corresponding pattern structures.

3.2 Partial order on complex sequences

A sequence is constituted of elements from an alphabet. The classical subse-
quence matching task requires no special properties of the alphabet. Several
generalizations of the classical case were made by introducing a subsequence
relation based on an itemset alphabet [Agrawal and Srikant, 1995] or on a
multidimensional and multilevel alphabet [Plantevit et al., 2010]. Here, we
generalize the previous cases, requiring for an alphabet to form a semilattice
(E,uE) (We should note that in this paper we consider two semilattices, the
first one is related to the characters of the alphabet, (E,uE), and the second
one is related to pattern structures, (D,u)). Thanks to the formalism of pattern
structures we are able to process in a unified way all types of sequential datasets
with poset-shaped alphabet (it is mentioned above that any partial order can
be transformed into a semilattice). However, some sequential data can have
connections between elements, e.g. [Adda et al., 2010], and, thus, cannot be
straightforwardly processed by our approach.

Definition 5. Given a semilattice (E,uE), also called an alphabet, a sequence
is an ordered list of elements from E. We denote it by 〈e1; e2; · · · ; en〉 where
ei ∈ E.

In this alphabet semilattice (E,uE) there is a bottom element ⊥E that
can be matched with any other element. Formally, ∀e ∈ E,⊥E = ⊥E uE
e. This element is required by the lattice structure, but provides no useful
information. Thus, it should be excluded from sequences. The bottom element
of E corresponds to the empty set in sequential mining [Agrawal and Srikant,
1995], and the empty set is always ignored in this domain.

Definition 6. A valid sequence 〈e1; · · · ; en〉 is a sequence where ei 6= ⊥E for
all i ∈ {1, · · · , n} .

Definition 7. Given an alphabet (E,uE) and two sequences t = 〈t1; ...; tk〉 and
s = 〈s1; ...; sn〉 based on E (tq, sp ∈ E), the sequence t is a subsequence of s,
denoted t ≤ s, iff k ≤ n and there exist j1, ..jk such that 1 ≤ j1 < j2 < ... <
jk ≤ n and for all i ∈ {1, 2, ..., k}, ti vE sji , i.e. ti uE sji = ti.

Example 3. In the running example (Section 3.1), the alphabet is E = TH ×
℘(P ) with the similarity operation (h1, P1) u (h2, P2) = (h1 u h2, P1 ∩ P2),
where h1, h2 ∈ TH are hospitals and P1, P2 ∈ ℘(P ) are sets of procedures.
Thus, the sequence ss1 = 〈[CH, {c, d}]; [H1, {b}]; [∗, {d}]〉 is a subsequence of
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p1 = 〈[H1, {a}]; [H1, {c, d}]; [H1, {a, b}]; [H1, {d}]〉 because if we set ji = i + 1
(Definition 7) then ss1

1 v p1
j1

(‘CH’ is more general than H1 and {c, d} ⊆ {c, d}),

ss1
2 v p1

j2
(the same hospital and {b} ⊆ {b, a}) and ss1

3 v p1
j3

(‘*’ is more general
than H1 and {d} ⊆ {d}).

With complex sequences and this kind of subsequence relation the compu-
tation can be hard. Thus, for the sake of simplification, only “contiguous” sub-
sequences are considered, where only the order of consequent elements is taken
into account, i.e. given j1 in Definition 7, ji = ji−1 + 1 for all i ∈ {2, 3, ..., k}.
Since experts are interested in regular consecutive events in healthcare trajec-
tories, such a restriction does make sens for our data. It helps to connect only
related hospitalizations.

The next section introduces pattern structures that are based on complex se-
quences with a general subsequence relation, while the experiments are provided
for a “contiguous” subsequence relation.

3.3 Sequential meet-semilattice

Based on the previous definitions, we can define the sequential pattern struc-
ture used for representing and managing sequences. For that, we make an
analogy with the pattern structures for graphs [Kuznetsov, 1999] where the
meet-semilattice operation u respects subgraph isomorphism. Thus, we intro-
duce a sequential meet-semilattice respecting subsequence relation. Given an
alphabet lattice (E,uE), S is the set of all valid sequences based on (E,uE).
S is partially ordered w.r.t. Definition 7. (D,u) is a semilattice on S, where
D ⊆ ℘(S) such that, if d ∈ D contains a sequence s, then all subsequences of s
should be included into d, ∀s ∈ d, @s̃ ≤ s : s̃ /∈ d, and the similarity operation
is the set intersection for two sets of sequences. Given two patterns d1, d2 ∈ D,
the set intersection operation ensures that if a sequence s belongs to d1 u d2

then any subsequence of s belongs to d1 u d2 and thus d1 u d2 ∈ D. As the set
intersection operation is idempotent, commutative and associative, (D,u) is a
semilattice.

Example 4. If pattern d1 ∈ D includes sequence ss4 = 〈[∗, {c, d}]; [∗, {b}]〉 (see
Table 4), then it should include also 〈[∗, {d}]; [∗, {b}]〉, 〈[∗, {c, d}]〉, 〈[∗, {d}]〉
and others. If pattern d2 ∈ D includes ss12 = 〈[∗, {a}]; [∗, {d}]〉, then it should
include 〈[∗, {a}]〉, 〈[∗, {d}]〉 and 〈〉. Thus the intersection of two sets d1 and d2

is equal to the set {〈[∗, {d}]〉 , 〈〉}.

The next proposition stems from the aforementioned and will be used in the
proofs in the next section.

Proposition 1. Given (G, (D,u), δ) and x, y ∈ D, x v y if and only if ∀sx ∈ x
there is a sequence sy ∈ y, such that sx ≤ sy.

The set of all possible subsequences for a given sequence can be large. Thus,
it is more efficient to consider a pattern d ∈ D as a set of only maximal sequences
d̃, d̃ = {s ∈ d | @s∗ ∈ d : s∗ ≥ s}. Furthermore, every pattern will be given only
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({
p2
}

; p2
)({

p1
}

; p1
) ({

p3
}

; p3
)

({
p1, p2

}
; ss2, ss3

) ({
p1, p3

}
; ss11, ss12

) ({
p2, p3

}
; ss6, ss7, ss8

)

({
p1, p2, p3

}
; ss4, ss5

)

(∅; ∗)

Figure 3: The concept lattice for the pattern structure given by Table 3. Con-
cept intents reference to sequences in Tables 3 and 4.

Table 4: Subsequences of patient sequences in Table 3.

Subsequences
ss1 〈[CH, {c, d}]; [H1, {b}]; [∗, {d}]〉
ss2 〈[CH, {c, d}]; [∗, {b}]; [∗, {d}]〉
ss3 〈[CH, {}]; [∗, {d}]; [∗, {a}]〉
ss4 〈[∗, {c, d}]; [∗, {b}]〉
ss5 〈[∗, {a}]〉
ss6 〈[∗, {c, d}]; [CL, {b}]; [CL, {a}]〉
ss7 〈[CL, {d}]; [CL, {}]〉
ss8 〈[CL, {}]; [CL, {a, d}]〉
ss9 〈[CH, {c, d}]〉
ss10 〈[CL, {b}]; [CL, {a}]〉
ss11 〈[∗, {c, d}]; [∗, {b}]〉
ss12 〈[∗, {a}]; [∗, {d}]〉

by the set of all maximal sequences. For example,
{
p2
}
u
{
p3
}

=
{
ss6, ss7, ss8

}
(see Tables 3 and 4), i.e.

{
ss6, ss7, ss8

}
is the set of all maximal sequences

specifying the intersection of p2 and p3. Similarly we have
{
ss6, ss7, ss8

}
u{

p1
}

=
{
ss4, ss5

}
. Note that representing a pattern by the set of all maximal

sequences allows for an efficient implementation of the intersection “u” of two
patterns (in Section 5.1 we give more details on similarity operation w.r.t. a
contiguous subsequence relation).

Example 5. The sequential pattern structure for our example (Subsection 3.1)
is (G, (D,u), δ), where G =

{
p1, p2, p3

}
, (D,u) is the semilattice of sequential

descriptions, and δ is the mapping associating an object in G to a description
in D shown in Table 3. Figure 3 shows the resulting lattice of sequential pattern
concepts for this particular pattern structure (G, (D,u), δ).
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4 Projections of sequential pattern structures

Pattern structures are hard to process due to the large number of concepts in the
concept lattice, the complexity of the involved descriptions and the similarity
operation. Moreover, a given pattern structure can produce a lattice with a lot
of patterns which are not interesting for an expert. Can we save computational
time by avoiding to compute “useless” patterns? Projections of pattern struc-
tures “simplify” to some degree the computation and allow one to work with a
reduced description. In fact, projections can be considered as filters on patterns
respecting mathematical properties. These properties ensure that the projec-
tion of a semilattice is a semilattice and that projected concepts are related to
original ones [Ganter and Kuznetsov, 2001]. Moreover, the stability measure of
projected concepts never decreases w.r.t the original concepts. We introduce
projections on sequential patterns revising Ganter and Kuznetsov [2001]. It is
necessary to provide an extended definition of projection in order to deal with
interesting projections for real-world sequential datasets.

Definition 8 (Ganter and Kuznetsov [2001]). A projection ψ : D → D is an in-
terior operator, i.e. it is (1) monotone (x v y ⇒ ψ(x) v ψ(y)), (2) contractive
(ψ(x) v x) and (3) idempotent (ψ(ψ(x)) = ψ(x)).

Definition 9. A projected pattern structure ψ((G, (D,u), δ)) is a pattern struc-
ture (G, (Dψ,uψ), ψ ◦ δ), where Dψ = ψ(D) = {d ∈ D | ∃d∗ ∈ D : ψ(d∗) = d}
and ∀x, y ∈ D,x uψ y := ψ(x u y).

Note that in [Ganter and Kuznetsov, 2001] ψ((G, (D,u), δ)) = (G, (D,u), ψ◦
δ). Our definition allows one to use a wider set of projections. In fact all pro-
jections that we describe for sequential pattern structures below require Defini-
tion 9. Now we should show that (Dψ,uψ) is a semilattice.

Proposition 2. Given a semilattice (D,u) and a projection ψ, for all x, y ∈ D
ψ(x u y) = ψ(ψ(x) u y).

Proof. 1. ψ(x) v x, thus, x, y w (x u y) w (ψ(x) u y) w ψ(ψ(x) u y)

2. x v y ⇒ ψ(x) v ψ(y), thus, ψ(x u y) w ψ(ψ(x) u y)

3. ψ(x u y) u ψ(x) u y =
ψ(xuy)vψ(x)

ψ(x u y) u y =
ψ(xuy)vy

ψ(x u y),

then (ψ(x) u y) w ψ(x u y) and ψ(ψ(x) u y) w ψ(ψ(x u y)) = ψ(x u y)

4. From (2) and (3) it follows that ψ(x u y) = ψ(ψ(x) u y).

Corollary 1. X1 uψ X2 uψ · · · uψ XN = ψ(X1 uX2 u · · · uXN )

Proof. It can be prooven by induction.

1. X1 uψ X2 = ψ(X1 uX2) by Definition 9.
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2. If X1 uψ · · · uψ XK = ψ(X1 u · · · uXK), then

X1 uψ · · · uψ XK uψ XK+1 = ψ(X1 u · · · uXK) uψ XK+1 =

= ψ(ψ(X1 u · · · uXK) uXK+1) =
Proposition 2

ψ(X1 u · · · uXK+1)

Corollary 2. Given a semilattice (D,u) and a projection ψ, (Dψ,uψ) is a
semilattice, i.e. uψ is commutative, associative and idempotent.

The concepts of a pattern structure and a projected pattern structure are
connected through Proposition 3. This proposition can be found in Ganter and
Kuznetsov [2001], but thanks to Corollary 1, it is valid in our case.

Proposition 3. Given a concept (A, d) in ψ((G, (D,u), δ)), the extent A is an
extent in (G, (D,u), δ). Given a concept (A, dψ) in ψ((G, (D,u), δ)), the intent
dψ is of the form dψ = ψ(d), where (A, d) is a concept in (G, (D,u), δ).

Moreover, while preserving the extents of some concepts, projections cannot
decrease the stability of the projected concepts, i.e. if the projection preserves
a stable concept, then its stability (Definition 2) can only increase.

Proposition 4. Given a pattern structure (G, (D,u), δ), its concept c and a
projected pattern structure (G, (Dψ,uψ), ψ ◦ δ), and the projected concept c̃, if
the concept extents are equal (Ext(c) = Ext(c̃)) then Stab(c) ≤ Stab(c̃).

Proof. Concepts c and c̃ have the same extent. Thus, according to Definition 2,
in order to prove the proposition, it is enough to prove that for any subset
A ⊆ Ext(c), if A� = Int(c) in the original pattern structure, then A� = Int(c̃)
in the projected one.

Suppose that ∃A ⊂ Ext(c) such that A� = Int(c) in the original pattern
structure and A� 6= Int(c̃) in the projected one. Then there is a descendant
concept d̃ of c̃ in the projected pattern structure such that A� = Int(d̃) in the
projected lattice. Then there is an original concept d for the projected concept
d̃ with the same extent Ext(d). Then A� w Int(d) A Int(c) and, so, A� cannot
be equal to Int(c) in the original lattice. Contradiction.

Now we are going to present two projections of sequential pattern structures.
The first projection comes from the following observation. In many cases it may
be more interesting to analyze quite long subsequences rather than short ones.
This kind of projections is called Minimal Length Projection (MLP) and it
depends on the minimal length parameter ` for the sequences in a pattern. The
corresponding function ψ maps a pattern without short sequences to itself, and
a sequence with short sequences to the pattern containing only long sequences
w.r.t. a given length threshold. Later, propositions 1 and 5 state that MLP is
coherent with Definition 8.

Definition 10. The function ψMLP : D → D of minimal length ` is defined as

ψMLP (d) = {s ∈ d | length(s) ≥ `}

12



Example 6. If we prefer common subsequences of length ` ≥ 3, then between
p2 and p3 in Table 3 there is only one maximal common subsequence, ss6 in
Table 4, while ss7 and ss8 are too short to be considered. Figure 4a shows the
lattice of the projected pattern structure (Table 3) with patterns of length greater
or equal to 3.

Proposition 5. The function ψMLP is a monotone, contractive and idempotent
function on the semilattice (D,u).

Proof. The contractivity and idempotency are quite clear from the definition.
It remains to prove the monotonicity.

If X v Y , where X and Y are sets of sequences, then for every sequence
x ∈ X there is a sequence y ∈ Y such that x ≤ y (Proposition 1). We should
show that ψ(X) v ψ(Y ), or in other words for every sequence x ∈ ψ(X) there is
a sequence y ∈ ψ(Y ), such that x ≤ y. Given x ∈ ψ(X), since ψ(X) is a subset
of X and X v Y , there is a sequence y ∈ Y such that x ≤ y, with |y| ≥ |x| ≥ `
(` is a parameter of MLP), and thus, y ∈ ψ(Y ).

Another important type of projections is related to a variation of the lattice
alphabet (E,uE). One possible variation of the alphabet is to ignore certain
fields in the elements. For example, if a hospitalization is described by a hospital
name and a set of procedures, then either hospital or procedures can be ignored
in similarity computation. For that, in any element the set of procedures should
be substituted by ∅, or the hospital by ∗ (“arbitrary hospital”) which is the most
general element of the taxonomy of hospitals.

Another variation of the alphabet is to require that some field(s) should
not be empty. For example, we want to find patterns with non-empty set of
procedures or the element ∗ of the hospital taxonomy is not allowed in elements
of a sequence. Such variations are easy to realize within our approach. For this,
when computing the similarity operation between elements of the alphabet, one
should check if the result contains empty fields and, if yes, should substitute the
result by ⊥. This variation is useful, as it is shown in the experimental section,
but is rather difficult to define within more classical frequent sequence mining
approaches, which will be discussed later.

Example 7. An expert is interested in finding sequential patterns describing
how a patient changes hospitals, but with little interest in procedures. Thus, any
element of the alphabet lattice, containing a hospital and a non-empty set of
procedures can be projected to an element with the same hospital, but with an
empty set of procedures.

Example 8. An expert is interested in finding sequential patterns containing
some information about the hospital in every hospitalization, and the corre-
sponding procedures, i.e. hospital field in the patterns cannot be equal to ∗, e.g.,
ss5 is an invalid pattern, while ss6 is a valid pattern in Table 4. Thus, any
element of the alphabet semilattice with ∗ in the hospital field can be projected
to the ⊥E. Figure 4b shows the lattice corresponding to the projected pattern
structure (Table 3) defined by a projection of the alphabet semilattice.
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Below we formally define how the alphabet projection of a sequential pattern
structure should be processed. Intuitively, every sequence in a pattern should
be substituted with another sequence, by applying the alphabet projection to
all its elements. However, the result can be an incorrect sequence, because ⊥E
cannot belong to a valid sequence. Thus, sequences in a pattern should be
“developed” w.r.t. ⊥E , as it is explained below.

Definition 11. Given an alphabet (E,uE), a projection of the alphabet ψ and
a sequence s = 〈s1, · · · , sn〉 based on E, the projection ψ(s) is the sequence
s̃ = 〈s̃1, · · · , s̃n〉, such that s̃i = ψ(si).

Here, it should be noticed that s̃ is not necessarily a valid sequence (see Def-
inition 6), since it can include ⊥E as an element. However, in sequential pattern
structures, elements should include only valid sequences (see Section 3.3).

Definition 12. Given an alphabet (E,uE), a projection of the alphabet ψE, an
alphabet projection for the sequential pattern structure ψ(d) is the set of valid
sequences smaller than the projected sequences from d:

ψ(d) = {s ∈ S|(∃t ∈ d)s ≤ ψE(t)},

where S is the set of all valid sequences based on (E,uE).

Example 9. {ss6} = {〈[∗, {c, d}]; [CL, {b}]; [CL, {a}]〉} is an alphabet-projec-
ted pattern for the pattern {ss10} = {〈[CL, {b}]; [CL, {a}]〉}, where the alphabet
lattice projection is given in Example 8.

In the case of contiguous subsequences, {〈[CH, {c, d}]〉} is an alphabet-pro-
jected pattern for the pattern {ss2} = {〈[CH, {c, d}]; [∗, {b}]; [∗, {d}]〉}, where the
alphabet lattice projection is given by projecting every element with medical pro-
cedure b to the element with the same hospital and with the same set of procedures
excluding b. The projection of sequence ss2 is 〈[CH, {c, d}]; [∗, {}]; [∗, {d}]〉, but
[∗, {}] = ⊥E, and, thus, in order to project the pattern {ss2} the projected se-
quence is substituted by its maximal subsequences, i.e.

ψ({〈[CH, {c, d}]; [∗, {b}]; [∗, {d}]〉}) = {〈[CH, {c, d}]〉} .

Proposition 6. Considering an alphabet (E,uE), a projection of the alpha-
bet ψ, a sequential pattern structure (G, (D,u), δ), the alphabet projection (see
Definition 12) is monotone, contractive and idempotent.

Proof. This projection is idempotent, since the projection of the alphabet is
idempotent and only the projection of the alphabet can change the elements
appearing in sequences.

It is contractive because for any pattern d ∈ D and any sequences s ∈ d,
a projection of the sequence s̃ = ψ(s) is a subsequence of s. In Definition 12
the projected sequences should be substituted by their subsequences in order to
avoid ⊥E , building the sets {s̃i}. Thus, s is a supersequence for any s̃i, and, so,
the projected pattern d̃ = ψ(d) is subsumed by the pattern d.
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Figure 4: The projected concept lattices for the pattern structure given by
Table 3. Concept intents refer to the sequences in Tables 3 and 4.

Finally, we should show monotonicity. Given two patterns x, y ∈ D, such
that x v y, i.e. ∀sx ∈ x,∃sy ∈ y : sx ≤ sy, consider the projected sequence of sx,
ψ(sx). As sx ≤ sy for some sy then for some j0 < · · · < j|sx| (see Definition 7)
sxi vE syji (i ∈ 1, 2, ..., |sx|), then ψ(sxi ) vE ψ(syji) (by the monotonicity of
the alphabet projection), i.e. the projected sequence preserves the subsequence
relation. Thus, the set of allowed subsequences of sx is a subset of the set
of allowed subsequences of sy. Hence, the alphabet projection of the pattern
preserves pattern subsumption relation, ψ(x) ≤ ψ(y) (Proposition 1), i.e. the
alphabet projection is monotone.

5 Sequential pattern structure evaluation

5.1 Implementation

Nearly any state-of-the-art FCA algorithm can be adapted to process pattern
structures. We adapted the AddIntent algorithm [Merwe et al., 2004], as the
lattice structure is important for us to calculate stability (see an algorithm for
calculating stability in [Roth et al., 2008]). To adapt the algorithm to our needs,
every set intersection operation on attributes is substituted with the semilattice
operation u on corresponding patterns, while every subset checking operation
is substituted with the semilattice order checking v, in particular all (·)′ are
substituted with (·)�.

The next question is how the semilattice operation u and subsumption re-
lation v can be implemented for contiguous sequences. Given two sets of se-
quences S = {s1, ...sn} and T = {t1, ..., tm}, the similarity of these sets SuT , is
calculated according to Section 3.3, i.e. maximal sequences among all common
subsequences for any pair of sequences si and tj .

To find all common subsequences of two sequences, the following observations
can be useful. If ss = 〈ss1; ...; ssl〉 is a subsequence of s = 〈s1; ...; sn〉 with
jsi = ks+i, i.e. ssi vE sks+i (Definition 7: ks is the index difference from which
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ss is a contiguous subsequence of s) and a subsequence of t = 〈t1; ...; tm〉 with
jti = kt+i, i.e. ssi vE tkt+i, then for any index i ∈ {1, 2, ..., l}, ssi vE (sjsi utjti ).
Thus, to find all maximal common subsequences of s and t, we first align s and
t in all possible ways. For each alignment of s and t we compute the resulting
intersection. Finally, we keep only the maximal intersected subsequences.

For example, let us consider two possible alignments of s1 and s2:
s1 = 〈{a} ; {c, d} ; {b, a}; {d} 〉
s2 = 〈{c, d};{b, d} ; {a, d}〉
ssl = 〈 ∅ ; {d} 〉

s1 = 〈{a} ; {c, d};{b, a}; {d} 〉
s2 = 〈{c, d};{b, d};{a, d}〉
ssr = 〈{c, d}; {b} ; {d} 〉

The left intersection ssl is not retained, as it is not maximal (ssl < ssr), while
the right intersection ssr is kept.

The complexity of the alignment for two sequences s and t is O(|s| · |t| · γ),
where γ is the complexity of computing a common ancestor in the alphabet
lattice (E,u).

5.2 Experiments and discussion

The experiments are carried out on a MacBook Pro with a 2.5GHz Intel Core i5,
8GB of RAM Memory running OS X 10.6.8. The algorithms are not parallelized
and are coded in C++.

Our use-case dataset comes from a French healthcare system, called PMSI1

[Fetter et al., 1980]. Each element of a sequence has a “complex” nature. The
dataset contains 500 patients suffering from lung cancer, who live in the Lorraine
region (Eastern France). Every patient is described as a sequence of hospitaliza-
tions without any time-stamp. A hospitalization is a tuple with three elements:
(i) healthcare institution (e.g. university hospital of Nancy (CHUNancy)), (ii)
reason for the hospitalization (e.g. a cancer disease), and (iii) set of medical
procedures that the patient undergoes. An example of a medical trajectory is
given below:

〈[CHUNancy,Cancer, {mp1,mp2}] ; [CHParis,Chemo, {}] ; [CHParis,Chemo, {}]〉 .

This sequence represents a patient trajectory with three hospitalizations. It
expresses that the patient was first admitted to the university hospital of Nancy
(CHUNancy) for a cancer problem as a reason, and underwent procedures mp1

and mp2. Then he had two consequent hospitalizations in the general hospital of
Paris (CHParis) for chemotherapy with no additional procedure. Substituting
the same consequent hospitalizations by the number of repetitions, we have a
shorter and more understandable trajectory. For example, the above pattern
is transformed into two hospitalizations where the first hospitalization repeats
once and the second twice:

〈[CHUNancy,Cancer, {mp1,mp2}]× [1]; [CHParis,Chemo, {}]× [2]〉 .
1Programme de Médicalisation des Sytèmes d’Information.
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Figure 5: A geographical taxonomy of the healthcare institution
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Figure 6: The length distribution of sequences in the dataset

Diagnoses are coded according to the 10th International Classification of
Diseases (ICD10). Based on this coding, diagnoses could be described at 5
levels of granularity: root, chapter, block, 3-character, 4-character, terminal
nodes. This taxonomy has 1544 nodes. The healthcare institution is associ-
ated with a geographical taxonomy of 4 levels, where the first level refers to
the root (France) and the second, the third and the fourth levels correspond
to administrative region, administrative department and hospital respectively.
Figure 5 presents University Hospital of Nancy (code: 540002078) as a hospital
in Meurthe et Moselle, which is a department in Lorraine, region of France. This
taxonomy has 304 nodes. The medical procedures are coded according to the
French nomenclature “Classification Commune des Actes Médicaux (CCAM)”.
The distribution of sequence lengths is shown in Figure 6.

With 500 patient trajectories, the computation of the whole lattice is in-
feasible. We are not interested in all possible frequent trajectories, but rather

17



100 200 300 400 500

1
10

10
0

10
00

10
00

0

Database Size

C
om

pu
ta

tio
n 

Ti
m

e

GR

GRI

RP

RPI

GRP

GRPI
(s

)

(a) MLP projection, ` = 2

100 200 300 400 500

1
10

10
0

10
00

10
00

0

Database Size

C
om

pu
ta

tio
n 

Ti
m

e

GR

GRI

RP

RPI

GRP

GRPI

(s
)

(b) MLP projection, ` = 3

Figure 7: Computational time for different projections

in trajectories which answer medical analysis questions. An expert may know
the minimal size of trajectories that he is interested in, i.e. setting the MLP
projection. We use the MLP projection of length 2 and 3 and take into account
that most of the patients has at least 2 hospitalizations in the trajectory (see
Figure 6).

Figure 7 shows computational times for different projections as a function of
dataset size. Figure 7a shows different alphabet projections for MLP projection
with ` = 2, while Figure 7b for MLP with ` = 3. Every alphabet projection
is given by the name of fields, that are considered within the projection: G

corresponds to hospital geo-location, R is the reason for a hospitalization, P is
medical procedures and I is repetition interval, i.e. the number of consequent
hospitalizations with the same reason. We can see from these figures that MLP
allows one to save some computational resources with increasing of `. The dif-
ference in computational time between ` = 2 and ` = 3 projections is significant,
especially for time consuming cases. Even a bigger variation can be noticed for
the alphabet projections. For example, computation of the RPI projection takes
100 times more resources than any from GRP, RP, GR, GRP.

The same dependency can be seen in Figure 8, where the number of concepts
for every projection is shown. Consequently, it is important for an expert to
provide a strict projection that allows him to answer his questions in order to
save computational time and memory.

Table 5 shows some interesting concept intents with the corresponding sup-
port and ranking w.r.t. concept stability. For example the concept #1 is ob-
tained under the projection GR (i.e., we consider only hospital and reason), with
the intent 〈[Lorraine, C341 Lung Cancer]〉, where C341 Lung Cancer is a spe-
cial kind of lung cancer (malignant neoplasm in Upper lobe, bronchus or lung).
This concept is the most stable concept in the lattice for the given projection,
and the size of the concept extent is 287 patients.
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Figure 8: Lattice size for different projections

Table 5: Interesting concepts, for different projections.

# Projection Intent Stab. Rank Support
1 GR 〈[Lorraine, C341 Lung Cancer]〉 1 287
2 GR2 〈[Lorraine,Respiratory Disease]; [CHUNancy, Lung Cancer]〉 26 22
3 GR3 〈[Lorraine, Chemotherapy]× 4〉 1 176
4 RPI3 〈[Preparation for Chemotherapy, {Lung Radiography}]; [Chemotherapy]× [3, 4]〉 5 36
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One of the questions that the analyst would like to address here is “Where
do patients stay (i.e. hospital location) during their treatment, and for which
reason ?”. To answer this question, we consider only healthcare institutions
and reason fields, requiring both to “hold” some information and we use the
MLP projection of length 2 and 3 (i.e. projections GR2 and GR3). Nearly all
frequent trajectories show that patients usually are treated in the same region.
However, pattern #2 obtained under GR2 projection shows that, “22 patients
were first admitted in some healthcare institution in Lorraine region for a prob-
lem related to the respiratory system and then they were treated for a lung cancer
in University Hospital of Nancy.”

Another interesting question is “What are the sequential relations between
hospitalization reasons and the corresponding procedures?”. To answer this ques-
tion, we are not interested in healthcare institutions. Thus, any alphabet ele-
ment is projected by substituting healthcare institution field with ‘*’. As hos-
pitalization reason is important in each hospitalization, any alphabet element
without the hospitalization reason is of no use and is projected to the bottom el-
ement ⊥E of the alphabet. Such projections are called RPI2 or RPI3, meaning
that we consider the fields “Reason” and “Procedures”, while the reason should
not be empty and the MLP parameter is 2 or 3. Pattern #4 trivially states
that, “36 patients with lung cancer are hospitalized once for the preparation
of chemotherapy and during this hospitalization they undergo lung radiography.
Afterwards, they are hospitalized between 3 and 4 times for chemotherapy.”

Variability is high in healthcare processes and affects many aspects of health-
care trajectories: patients, medical habits and protocols, healthcare organisa-
tion, availability of treatments and settings. . . Mining sequential pattern struc-
tures is an interesting approach for finding regularities across one or several
dimensions of medical trajectories in a population of patients. It is flexible
enough to help healthcare managers to answer specific questions regarding the
natural organisation of care processes and to further compare them with ex-
pected or desirable processes. The use of taxonomies plays also a key role in
finding the right level of description of sequential patterns and reducing the
interpretation overhead.

6 Related work

Agrawal and Srikant [1995] introduced the problem of mining sequential pat-
terns over large sequential databases. Formally, given a set of sequences, where
each sequence is a list of transactions ordered by time and each transaction is a
set of items, the problem amounts to find all frequent subsequences that appear
a sufficient number of times with a user-specified minimum support threshold
(minsup). Following the work of Agrawal and Srikant many studies have con-
tributed to the efficient mining of sequential patterns [Mooney and Roddick,
2013]. Most of them are based on the antimonotonicity property (used in Apri-
ori), which states that any super pattern of a non-frequent pattern cannot be
frequent. The main algorithms are PrefixSpan [Pei et al., 2001b], SPADE [Zaki,
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2001], SPAM [Ayres et al., 2002], PSP [Masseglia et al., 1998], DISC [Chiu
et al., 2004], PAID [Yang et al., 2006] and FAST [Salvemini et al., 2011]. All
these algorithms aim at discovering sequential patterns from a set of sequences
of itemsets such as customers who frequently buy DVDs of episodes I, II and III
of Stars Wars, then buy within 6 months episodes IV, V, VI of the same famous
epic space opera.

Many studies about sequential pattern discovery focus on single-dimensional
sequences. However, in many situations, the database is multidimensional in
the sense that items can be of different nature. For example, a consumer
database can hold information such as article price, gender of the customer,
location of the store and so on. Pinto et al. [2001] proposed the first work for
mining multidimensional sequential patterns. In this work, a multidimensional
sequential database is defined as a schema (ID,D1, ..., Dm, S), where ID is a
unique customer identifier, D1, ..., Dm are dimensions describing the data and S
is the sequence of itemsets. A multidimensional sequence is defined as a vector
〈{d1, d2, ..., dm}, S1, S2, ..., Sl〉 where di ∈ Di for (i 6 m) and S1, S2, ..., Sl, are
the itemsets of sequence S. For instance, 〈{Metz,Male}, {mp1, mp2}, {mp3}〉
describes a male patient who underwent procedures mp1 and mp2 in Metz and
then underwent mp3 also in Metz. Here, dimensions remain constant over time,
such as the location of the treatment. This means that it is not possible to have
a pattern indicating that when the patient underwent procedures mp1 and mp2

in Metz then he underwent mp3 in Nancy. Among other proposals, Yu and Chen
[2005] proposed two methods AprioriMD and PrefixMDSpan for mining multi-
dimensional sequential patterns in the web domain. This study considers pages,
sessions and days as dimensions. Actually, these three different dimensions can
be projected into a single dimension corresponding to web pages, gathering web
pages visited during a same session and ordering sessions w.r.t the day as order.

In real world applications, each dimension can be represented at different
levels of granularity, by using a poset. For example, apples in a market basket
analysis can be either described as fruits, fresh food or food. The interest lies in
the capacity of extracting more or less general/specific multidimensional sequen-
tial patterns and overcome problems of excessive granularity and low support.
Srikant and Agrawal [1996] proposed GSP which uses posets for extracting se-
quential patterns. The basic approach is based on replacing every item with all
the ancestors in the poset and then the frequent sequences are generated. This
approach is not scalable in a multidimensional context because the size of the
database becomes the product of maximum height of the posets and number of
dimensions.

Plantevit et al. [2010] defined a multidimensional sequence as an ordered list
of multidimensional items, where a multidimensional item is a tuple (d1, ..., dm)
and di is an item associated with the ith dimension. They proposed M3SP , an
approach taking both aspects into account where each dimension is represented
at different levels of granularity, by using a poset. M3SP is able to search for se-
quential patterns with the most appropriate level of granularity. Their approach
is based on the extraction of the most specific frequent multidimensional items,
which are then used as alphabet to rephrase the original database. Then, M3SP
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uses a standard sequential pattern mining algorithm to extract multidimen-
sional sequential patterns. However, M3SP is not adapted to mine sequential
databases, where sequences are defined over a combination of sets of items and
items lying in a poset. Then it is not possible to have a pattern indicating that
when the patient went to uhp for a problem of cancer ca, where he underwent
procedures mp1 and mp2, then he went to ghl for the same medical problem ca,
where he underwent mp3 ( i.e, 〈(uhp, ca, {mp1,mp2}), (ghl, ca, {mp3})〉). Our
approach allows us to process such kind of patterns and in addition the elements
of sequences are even more general. For example, beside multidimensional and
multilevel sequences, sequences of graphs fall under our definition. Moreover,
frequent subsequence mining gives rise to a lot of subsequences which can be
hardly analyzed by an expert. Since our approach is based on Formal Concept
Analysis (FCA) [Ganter and Wille, 1999], we can use efficient relevance indexes
defined in FCA.

This paper is not the first attempt to use FCA for the analysis of sequential
data. Ferré [2007] processes sequential datasets based on a “simple” alphabet
without involving any partial order. In Casas-Garriga [2005] only sequences
of itemsets are considered. All closed subsequences are firstly mined and then
regrouped by a specialized algorithm in order to obtain a lattice similar to
the FCA lattice. This approach was not verified experimentally. Moreover,
compared with both approaches, i.e. Ferré [2007] and Casas-Garriga [2005],
our approach suggests a more general definition of sequences and, thanks to
pattern structures, there is no ‘pre-mining’ step to find frequent (or maximal)
subsequences. This allows us to apply different “projections” specializing the
request of an expert and simplifying the computations. In addition, in our
approach nearly all state-of-the-art FCA algorithms can be used in order to
efficiently process a dataset.

There is a number of approaches that help to analyze medical treatment
data. However, the direct comparison of them is hardly possible, because ev-
ery approach is designed for its own problem. For example, [Tsumoto et al.,
2014] analyze data of one hospital and provide a different view on the processes
within the hospital w.r.t. our approach. Finally and naturally, the most similar
approach to our work can be found in [Egho et al., 2014a,b], as some authors of
the present paper are involved in this alternative work. In [Egho et al., 2014a,b],
authors mine frequent sequences of the dataset similar to the sequences studied
here. However, they approach the complexity of the analysis of such data in a
different way. They use a support threshold in order to specify the outcome of
the algorithm and do not provide any order in which one can analyze the result.
In our case we rely on projections that are usually simpler to incorporate expert
knowledge than a support threshold and we give an order (w.r.t. stability of a
concept) which can be used to simplify the analysis of the treatment data.
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7 Conclusion

In this paper, we have presented a novel approach for analyzing sequential data
within the framework of pattern structures, an extension of Formal Concept
Analysis dealing with complex data. It is based on the formalism of sequential
pattern structures and projections. Our work complements the general orienta-
tions towards statistically significant patterns by presenting strong formal results
on the notion of interestingness from a concept lattice viewpoint. The frame-
work of pattern structures is very flexible and shows some important properties,
for example in allowing to reuse state-of-the-art and efficient FCA algorithms.
Using pattern structures leads to the construction of a pattern concept lattice,
which does not require the setting of a support threshold, as usually needed
in classical sequential pattern mining. Moreover, the use of projections gives a
lot of flexibility especially for mining and interpreting special kinds of patterns
(patterns can be proposed at several levels of complexity w.r.t. extraction and
interpretation).

Our framework was tested on a real-world dataset with patient hospitaliza-
tion trajectories. Interesting patterns answering questions of an expert are ex-
tracted and interpreted, showing the feasibility and usefulness of the approach,
and the importance of the stability as a pattern-selection procedure. In partic-
ular, projections play an important role here: mainly, they provide means to
select patterns of a special interest and they help to save computational time
(which could be otherwise very large).

For future work, we are planning to more deeply investigate projections,
their potential w.r.t. the types of patterns. It can be interesting to introduce
and evaluate the stability measure directly on sequences. Another research di-
rection is mining of association rules or building a Horn approximation [Balcázar
and Casas-Garriga, 2005] from the stable part of the pattern lattice or stable
sequences. Finally, as discussed above, a precise study combining frequent sub-
sequence mining and FCA-based approaches should be carried out.
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