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This paper is concerned with the distributed fault estimation problem for a class of uncertain
stochastic systems over sensor networks. The norm-bounded uncertainty enters into the system
in a random way governed by a set of Bernoulli distributed white sequence. The purpose of the
addressed problem is to design distributed fault estimators, via available output measurements
from not only the individual sensor but also its neighboring sensors, such that the fault estimation
error converges to zero exponentially in the mean square while the disturbance rejection attenu-
ation is constrained to a give level by means of the H∞ performance index. Intensive stochastic
analysis is carried out to obtain sufficient conditions for ensuring the exponential stability as
well as prescribed H∞ performance for the overall estimation error dynamics. Simulation re-
sults are provided to demonstrate the effectiveness of the proposed fault estimation technique in
this paper.
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1. Introduction

Over the past decades, fault diagnosis and isolation (FDI) and fault-tolerant control (FTC)
problems have attracted much attention owe to the increasing security and reliability de-
mand of modern control systems. However, in practice, it is generally difficult to obtain
the accurate information of the size and shape of the fault from an FDI strategy only. It is
fortunate that fault estimation technique is capable of providing the exact information of
the size of the fault, thereby helping reconstruct the fault signals. As such, fault estima-
tion is further needed for the purpose of active fault tolerant control. So far, considerable
research attention has been devoted to the theoretical research on the fault estimation
problem, and a variety of fault estimation approaches have been developed in existing lit-
erature, see e.g., (Shen et al., 2013; Ding, 2008; Ertiame et al., 2015; Fekih and Seelem,
2015; Wei et al., 2013; Bouibed et al., 2014; Jiang et al., 2006; Yan and Edwards, 2007)
and the references therein. For example, in (Jiang et al., 2006; Xu et al., 2012; Zhang et
al., 2008), the problems of fault estimation have been investigated by applying adaptive
fault diagnosis observers that can improve the rapidity of fault estimation. In (Yan and Ed-
wards, 2007), the sliding mode observer-based fault estimation method has been presented
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to realize fault reconstruction. In (Shen et al., 2013; Dong et al., 2014), the finite-horizon
fault estimators have been designed for time-varying systems. It is worth mentioning that,
in the existing literature concerning system fault estimation problems, nearly all fault es-
timators have been designed in a centralized way, which may cause lower reliability than
distributed framework.

Recently, because of the rapid development of wireless sensor networks, the distributed
filtering or estimation problem for sensor networks has received considerable research
interests from system analysts, computer scientists and communication engineers, and a
great number of estimator design algorithms have been proposed in the literature. Recent
advancement on the distributed filtering in sensor networks is referred to (Ding et al.,
2012, 2014; Dong et al., 2013; Shen et al., 2011). Different from the centralized filtering
framework, distributed estimation schemes over sensor networks have more redundancies
and higher reliability since, whenever some sensors occur non-recoverable fault, other
sensors can still provide the estimation signal. For distributed filtering/estimation prob-
lems, the information available on an individual node of the sensor network is not only
from its own measurement but also from its neighboring sensors measurements according
to the given topology. As such, the key issues in designing distributed filters depend upon
how to cope with the complicated coupling issues between one sensor and its neighboring
sensors and how to reflect such couplings in the filter structure specification. It should
be pointed out that, compared to the fruitful results on the distributed state estimation
problems over sensor networks, the corresponding results on distributed fault estimation
problems are still a challenging work due probably to the mathematical/computational
complexities.

On the other hand, with rapid development of network technologies, the randomly oc-
curring phenomena induced by networks have been thoroughly investigated for filtering,
control and fault detection problems of networked systems. However, in comparison with
those frequently investigated network-induced phenomena including packet dropouts (Hu
et. al., 2013; Wang et al., 2012), communication delays (Shen et al., 2013; Luo et al., 2015;
Hu et. al., 2013; Wei et al., 2014), signal quantization (Wang et al., 2013), randomly occur-
ring sensor saturations (Wang et al., 2012) and randomly occurring nonlinearities (Ding
et al., 2012, 2015; Dong et al., 2015; Hu et. al., 2013), the randomly occurring uncertain-
ties in the control/estimation communities have not yet received much research attention
despite its practical significance in wireless mobile communications. In reality, the pa-
rameter uncertainties may occur in a probabilistic way and are randomly changeable in
terms of their types and/or levels due to the random occurrence of networked-induced
phenomena such as random network-induced structural changes, repairs of components,
changing subsystem interconnections or sudden environment changes. Note that in (Dong
et al., 2015; Hu et. al., 2014), some initial research results have been presented to study the
reliable control and state estimation for systems with randomly occurring uncertainties.
Unfortunately, the distributed fault estimation problem has not been properly investigated
so far for the sensor networks, not to mention the case where randomly occurring uncer-
tainties are also involved. Thus, the main purpose of this paper is to fill in this gap.

To summarize, in this paper, we focus on investigating the distributed fault estima-
tion problem with randomly occurring uncertainties over sensor networks. A set of dis-
tributed fault estimators are designed such that the estimation error dynamic is exponen-
tially mean-square stable and achieves a prescribed H∞ performance. The rest of this
paper is arranged as follows. In Section 2, a class of discrete-time dynamic plant with a
network of n sensors is introduced and the problem under consideration is formulated. In
Section 3, based on the semi-definite programme method and the Lyapunov stability the-
ory, a new sufficient condition is obtained for the solvability of the considered distributed
fault estimation problem. In Section 4, a simulation example is presented to illustrate the
main results acquired. Finally, conclusions are drawn in Section 5.

2



May 27, 2015 International Journal of General Systems Dong˙Wang˙IJGS˙FE˙new

Notation. The notation used in this paper is fairly standard except where otherwise
stated. Rn denotes the n dimensional Euclidean space and Rn×m represents the set of all
n × m real matrices. l2[0,∞) is the space of square summable sequences. The notation
X ≥ Y (respectively, X > Y) where X and Y are real symmetric matrices, denotes that
X−Y is positive semi-definite (respectively, positive definite). MT represents the transpose
of M. I and 0 denote the identity matrix and zero matrix, respectively with compatible
dimension. ∥x∥ describes the Euclidean norm of a vector x. In symmetric block matrices,
“∗” is used as an ellipsis for terms induced by symmetry. 1n := [1, 1, . . . , 1]T ∈ Rn.
Matrices, if they are not explicitly specified, are assumed to have compatible dimensions.

2. Problem Formulation

In this paper, we suppose that the n sensor nodes are distributed in space on the basis of
a fixed network topology represented by a directed graph G = (V,E,A) of order n with
the set of nodesV =1, 2, . . . , n, the set of edges E ∈ V ×V, and the weighted adjacency
matrix A = [ai j] with nonnegative adjacency element ai j. An edge of G is denoted by
ordered pair (i, j). The adjacency elements associated with the edges of the graph are
positive, i.e., ai j > 0 ⇐⇒ (i, j) ∈ E which means that sensor i can obtain information
from sensor j. Also, we assume that aii = 1 for all i ∈ V, and therefore (i, i) can be
regarded as an additional edge. The set of neighbors of node i ∈ V plus the node itself are
denoted by Ni = { j ∈ V : (i, j) ∈ E}.

Consider the following class of discrete-time stochastic uncertain systems:

x(k + 1) = (A + α(k)∆A)x(k) + Dω(k) +G f (k), (1)

where x(k) ∈ Rnx is the state vector which cannot be observed directly; ω(k) ∈ Rnw is the
disturbance input belonging to l2[0,∞); f (k) ∈ Rl is the fault to be detected.

The real-valued matrix ∆A represents the norm-bounded parameter uncertainty of the
following structure

∆A = HaF(k)N (2)

where Ha and N are known real constant matrices and F(k) is an unknown matrix function
satisfying the following condition

FT (k)F(k) ≤ I (3)

The stochastic variable α(k) ∈ R in (1), which characterizes the phenomenon of ran-
domly occurring uncertainties, is a Bernoulli distributed white sequence taking values on
either 0 or 1 with

Prob{α(k) = 1} = ᾱ, Prob{α(k) = 0} = 1 − ᾱ (4)

where ᾱ ∈ [0, 1] is a known constant.
In this paper, the measurement outputs from the ith sensor are described by

yi(k) = Cix(k) + Eiv(k) + Hi f (k) (5)

where yi(k) ∈ Rny is the output measured by sensor i from the plant, v(k) ∈ Rnv is the mea-
surement noise signal which is assumed to be arbitrary belonging to l2[0,∞]. Throughout
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the paper, we assume that all the matrices mentioned above, i.e., A,D,G,Ci, Ei and Hi,
are known matrices with appropriate dimensions.

In this paper, the following structure is adopted on sensor node i:
x̂i(k + 1) = Ax̂i(k) +

∑
j∈Ni

ai jKi j(y j(k) −C j x̂ j(k))

ri(k) =
∑

j∈Ni

ai jHi j(y j(k) −C j x̂ j(k))
(6)

where x̂i(k) ∈ Rnx is the state estimate on sensor node i and ri(k) ∈ Rl is the so-called
residual that is compatible with the fault vector f (k). Here, matrices Ki j and Hi j are the
fault estimator parameters on node i to be determined. The initial values of estimator
x̂i(0) (i = 1, 2, · · · , n) are assumed to be known vectors.

Remark 1. The fault estimator structure in (6) establishes the communications between
sensor node i and its neighboring nodes, in which the sensor nodes are distributed over a
spatial region. It is worth mentioning that (6) represents a quite general estimator model
structure. To see this, we assume n = 1, the fault estimator (6) can be reduced to

x̂1(k + 1) =Ax̂1(k) + K11(y1(k) −C1 x̂1(k)),

r1(k) =H11(y1(k) −C1 x̂1(k))
(7)

which has been widely adopted for fault estimator design in the literature.

For convenience of later analysis, we denote

Ā = In ⊗ A, ∆Ā = 1n ⊗ ∆A, C̄ = diag{C1,C2, . . . ,Cn},

D̄ = 1n ⊗ D, Ē =
[
ET

1 ET
2 · · · ET

n

]T
, Ḡ = 1n ⊗G,

H̃ =
[
HT

1 HT
2 · · · HT

n

]T
, α̃(k) = α(k) − ᾱ, g = ᾱ(1 − ᾱ)

(8)

and

K̄ = [K̄i j]n×n with K̄i j =

{ ai jKi j, i = 1, 2, . . . , n; j ∈ Ni
0, i = 1, 2, . . . , n; j < Ni

H̄ = [H̄i j]n×n with H̄i j =

{ ai jHi j, i = 1, 2, . . . , n; j ∈ Ni
0, i = 1, 2, . . . , n; j < Ni

(9)

Obviously, since ai j = 0 when j < Ni, K̄ and H̄ are two matrices that can be expressed
as

K̄ ∈ Tnx×ny , H̄ ∈ Tl×ny (10)

where Tp×q = {Ū = [Ui j] ∈ Rnp×nq | Ui j ∈ Rp×q, Ui j = 0 if j < Ni}.
Letting η(k) =

[
xT (k) eT (k)

]T
, ξ(k) =

[
ωT (k) vT (k) f T (k)

]T
, r̃i(k) = ri(k) − f (k), r̃(k) =[

r̃T
1 (k) r̃T

2 (k) · · · r̃T
n (k)
]T

, e(k) =
[
eT

1 (k) eT
2 (k) · · · eT

n (k)
]T

and ei(k) = x(k) − x̂i(k), we have
the following augmented system to be investigated:

η(k + 1) = Ãη(k) + α̃(k)∆Aη(k) +Dξ(k)

r̃(k) =Mη(k) +Nξ(k)
(11)
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where

Ã = A + ᾱ∆A− C, A =
[
A 0
0 Ā

]
, ∆A =

[
∆A 0
∆Ā 0

]
, C =

[
0 0
0 K̄C̄

]
,

D =
[
D 0 G
D̄ −K̄Ē Ḡ − K̄H̃

]
, M =

[
0 H̄C̄

]
, N =

[
0 H̄Ē Q

]
, Q = H̄H̃ − I.

(12)

Our aim in this paper is to design a set of fault estimator of the form in (6) on each node
i of the sensor network for system (1). In other words, we are going to find the parameters
Ki j and Hi j such that the following two requirements are satisfied simultaneously:

a) (exponentially mean-square stability) The zero-solution of the augmented system
(11) is exponentially mean-square stable;

b) (H∞ performance) Under zero initial conditions, for a given disturbance attenuation
level γ > 0 and all nonzero ξ(k), the fault estimation error r̃(k) from (11) satisfies the
following condition:

1
n

∞∑
k=0

E{∥r̃(k)∥2} < γ2
∞∑

k=0

∥ξ(k)∥2 (13)

Remark 2. The average H∞ performance (13) over the n estimators for n sensors is a
constraint adopted from the classicalH∞ control theory. It means that the average energy
gains from the average energy of all disturbances on the target plant and sensor network
to the average energy of all fault estimation errors should be less than a given disturbance
attenuation level γ. Such an averageH∞ performance index is more appropriate to quan-
tify the overall performance of the distributed estimators than the conventional central
H∞ performance constraint.

3. Main Results

In this section, let us investigate the distributed fault estimation for system (1) with n
sensors whose topology is determined by the given graph G = (V,E,A). The following
lemmas will be needed in establishing our main results.

Lemma 1. (Schur Complement) Given constant matrices S1,S2,S3 where S1 = ST
1 and

0 < S2 = ST
2 , then S1 + ST

3S−1
2 S3 < 0 if and only if[
S1 ST

3
S3 −S2

]
< 0 or

[
−S2 S3
ST

3 S1

]
< 0. (14)

Lemma 2. (S-procedure) Let S = S T and H and E be real matrices of appropriate
dimensions with F satisfying FFT ≤ I, then S +HFE + ETFTHT < 0, if and only if there
exists a positive scalar ε > 0 such that S + ε−1HHT + εETE < 0 or equivalently, S H εET

HT −εI 0
εE 0 −εI

 < 0. (15)

Lemma 3. Let P = diag{P1, P2, . . . , Pn} with Pi ∈ Rp×p (1 ≤ i ≤ n) being invertible
matrices. If X = PW for W ∈ Rnp×nq, then we have W ∈ Tp×q ⇐⇒ X ∈ Tp×q.
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The following theorem guarantees that the estimation error system (11) is exponentially
mean-square stability with anH∞ performance γ.

Theorem 1. For given fault estimator parameters Ki j, Hi j and a prescribed H∞ index
γ > 0, the estimating dynamics in (11) is exponentially mean-square stable and also
satisfies theH∞ performance constraint (13) if there exists a positive definite matrix P > 0
satisfying

Π =

[
ÃT PÃ + g∆AT P∆A + MTM

n − P ∗
DT PÃ + N

TM
n DT PD + NTN

n − γ2I

]
< 0. (16)

Proof. Choose the following Lyapunov function for system (11):

V(η(k)) = ηT (k)Pη(k) (17)

The difference of the Lyapunov function is given as follows:

∆V(η(k)) = E{V(η(k + 1))|η(k)} − V(η(k)) (18)

Calculating the difference of V(η(k)) along the trajectory of system (11) and taking the
mathematical expectation with ξ(k) = 0, we have

E{∆V(η(k))} := E
{
ηT (k + 1)Pη(k + 1) − ηT (k)Pη(k)

}
= E

{
ηT (k)

(
ÃT PÃ + g∆AT P∆A− P

)
η(k)
}

(19)

It follows from (16) that ÃT PÃ + g∆AT P∆A− P < 0 and, subsequently,

E{∆V(η(k))} ≤ −λmin(−(ÃT PÃ + g∆AT P∆A− P))E{∥ η(k) ∥2}. (20)

Finally, we can confirm from Lemma 1 of (Wang et al., 2012) that the dynamic system
(11) is exponentially mean-square stable.

To establish the H∞ performance, we assume zero initial conditions and introduce the
following index:

E
{
∆V(η(k))

}
+

1
n
E
{
∥r̃(k)∥2

}
− γ2∥ξ(k)∥2

= E

{
ηT (k)

(
ÃT PÃ + g∆AT P∆A− P

)
η(k) + 2ηT (k)ÃT PDξ(k) + ξT (k)DT PDξ(k)

+
1
n

(ηT (k)MTMη(k) + 2ηT (k)MTNξ(k) + ξT (k)NTNξ(k)) − γ2ξT (k)ξ(k)
}

= η∗T (k)Πη∗(k) (21)

where

η∗(k) =
[
ηT (k) ξT (k)

]T
(22)
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Furthermore, it follows from (16) that

E
{
∆V(η(k))

}
+

1
n
E
{
∥r̃(k)∥2

}
− γ2∥ξ(k)∥2 < 0 (23)

for all nonzero ξ(k) .
By considering zero initial conditions, the above inequality implies that

1
n

∞∑
k=0

E{∥r̃(k)2∥} < γ2
∞∑

k=0

∥ξ(k)∥2 (24)

which is equivalent to (13), and the proof is now complete. �

We are now in a position to provide the specific design method for distributed fault
estimator in the following theorem.

Theorem 2. Let a positive scalar γ > 0 be given. For the discrete-time stochastic un-
certain system (1) and sensors (5), the fault estimator dynamics in (11) is exponentially
mean-square stable and satisfies theH∞ performance constraint (13) if there exist a posi-
tive definite matrix P > 0, the matrix X̄ ∈ R(n+1)nx×nny , H̄ ∈ Rnl×nny and a positive constant
scalar ϵ satisfying



−P ∗ ∗ ∗ ∗ ∗ ∗
0 −γ2I ∗ ∗ ∗ ∗ ∗

PA− X̄R̂0 PD̂0 + X̄R̂1 −P ∗ ∗ ∗ ∗√
1
n H̄R̂0 −

√
1
n (H̄R̂1 + N̂0) 0 −I ∗ ∗ ∗

0 0 0 0 −P ∗ ∗
0 0 ᾱH̄T

a PT 0
√

gH̄T
a PT −ϵI ∗

ϵNa 0 0 0 0 0 −ϵI


< 0 (25)

where

R̂0 =
[
0 C̄
]
, ε̂0 =

[
0 I
]T
, R̂1 =

[
0 −Ē −H̃

]
, H̄a = 1n+1 ⊗ Ha,

D̂0 =

[
D 0 G
D̄ 0 Ḡ

]
, N̂0 =

[
0 0 I
]
, Na =

[
N 0
] (26)

and the other parameters are defined in (8) and (12). Moreover, if the above inequality is
feasible, the matrix K̄ is given as follows:

K̄ = (ÊT
0 PÊ0)−1ÊT

0 X̄ (27)

Accordingly, the desired filter parameters Ki j and Hi j (i = 1, 2, . . . , n, j ∈ Ni) can be
obtained from (9).

Proof. In order to reduce unnecessary conservatism, we rewrite the parameters in Theo-
rem 1 in the following form

C = ε̂0K̄R̂0, D = D̂0 + ε̂0K̄R̂1, M = H̄R̂0, N = −H̄R̂1 − N̂0. (28)
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Applying the Schur Complement Lemma, the inequality (16) can be expressed as

Γ1 =



−P ∗ ∗ ∗ ∗
0 −γ2I ∗ ∗ ∗

PA + ᾱP∆A− Pε̂0K̄R̂0 PD̂0 + Pε̂0K̄R̂1 −P ∗ ∗√
1
n H̄R̂0

√
1
n (−H̄R̂1 − N̂0) 0 −I ∗

√
gP∆A 0 0 0 −P


< 0 (29)

Noticing ∆A =
[
∆A 0
∆Ā 0

]
= 1n+1 ⊗ (HaF(k)Na), we rewrite (29) in terms of Lemma 2 as

follows:

Γ1 = Γ + HbF(k)Nb + NT
b FT (k)HT

b < 0 (30)

where

Γ =



−P ∗ ∗ ∗ ∗
0 −γ2I ∗ ∗ ∗

PA− Pε̂0K̄R̂0 PD̂0 + Pε̂0K̄R̂1 −P ∗ ∗√
1
n H̄R̂0

√
1
n (−H̄R̂1 − N̂0) 0 −I ∗

0 0 0 0 −P


,

Hb =
[
0 0 ᾱ(1n+1 ⊗ Ha)T PT 0

√
g(1n+1 ⊗ Ha)T PT

]T
,

Nb =
[
Na 0 0 0 0

]
, (31)

Letting P = diag{P1, P2, . . . , Pn} and noting PÊ0K̄ = X̄, from Lemma 3, it is easy to verify
that the conditions K̄ ∈ Tnx×ny is satisfied. Applying S-procedure, (25) can be obtained
by (30) after some straightforward algebraic manipulations. The proof of this theorem is
now complete. �

4. Numerical Example

In this section, a numerical example is given to verify the effectiveness of the proposed
distributed fault estimation with randomly occurring uncertainties over sensor networks.

The sensor network is represented by a directed graph G = (V,E,A), with the set of
nodes V={1, 2, 3, 4}, set of edges E={(1, 1), (2, 1), (2, 2), (3, 1), (3, 3), (4, 2), (4, 3), (4, 4)},
and the following adjacency matrix

A =


1 0 0 0
1 1 0 0
1 0 1 0
0 1 1 1


The system data are given as follows:
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Figure 1. Fault signal and its estimate.
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Figure 2. Fault estimation error.
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A =

0.6 0.2 0
0 −0.7 −0.4

0.2 0.4 −0.6

 , D =
[
0.6 0.8 0.1

]T
, G =

[
0.2 0.2 0.3

]T
,

F(k) = sin(0.6k), Ha =
[
0.2 0.2 0.1

]T
, N =

[
0.1 0.2 0.1

]
,

C1 =
[
0.2 0.1 0.1

]
, C2 =

[
0.2 0 0.2

]
, C3 =

[
0.5 0.5 0.2

]
,

C4 =
[
0.6 0.2 0.1

]
, E1 = 0.2, E2 = 0.2, E3 = 0.1, E4 = 0.3,

H1 = 0.1, H2 = 0.2, H3 = 0.4, H4 = 0.1.

In this example, the probability of the randomly occurring uncertainty is taken as ᾱ =
0.8, the following parameters of the desired distributed fault estimator can be obtained by
solving (25) in Theorem 2:

K11 =

 1.1735
−6.8438
−6.2781

 , K21 =

−0.2993
−5.3521
−2.0396

 , K22 =

 0.7697
−4.8283
−0.6783

 , K31 =

−1.2197
−1.9445
−1.8405

 ,
K33 =

 0.1427
−1.2091
0.1277

 , K42 =

−0.4696
−1.6319
−0.7980

 , K43 =

−0.0289
−0.0998
−0.0499

 , K44 =

 0.0073
−5.9634
−0.3638

 ,
H11 = 0.5802, H21 = 0.5398, H22 = 0.0405, H31 = 0.5806,

H33 = 0.0408, H42 = 0.3692, H43 = 0.0167, H44 = 0.1907.

The optimal performance index is γ∗ = 1.021. In the numerical example, the exogenous
disturbance inputs ω(k) = exp(−0.2k)sin(k), v(k) = sin(10k+1)

3k+1 , the initial value of the state

x(0) is selected as
[
0.6 0.3 0.6

]T
. The fault to be estimated is f (k) = exp(−k)sin(10k).

Fig. 1 plots the simulation result on the fault signal and its estimate. Fig. 2 shows the fault
estimation error. The simulation result has confirmed the effectiveness of the distributed
fault estimation technique presented in this paper.

5. Conclusions

In this paper, we have dealt with the distributed fault estimation problem for a class of
uncertain stochastic systems over sensor networks. The randomly occurring uncertainties
are modeled by the Bernoulli distributed white sequences with known conditional proba-
bilities. The distributed fault estimators have been designed for the fault dynamics to be
exponentially mean-square stable and the fault estimation errors to satisfy theH∞ perfor-
mance constraint. Finally, a simulation example has been presented to illustrate the main
results obtained.
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