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Abstract
In this paper we investigate some structural properties of the order on the set of em-

bedded coalitions outlined in de Clippel and Serrano (2008). Besides, we characterize the
scalars associated to the basis they proposed of the vector space of partition function form
games.
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1 Introduction
A number of partially ordered sets emerge naturally from a finite set. The Boolean lattice of
subsets and the partition lattice were two remarkable and deeply studied examples. In this paper
we consider a poset defined over the set of so-called embedded coalitions. Given a finite set N ,
an embedded coalition is a pair consisting of a subset of N and a partition of its complement
of the subset. The partial order that we consider is indeed a combination of the inclusion and
refinement relations of subsets and partitions, respectively. The main goal of our work is to
study the Möbius function associated to this poset for its application in Economics.

It is important to point out that we are not the first to study a partially ordered set over the
set of embedded coalitions. Myerson (1977) introduced a partial order on this set and Grabisch
(2010) studied its associated lattice structure meticulously. Using a number of isomorphisms
he has derived a Möbius function and has applied the results to cooperative game theory. In
this paper we aim at following a similar path but from a different starting point. The difference
of our paper with respect to Grabisch (2010) lies on the binary relation that we consider. The
relation between embedded coalitions that we consider here was implicitly used in de Clippel
and Serrano (2008) and formally defined in Alonso-Meijide et al. (2015). According to it, an
embedded coalition gets bigger if the subset grows and the partition of its complement gets
finer.

The motivation for our study comes from economics. More precisely, from cooperative
game theory. A cooperative game is a model that describes situations where a set of agents
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interact by forming coalitions. Each coalition of agents generates some utility or worth. Thus,
a game in characteristic function determines the worth of every possible coalition. A more
general approach is to allow the worth of a coalition to depend also on how are the rest of
agents organized. These situations are covered by games in partition function form. These
latter games were first introduced in Thrall and Lucas (1963) and have recently received some
attention (see for instance Dutta et al., 2010; Álvarez-Mozos and Tejada, 2015).

The main subject of study in cooperative game theory is how to share the utility generated
from the cooperation. The Shapley value (Shapley, 1953) stands as one of the most successful
answers to this question. This value was originally defined as the only sharing rule that satisfies
a set of reasonable properties or axioms. The problem of extending the Shapley value to games
in partition function is intricate and a number of different proposals have been developed to
date (Albizuri et al., 2005; Pham Do and Norde, 2007; Macho-Stadler et al., 2007; Dutta et al.,
2010). We argue that our work may shed some light in understanding the differences between
the different proposals and obtaining new characterization results.

It is well known that both, the set of games in characteristic function and the set of games
in partition function form, are vector spaces over R. The former vector space is studied in
Harsanyi (1959, 1963). Harsanyi provided a closed expression for the coefficients of a game
(in characteristic function) in a basis, the so-called Harsanyi dividends. These results have
contributed to the progress of the theory of cooperative games in a large extent. For games in
partition function form de Clippel and Serrano (2008) proposed a basis. In our paper we provide
a closed expression for the coefficients of any game in partition function form with respect to
this basis.

The rest of the paper is organized as follows. Section 2 introduces of some basic concepts and
notations. In Section 3, the structure of the poset of embedded coalitions is studied thoroughly.
The study of the associated Möbius function is presented in Section 4. Finally, Section 5 presents
the application of these results to cooperative games.

2 Preliminaries
Let (L,≤) be a partially ordered set with L a finite set and x, y ∈ L. The supremum x∨ y is an
element of L such that x, y ≤ x∨ y and if z ∈ L satisfies z ≥ x, y, then z ≥ x∨ y1. The infimum
x∧ y is an element of L such that x∧ y ≤ x, y and if z ∈ L satisfies z ≤ x, y, then z ≤ x∧ y.2 A
finite lattice is a finite partially ordered set (L,≤) such that there is a supremum x∨ y ∈ L and
an infimum x∧y ∈ L, for every x, y ∈ L. From now on, we assume that (L,≤) is a finite lattice.
Let 1̂ ∈ L be such that x ≤ 1̂ for every x ∈ L. We say that 1̂ is the top element. Similarly, the
bottom element 0̂ is an element of L such that 0̂ ≤ x for every x ∈ L. A complement of x is an
element x̄ ∈ L, such that x ∨ x̄ = 1̂ and x ∧ x̄ = 0̂. We say that x is covered by y or y covers x
if if x ≤ y and there is no z ∈ L \ {x, y} such that x ≤ z ≤ y. An atom is any x ∈ L that covers
0̂. A coatom is any x ∈ L that is covered by 1̂. An element x ∈ L \ {0̂} is join-irreducible if for
every y, z ∈ L with

x = y ∨ z implies x = y or x = z.

An element x ∈ L \ {1̂} is meet-irreducible if for every y, z ∈ L with

x = y ∧ z implies x = y or x = z.

A (irreducible) chain C is a totally ordered subset of L, C = {x0, x1, . . . , xk} such that xl+1
covers xl, for every l = 0, . . . , k − 1.

1We denote: x = y if x ≤ y and y ≤ x; x < y if x ≤ y, but x 6= y.
2The definition of supremum and infimum is extended to every finite subset of elements of L in the usual way.
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Let (L,≤) be a finite lattice.

• If x, y ∈ L and x ≤ y, we denote by [x, y]L the set of elements z ∈ L such that x ≤ z ≤ y.
If no confusion arises, we set [x, y]. Notice that [x, y] is also a lattice.

• (L,≤) satisfies the Jordan-Dedekind condition if all chains between the same elements
have the same length. This common length is called the rank. The height of an element
x is the rank of the chains that start at the bottom element and finish at x. The height of
the lattice is the rank of every chain that joins the bottom and the top elements.

• (L,≤) is atomic if every x ∈ L is the supremum of a subset of atoms.

• (L,≤) is distributive if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), and
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

for every x, y, z ∈ L.

• (L,≤) is modular if
x ∧ (y ∨ z) = (x ∧ y) ∨ z

for every x, y, z ∈ L with z ≤ x.

• (L,≤) is lower semimodular if x∨y covers y implies that x covers x∧y, for every x, y ∈ L.

• (L,≤) is semimodular or upper semimodular if x covers x ∧ y implies that x ∨ y covers y,
for every x, y ∈ L.

Apart from the lattice of subsets of a finite set, denoted by (B(N),⊆), we need to recall some
notions related to the partition lattice.

Let N be a finite set, |N | = n, and Π(N) the family of partitions of the set N . Let S ⊆ N
and P ∈ Π(N). We denote by P−S the partition of N \ S given by P−S = {T \ S : T ∈ P}
and by P \ R = P \ {R}, for every R ∈ P . If 1 ≤ k ≤ n, the total number of partitions of N
with k subsets is the Stirling number of second kind, Sn,k. A well-known partial order on Π(N)
is the following:

P � Q if and only if for every S ∈ P there is some T ∈ Q such that S ⊆ T

and the addition of an element, 0̂, that satisfies 0̂ � P , for every P ∈ Π(N). We denote this
ordered set by (Π(N),�). It is known that (Π(N),�) is a lattice. If P,Q ∈ (Π(N),�), we
denote by P

∧
Q the infimum of P and Q; the supremum of P and Q is denoted by P

∨
Q.

An embedded coalition of N is a pair (S;P ) with ∅ 6= S ⊆ N and P a partition of N \S, i.e.,
P ∈ Π(N \S). If we have the embedded coalition (T ;Q) with T = N then, Q = {∅} and we take
|Q| = 0. For simplicity we denote by (S;N \ S) the embedded coalition (S; {N \ S}), for every
S ⊆ N . We consider the family of all embedded coalitions of the set N union an additional
element ⊥. This set is denoted by ECN . Several partial orders are considered on the family of
embedded coalitions of a finite set N . One of them has been studied in Grabisch (2010) and
the partial order was defined for every (S;P ), (T ;Q) ∈ ECN \ {⊥} as

(S;P ) v0 (T ;Q) if and only if S ⊆ T and P−T � Q,

and ⊥ v0 (S;P ) for every (S;P ) ∈ ECN \ {⊥}. In our paper we study a different partial order
on ECN oulined in de Clippel and Serrano (2008) which we define next.
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Definition 1. Let N be a finite set. We define the inclusion among embedded coalitions as
follows:

(S;P ) v (T ;Q) if and only if S ⊆ T and Q � P−T (1)

for every (S;P ), (T ;Q) ∈ ECN \ {⊥} and ⊥ v (S;P ) for every (S;P ) ∈ ECN \ {⊥}.
This binary relation defines a partial order on ECN . The next example illustrates the

differences among v and v0.
Example 1. We consider N = {1, 2, 3} and its set of embedded coalitions ECN . Figure 1 depicts
the Hasse diagram corresponding to (ECN ,v) and (ECN ,v0). Notice that ({1}; {2, 3}) v
({1, 2}; {3}), but they are not comparable according tov0. Moreover, they are sometimes reverse
orders as in the case of ({1}; {2, 3}) v ({1}; {{2}, {3}}), but ({1}; {{2}, {3}}) v0 ({1}; {2, 3});
but also, can provide the same order as in the case of ({1}; {{2}, {3}}) v ({1, 2}; {3}) and
({1}; {{2}, {3}}) v0 ({1, 2}; {3}).

(N ; ∅)

({1, 2}; {3}) ({1, 3}; {2}) ({2, 3}; {1})

({1}; {{2}, {3}}) ({2}; {{1}, {3}}) ({3}; {{1}, {2}})

({1}; {2, 3}) ({2}; {1, 3}) ({3}; {1, 2})

⊥

(a) The lattice (ECN ,v0).

(N ; ∅)

({1, 2}; {3}) ({1, 3}; {2}) ({2, 3}; {1})

({1}; {{2}, {3}}) ({2}; {{1}, {3}}) ({3}; {{1}, {2}})

({1}; {2, 3}) ({2}; {1, 3}) ({3}; {1, 2})

⊥

(b) The partially ordered set (ECN ,v).

Figure 1: Comparing v0 and v.

3 The structure of (ECN ,v)
In this section we examine some properties of the partially ordered set (ECN ,v). By the
definition of the order v, it is clear that ⊥ ∨ (S;P ) = (S;P ) and ⊥ ∧ (S;P ) = ⊥, for every
(S;P ) ∈ ECN \ {⊥}. In the next result we obtain the supremum and the infimum when
comparing two embedded coalitions different both different from ⊥.
Proposition 1. (ECN ,v) is a finite lattice. In fact, for every (S;P ), (T ;Q) ∈ ECN \ {⊥},

1. (S;P ) ∨ (T ;Q) = (S ∪ T ;M) with M = P−T

∧
Q−S .

2. If S ∩ T 6= ∅, (S;P ) ∧ (T ;Q) = (S ∩ T ;M) with M = (P ∪ {S \ T})
∨

(Q ∪ {T \ S}). If
S ∩ T = ∅, (S;P ) ∧ (T ;Q) = ⊥.

Proof. Let (S;P ), (T ;Q) ∈ ECN \ {⊥}.

1. Let (S ∪ T ;M) with M = P−T

∧
Q−S . Then, (S;P ), (T ;Q) v (S ∪ T ;M). For every

(R;M ′) ∈ ECN such that (S;P ), (T ;Q) v (R;M ′), it is easy to check that (S ∪ T ;M) v
(R;M ′).

2. If S ∩ T 6= ∅, take (S ∩ T ;M) with

M = (P ∪ {S \ T})
∨

(Q ∪ {T \ S}).
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Then, (S ∩ T ;M) v (S;P ) and (S ∩ T ;M) v (T ;Q). Let (R;M ′) ∈ ECN such that
(R;M ′) v (S;P ) and (R;M ′) v (T ;Q) then, it is easy to see that (R;M ′) v (S ∩ T ;M).
If S ∩T = ∅, it is clear that ⊥ v (S;P ), ⊥ v (T ;Q) and there is no (R;M) 6= ⊥ such that
(R;M) v (S;P ) and (R;M) v (T ;Q).

As a consequence of Proposition 1, the top of (ECN ,v) is (N ; ∅). In the following, we denote
by > the embedded coalition (N ; ∅).
Proposition 2. Every (S;P ) ∈ (ECN ,v) is complemented. In fact, given (S;P ) ∈ ECN , any
embedded coalition (N \ S;M) ∈ ECN is a complement of (S;P ).

Proof. Let (S;P ), (N \S;M) ∈ ECN . Using Proposition 1, we have that (S;P )∨ (N \S;M) =
(N ; ∅) = > and (S;P ) ∧ (N \ S;M) = (∅;N) = ⊥.

Next we illustrate these operators.
Example 2. LetN = {1, 2, 3, 4}. If we take (S;P ) = ({1}; {{2, 3}, {4}}), (T ;Q) = ({1, 2}; {3, 4}) ∈
ECN , then (S;P )∧ (T ;Q) = ({1}; {2, 3, 4}), (S;P )∨ (T ;Q) = ({1, 2}; {{3}, {4}}). The embed-
ded coalitions ({3, 4}; {{1}, {2}}) and ({3, 4}; {1, 2}) are complements of (T ;Q).
Proposition 3. Let (S;P ) ∈ (ECN ,v).

1. If (S;P ) = ⊥, the number of embedded coalitions that cover (S;P ) is n.

2. If (S;P ) 6= ⊥, the number of embedded coalitions that cover (S;P ) is given by∑
R∈P

2|R|−1 − |{R ∈ P : |R| ≥ 2}|. (2)

Proof. Let (S;P ) ∈ ECN .

1. Let (S;P ) = ⊥. Notice that for every T ⊆ N , i ∈ T , it holds ({i};N \ {i}) v (T ;Q) for
every Q ∈ Π(N \ T ). Besides, for every ∅ 6= T ⊆ N , i 6∈ T , ({i};N \ {i}) and (T ;Q) are
not comparable for every Q ∈ Π(N \ T ). By definition of the bottom element, we have
⊥ v ({i};N \ {i}) for every i ∈ N . Then, ({i};N \ {i}) covers ⊥ for every i ∈ N .

2. Let (S;P ) 6= ⊥. Let Pk ∈ P with |Pk| = 1. We consider the embedded coalition (T ;Q)
with T = S∪Pk and Q = P \Pk. It is clear that (S;P ) v (T ;Q) and there is no embedded
coalition in between. Additionally, if we consider every partition Q ∈ Π(N \( ∪

{i}∈P
{i}∪S))

that is covered by P \ ( ∪
{i}∈P

{i}), then (S;Q ∪ {{i} : {i} ∈ P}) covers (S;P ). Adding up

all cases we obtain Expression 2.

Example 3. Let N = {1, 2, 3, 4} and take the embedded coalition (S;P ) = ({2}; {{1}, {3, 4}}).
The embedded coalitions that cover (S;P ) are

({1, 2}; {{3, 4}), ({2}; {{1}, {3}, {4}}).
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Proposition 4. Let (S;P ) ∈ (ECN \ {⊥},v). The number of embedded coalitions that are
covered by (S;P ) is given by

η(S;P ) =



|S| if |P | = 1(
|P |
2

)
if |S| = 1, and |P | > 1

(
|P |
2

)
+ |S| if |S| > 1, and |P | > 1.

(3)

Proof. First, we assume that |P | = 1. Thus, P = {N \S}. If |S| = 1, then (S;P ) = ({i};N \{i})
and (S;P ) only covers the bottom element (⊥). Let us assume that |S| > 1. Notice that if (T ;Q)
is covered by (S;N \S), then S covers T and Q−S covers {N \S}. Then, (S \ {i}; {{i}, N \S}),
for every i ∈ S, are the only embedded coalitions covered by (S;P ). Second, we consider that
|P | > 1. Take a partition M ∈ Π(N \S) that covers P . Then, (S;M) is covered by (S;P ). The

number of the embedded coalitions of this type is given by
(
|P |
2

)
in Equation (4). Besides, if

|S| > 1, we take i ∈ S and consider (S1;P 1) = (S \ {i};P ∪ {{i}}. Clearly, (S1;P 1) is covered
by (S;P ). The number of embedded coalitions of this type is |S|.

Example 4. Let N = {1, 2, 3, 4} and take the embedded coalition (S;P ) = ({1, 2}; {{3}, {4}}).
The embedded coalitions covered by (S;P ) are

({1, 2}; {{3, 4}), ({1}; {{2}, {3}, {4}}), ({2}; {{1}, {3}, {4}}).

The first one is obtained by joining two elements of P . The last two ones are obtained by
isolating an element of S.
Proposition 5. The set of join-irreducible embedded coalitions is I1 ∪ I2 with

I1 = {({i};N \ {i}) : i ∈ N},
I2 = {({i}; {S,N \ (S ∪ {i})}) : S ( N \ {i}}.

Proof. First, we prove that every embedded coalition in I1∪I2 is join-irreducible. Let (T ;Q), (U ;M) ∈
ECN such that (T ;Q) ∨ (U ;M) ∈ I1 ∪ I2. If (T ;Q) or (U ;M) coincides with ⊥, the re-
sult immediately follows. Besides, neither (T ;Q) nor (U ;M) is the top element. Thus we
can assume (T ;Q), (U ;M) ∈ ECN \ {⊥}. If (T ;Q) ∨ (U ;M) = ({i};N \ {i}) for some
i ∈ N , then T = U = {i} and Q = M = N \ {i} because N \ {i} = Q

∧
M . Thus,

(T ;Q) = (U ;M) = (T ;Q) ∨ (U ;M).
Let us assume that (T ;Q)∨(U ;M) = ({i}; {S,N \(S∪{i}}) for some i ∈ N and S ( N \{i}.

Then, T = U = {i}, {S,N \ (S ∪ {i})} = Q
∧
M . Thus, there are Lk ∈ Q, L′m ∈ M such that

Lk ∩L′m = S and Lj ∈ Q, L′l ∈M such that Lj ∩L′l = N \ (S ∪ {i}). We distinguish two cases.

1. Lk ∩ Lj = ∅ and L′m ∩ L′l = ∅. Then, Lk = L′m = S and Lj = L′l = N \ (S ∪ {i}) because
S ⊆ Lk, S ⊆ L′m, N \ (S ∪ {i}) ⊆ Lj , and N \ (S ∪ {i}) ⊆ L′l. Thus, (T ;Q) = (U ;M) =
(T ;Q) ∨ (U ;M).

2. W.l.o.g. Lk = Lj . Then, Lk = Lj = N \ {i} because S ⊆ Lk and N \ (S ∪ {i}) ⊆ Lj . In
this case (T ;Q) v (U ;M) and (U ;M) = (T ;Q) ∨ (U ;M).
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Consequently, any embedded coalition in I1 ∪ I2 is join-irreducible.
It remains to prove that only the embedded coalitions in I1 ∪ I2 are join-irreducible. Let

(S;P ) ∈ ECN \ {⊥} be a join-irreducible embedded coalition such that (S;P ) 6∈ I1 ∪ I2.
Then, |N | ≥ 3 because in case |N | = 2, the non-trivial embedded coalitions are given by
I1 ∪ I2. We distinguish two cases. First, we consider that |S| ≥ 2. Let us take i, j ∈ S, i 6= j
and and P ∈ Π(N \ S). We take the embedded coalitions (T ;Q) = (S \ {i}; {{i}, P}) and
(U ;M) = (S \ {j}; {{j}, P}). It is clear that (S;P ) = (T ;Q) ∨ (U ;M) but neither (T ;Q) nor
(U ;M) equals (S;P ) and this is a contradiction. Second, we consider that |S| = 1. If |P | < 3,
then (S;P ) ∈ I1 ∪ I2. Then, |P | ≥ 3, and

(S;P ) = (S; {P1 ∪ P2} ∪ (P \ {P1, P2})) ∨ (S; {P1 ∪ P3} ∪ (P \ {P1, P3}))

but (S; {P1 ∪P2}∪ (P \ {P1, P2})) 6= (S;P ) and (S; {P1 ∪P3}∪ (P \ {P1, P3})) 6= (S;P ). Then,
(S;P ) is not join-irreducible and this finishes the proof.

Proposition 6. The set of meet-irreducible embedded coalitions isM1 ∪M2 with

M1 = {(N \ {i}; {i}) : i ∈ N},
M2 = {(N \ {i, j}; {i, j}) : i, j ∈ N, i 6= j},

Proof. First, we prove that every embedded coalition in M1 ∪ M2 is meet-irreducible. Let
(T ;Q), (U ;M) ∈ ECN such that (T ;Q) ∧ (U ;M) = (S;P ) ∈ M1 ∪M2. If (T ;Q) or (U ;M)
coincides with >, the result immediately follows. Now we study the case where neither (T ;Q)
nor (U ;M) are the top element. Then S = T ∩ U . If (S;P ) ∈ M1, then S = T or S = U .
In case S = T , then P = Q and if S = U , then P = M and the result is proved. Let us
assume that (S;P ) ∈ M2. If T = N \ {i} and U = N \ {j}, we obtain (T ;Q) ∧ (U ;M) =
(N \ {i, j}; {{i}, {j}}) 6= (S;P ). If T = N \ {j} and U = N \ {i}, we obtain (T ;Q) ∧ (U ;M) =
(N \ {i, j}; {{i}, {j}}) 6= (S;P ). Then, T = N \ {i, j} = S or U = N \ {i, j} = S. We analyse
the case T = N \ {i, j} = S. Then, Q = {{i, j}} or Q = {{i}, {j}}. In the first case we prove
the result. If Q = {{i}, {j}}, then (T ;Q) ∧ (U ;M) = (S;P ) if and only if U = N \ {i, j} and
M = {{i, j}}. Thus, (S;P ) = (U ;M) and the result is proved.

Second, only embedded coalitions in M1 ∪M2 are meet-irreducible. We proceed by con-
tradiction. Let (S;P ) ∈ ECN \ {>} be a meet-irreducible embedded coalition such that
(S;P ) 6∈ M1 ∪M2. Then, |N | > 2. We distinguish two cases:

1. |N | = 3. W.l.og. we assume that (S;P ) = ({1}; {{2}, {3}}). Then,

(S;P ) = ({1, 2}; {3}) ∧ ({1, 3}; {2}).

Thus, we achieve a contradiction.

2. |N | > 3. Then, |S| = n − 2 and |P | = 2 or |S| ≤ n − 3. If |S| = n − 2 and |P | = 2, we
have (S;P ) = (N \ {i, j}; {{i}, {j}}) for some i, j ∈ N , i 6= j. If we take T = N \ {i},
Q = {{i}} and U = N \ {j}, M = {{j}}, we obtain (T ;Q) ∧ (U ;M) = (S;P ) but neither
(T ;Q) nor (U ;M) equals (S;P ). Let us assume |S| ≤ n− 3. If |P | = n− |S|, we consider
i, j ∈ N \ S, i 6= j, (S ∪ {i};P \ {i}), (S ∪ {j};P \ {i}) ∈ ECN \ {>}. It is clear that
(S∪{i};P\{i})∧(S∪{j};P\{j}) = (S;P ) but (S∪{i};P\{i}) 6= (S;P ) 6= (S∪{j};P\{j}).
If |P | < n− |S|, then there is some Pk ∈ P with |Pk| ≥ 2. We distinguish two cases.

• There is some Pk ∈ P with |Pk| > 2. Let i, j ∈ Pk, i 6= j, and consider (S;P−{i} ∪
{{i}}), (S;P−{j}∪{{j}}) ∈ ECN\{>}. Then, (S;P−{i}∪{{i}})∧(S;P−{j}∪{{j}}) =
(S;P ) but (S;P−{i} ∪ {{i}}) 6= (S;P ) 6= (S;P−{j} ∪ {{j}}).
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• There is some Pk ∈ P with |Pk| = 2 and |Pl| ≤ 2 for every Pl ∈ P \ Pk. Let us
take i ∈ Pk and j ∈ Pl with Pl ∈ P \ Pk, (S;P−{i} ∪ {{i}}), (S ∪ {j};P−{j}) ∈
ECN \ {>}. It is easy to see that (S;P−{i} ∪ {{i}}) ∧ (S ∪ {j};P−{j}) = (S;P ), but
(S;P−{i} ∪ {{i}}) 6= (S;P ) 6= (S ∪ {j};P−{j}).

In both cases, we get a contradiction and the proof is finished.

Proposition 7. (ECN ,v) satisfies the Jordan-Dedekind chain condition. In fact, the height of
any (S;P ) ∈ ECN \ {⊥} is given by h(S;P ) = |P | + 2|S| − 2.3 The height of the lattice is
2n− 2.

Proof. We distinguish three situations:

1. (S;P ) v ({i}; {{j} : j ∈ N\{i}}) for some i ∈ N . Then, S = {i}. Any embedded coalition
(T ;Q) covered by (S;P ) has T = {i} and |Q| = |P | − 1. Repeating this reasoning, we
need |P | links to get the bottom element.

2. (T ;Q) = ({i}; {{j} : j ∈ N \ {i}}) v (S;P ) for some i ∈ S. Then, |P | = n − |S|. The
number of links between (T ;Q) and (S;P ) is |S| − 1 because every Pk ∈ P has |Pk| = 1
or P = {∅}. Then, we add the number of links from bottom to (T ;Q) obtained as in Item
1 and we have |S| − 1 + n− 1 = n+ |S| − 2 = |P |+ 2|S| − 2.

3. In the remaining cases, (S;P ) and (T ;Q) = ({i}; {{j} : j ∈ N \ {i}}) are not comparable
for every i ∈ N . This implies |S| ≥ 2 and there is some Pl ∈ P with |Pl| ≥ 2. Let
i ∈ S and (T ;Q) = ({i}; {{j} : j ∈ N \ {i}}). We build a chain from bottom to ({i};M)
with ({i};M) v (T ;Q) ∧ (S;P ) for some i ∈ S. For instance, we take (S \ {j};Qj) with
j ∈ S \ {i} where Qj

1 = {j}, Qj
k+1 = Pk for every k = 1, . . . , |P |. We repeat this step to

(S \ {j};Qj) in case (S \ {j};Qj) and (T ;Q) are not comparable, and so on. Once we
obtain an embedded coalition ({i};M) v ({i};Q) ∧ (S;P ), we have |M | = |P | + |S| − 1.
As a consequence, the total number of links between the bottom element and (S;P ) is
|S| − 1 + |P |+ |S| − 1 = |P |+ 2|S| − 2. This finishes the proof.

Clearly h(N ; ∅) = 2n− 2.

Proposition 8. Let N a finite set with |N | ≥ 2. The number of elements of height k in ECN is
given by

Ψ(k) =



nSn−1,k +
∑b k+1

2 c
i=2

(
n

i

)
Sn−i,k−2(i−1), 1 ≤ k < min{n− 1, 2n− 4}(

n

k − n+ 2

)
+
∑b k+1

2 c
i=k+3−n

(
n

i

)
Sn−i,k−2(i−1), n− 1 ≤ k < 2n− 4(

n

k − n+ 2

)
, max{2n− 4, 1} ≤ k ≤ 2n− 2.

Then, the total number of elements is
∑2n−2

k=1 Ψ(k) + 1.

Proof. We prove the result considering the following cases.

1. |N | = 2. In this case, the height of the lattice is 2 and ECN ∼= 2N . Then, the result is
true.

3Recall that we take |Q| = 0 if Q = ∅.
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2. |N | = 3. The height of ECN is 4. Besides, 2n − 4 = n − 1. The embedded coalitions in
level k = 1 < n − 1 are of type ({i};N \ {i}), for every i ∈ N . Then, (k + 1)/2 = 1 < 2
and

Ψ(1) = 3Sn−1,1 = 3S2,1 = 3

The embedded coalitions in level k = 2 = 2n− 4 are of type {({i}; {{j} : j ∈ N \ {i}}) :
i ∈ N}. Thus,

Ψ(2) =
(

n

k − n+ 2

)
=
(

3
1

)
= 3

In level k = 3, 2 = 2n − 4 ≤ k = 3 ≤ 2n − 2 = 4. The embedded coalitions are given by
the set {({i, j}; {l}) : i, j, l ∈ N, i 6= j, i 6= l, j 6= l}. This set has 3 elements and

Ψ(3) =
(

n

k − n+ 2

)
=
(

3
2

)
= 3

Finally, level k = 4 has a unique embedded coalition that corresponds to > and coincides

with Ψ(4) =
(

n

k − n+ 2

)
=
(

3
3

)
= 1.

3. |N | ≥ 4. If |N | ≥ 4, we have 2n − 4 > n − 1. Let k = 1, then 1 ≤ k < n − 1. Only
embedded coalitions of type ({i};N \ {i}) belong to this level, for every i ∈ N . The total
number is nSn−1,1 = n. Let us take 2 ≤ k ≤ 2n− 2 and (T ;Q) be an embedded coalition
in level k − 1. We distinguish two cases according to |T |.

• First we analyze the case |T | = 1. Using Proposition 7, we have |Q| = k−1−2|T |+2 =
k− 1. Besides, k ≤ n because |Q| ≤ n−|T |. If |Q| < n−|T |, applying Proposition 3,
(T ; Q̃) with |Q̃| = |Q|+ 1 = k and Q covering Q̃ covers (T ;Q). Besides, if k − 1 ≥ 2
and there is j ∈ N \ T with {j} ∈ Q, then (T ∪ {j};Q \ {j}) covers (T ;Q). Notice
that if k = n, (T ;Q) is only covered by (T ∪ {j};Q \ {j}), for every j ∈ N \ T .
Summarizing, at level k we have the following number of embedded coalitions that
cover some (T ;Q) with |T | = 1 located in level k − 1:

nSn−1,k, k < 3

nSn−1,k +
(
n

2

)
Sn−2,k−2, 3 ≤ k < n(

n

2

)
Sn−2,k−2, k = n.

• Second, let (T ;Q) be an embedded coalition with |T | 6= 1. We consider two cases.
(a) k ≤ n. Using Proposition 7 and 1 ≤ |Q| ≤ n−|T |, we have |Q| = k−1−2|T |+2 =

k + 1 − 2|T |, 2 = max{2, k − n + 1} ≤ |T | ≤ bk
2 c. If |Q| < n − |T |, then (T ;Q)

is covered by (R; Q̃) with R = T , |Q̃| = |Q|+ 1 = k− 2(|T | − 1), and Q covering
Q̃. If there is j ∈ N \ T with {j} ∈ Q, then (T ;Q) is covered by (R;Q \ {j})
with R = T ∪ {j} and |Q \ {j}| = |Q| − 1 = k − 1− 2(|T | − 1)− 1 = k − 2|T | =
k − 2(|R| − 1) ≥ 1.

(b) k > n. Then, (T ;Q) with |Q| = n−|T | and |T | = k−n+ 1 belongs to level k−1
(Proposition 7) and there is no embedded coalition (S;P ) with |S| < k + n − 1
in level k − 1. Then, (R;Q \ {j}) with R = T ∪ {j} covers (T ;Q), for every
j ∈ N \ T . For every (T ;Q) with |Q| < n − |T |, we proceed as above. Then, if
k ≤ 2n − 3, taking k − n + 2 ≤ |R| ≤ bk+1

2 c and Q a partition of N \ R with
k − 2(|R| − 1) blocks, we obtain the embedded coalitions in level k.

9



Finally, let us analyze the case k = 2n− 2. By the induction hypothesis, at level
k − 1 we only have the embedded coalitions (N \ {i}; {i}), for every i ∈ N . It is
clear that any of these embedded coalitions is covered by (N ; ∅).

Adding up all different types of embedded coalitions obtained above and taking into ac-
count the cases of |N | ≤ 3, we compute

Ψ(k) =



nSn−1,k +
∑b k+1

2 c
i=2

(
n

i

)
Sn−i,k−2(i−1), 1 ≤ k < min{n− 1, 2n− 4}(

n

k − n+ 2

)
+
∑b k+1

2 c
i=k+3−n

(
n

i

)
Sn−i,k−2(i−1), n− 1 ≤ k < 2n− 4(

n

k − n+ 2

)
, max{2n− 4, 1} ≤ k ≤ 2n− 2.

The proof is concluded.

As a consequence of Proposition 8 we characterize the set of atoms and coatoms of (ECN ,v).
Additionally, notice that all the atoms are join-irreducible elements and all the coatoms are
meet-irreducible elements.

Corollary 1. Let (ECN ,v) be the lattice of embedded coalitions.

1. The set of atoms of ECN is given by {({i};N \ {i}) : i ∈ N}.

2. The set of coatoms of of ECN is given by {(N \ {i}; {i}) : i ∈ N}.

Remark 1. In Table 1 we compare the number of embedded coalitions per level according to
the ordering v0 and v. For each value of n, the first row contains the number of embedded
coalitions using v0 and the second row is obtained through the function Ψ.

n k=1 2 3 4 5 6
2 2 1
2 2 1
3 3 6 1
3 3 3 3 1
4 4 18 14 1
4 4 12 10 6 4 1

Table 1: Number of embedded coalitions per level using v0 and v.

If |N | ≥ 3, the lattice (ECN ,v) does not belong to any well-known families of lattices as we
see in the following remark.
Remark 2. Let N a finite set with |N | ≥ 3.

1. (ECN ,v) is not distributive. For instance, let us take a finite set N with |N | ≥ 3. Let
(S;P ) = ({1};N \ {1}), (T ;Q) = ({2};N \ {2}), and (U ;M) = ({3};N \ {3}). Then,

(S;P ) ∨ ((T ;Q) ∧ (U ;M)) = (S;P ) ∨ ⊥ = (S;P ),
((S;P ) ∨ (T ;Q)) ∧ ((S;P ) ∨ (U ;M)) = ({1, 2};N \ {1, 2}) ∧ ({1, 3};N \ {1, 3})

= ({1}; {{2}, {3}, N \ {1, 2, 3}}) 6= (S;P ).

2. (ECN ,v) is not atomic. The atoms of ECN is the set of embedded coalitions {({i};N \
{i}) : i ∈ N}. Let i ∈ N . The embedded coalition ({i}; {{j} : j ∈ N \ {i}}) is not the
supremum of any subset of atoms.
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3. (ECN ,v) is not lower semimodular. In order to show this we consider (S;P ) = ({2}; {{1}, {3}, N\
{1, 2, 3}}) and (T ;Q) = ({3}; {{1}, {2}, N\{1, 2, 3}}). Then, (S;P )∨(T ;Q) = ({2, 3}; {{1}, N\
{1, 2, 3}}) and this embedded coalition covers (T ;Q). Besides, (S;P ) ∧ (T ;Q) = ⊥, but
(S;P ) does not cover ⊥.

4. (ECN ,v) is not upper semimodular. In order to show this we take (S;P ) = ({1};N \{1})
and (T ;Q) = ({2};N \ {2}). Then, (S;P ) ∧ (T ;Q) = ⊥ and this embedded coalition is
covered by (S;P ). Besides, (S;P )∨(T ;Q) = ({1, 2};N\{1, 2}) but this embedded coalition
does not cover (T ;Q) when |N | ≥ 3.

4 The Möbius function
In this section we characterize the Möbius function of the lattice of embedded coalitions. First,
we recall some well known notions and results about the Möbius function of a lattice.

Let (L,≤) be a finite lattice. The dual of (L,≤) is (L,≤∗) with x ≤∗ y if and only if y ≤ x,
for every x, y ∈ L. The Möbius function of (L,≤), µ, is given by

µ(x, y) =
{

1 if x = y

−
∑

x≤z<y µ(x, z) = −
∑

x<z≤y µ(z, y) if x < y

for every x, y ∈ L with x ≤ y. The direct product of two finite lattices (L1,≤1), (L2,≤2)
is the partially ordered set (L1 × L2,≤) with (x1, x2) ≤ (y1, y2) if and only if x1 ≤1 y1 and
x2 ≤2 y2. It holds that (L1×L2,≤) is also a finite lattice. In this section the Möbius function of
(B(N),⊆) and the Möbius function of (Π(N),�) play an important role. The Möbius function
of (B(N),⊆) is given by µ̂1(S, T ) = (−1)|T |−|S|, for every S ⊆ T ⊆ N . The Möbius function of
(Π(N),�) is given by µ̂2(P,Q) = (−1)|P |−|Q|(m1 − 1)! · · · (m|Q| − 1)! with

∑|Q|
i=1mi = |P |, for

every P,Q ∈ Π(N) \ {0̂} with P ≺ Q (here 0̂ is the bottom element of (Π(N),�).
Next we recall some well-known facts that we use in the proofs of our results.

Proposition 9 ( see Stanley (2011)). 1. Let (L1,≤1), (L2,≤2) be two finite lattices. Let
µ1, µ2 be their Möbius functions, respectively. Let us consider the direct product (L1 ×
L2,≤). Then, the Möbius function of (L1 × L2,≤) is given by

µ((x1, x2), (y1, y2)) = µ1(x1, y1)µ2(x2, y2).

2. Let (L,≤) be a finite lattice with bottom = 0̂ and top = 1̂ and µ its Möbius function.
If 0̂ is not a meet of coatoms, then µ(0̂, 1̂) = 0. Dually, if 1̂ is not a join of atoms, then
µ(0̂, 1̂) = 0.

First, we obtain an isomorfism between particular subsets of (ECN ,v), (B(N),⊆) and
(Π(N),�). Let P,Q ∈ Π(N). We denote by Q \ P = {U ∈ Q : U 6∈ P}.
Proposition 10. Let (ECN ,v) be the lattice of embedded coalitions. Let (S;P ), (T ;Q) ∈ ECN \
{⊥}, (S;P ) v (T ;Q) with {i} ∈ P for every i ∈ T \ S and (S;P ) 6= (T ;Q).

1. If Q \ P 6= ∅ and T \ S 6= ∅, then

[(S;P ), (T ;Q)] ∼= [∅, T \ S]B(N) × [Q \ P, P−T \Q]∗Π(NQ,P ).

with NQ,P = ∪R∈Q\PR.

2. If Q \ P = ∅ and T \ S 6= ∅, then

[(S;P ), (T ;Q)] ∼= [∅, T \ S]B(N).
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3. If T = S, then
[(S;P ), (T ;Q)] ∼= [Q \ P, P \Q]∗Π(NQ,P ).

Proof. Let (S;P ), (T ;Q) ∈ ECN such that (S;P ) v (T ;Q) with {i} ∈ P for every i ∈ T \ S.
First we consider the case with T \ S 6= ∅. If Q \ P 6= ∅, we define the following mapping φ
from [(S;P ), (T ;Q)] to [∅, T \ S]B(N) × [Q \ P, P−T \Q]∗Π(NQ,P ) as follows. For every (U ;M) ∈
[(S;P ), (T ;Q)], φ(U ;M) = (U \ S; M̃) being M̃ = M−T \ Q. We also consider the map ϕ
which assigns to every (Ũ , M̃) ∈ [∅, T \S]B(N)× [Q \P, P−T \Q]∗Π(NQ,P ) the embedded coalition
ϕ(Ũ ; M̃) = (S ∪ Ũ ;M) with U ∈M if

• U ∈ (P ∩Q) ∪ {{j} : j ∈ T \ Ũ} or

• U ∈ M̃ .

It is clear that φ and ϕ are inverse maps. In addition, if (U ;K), (V ;M) ∈ [(S;P ), (T ;Q)] with
(U ;K) v (V ;M), then φ(U ;K) ≤ φ(V ;M) because4

• we have U ⊆ V and then U \ S ⊆ V \ S ⊆ T \ S.

• M−T \Q � K−T \Q because for every H ∈M there is some H ′ ∈ K with H ⊆ H ′.

The second and the third cases follow inmediately. This finishes the proof.

Henceforth we omit the subscript corresponding to the set when we consider a direct product
of lattices. Next we illustrate the result in Proposition 10.
Example 5. We take N = {1, 2, 3, 4, 5, 6},

(S;P ) = ({1}; {{2}, {3, 4, 5}, {6}}) and (T ;Q) = ({1, 2}; {{3}, {4}, {5}, {6}}).

According to Proposition 10, [(S;P ), (T ;Q)] ∼= [∅, {2}]× [{{3}, {4}, {5}}, {3, 4, 5}]∗. Notice that

[∅, {2}]× [{{3}, {4}, {5}}, {3, 4, 5}]∗ ∼= [{1}, {1, 2}]× [{{3}, {4}, {5}}, {3, 4, 5}]∗.

Figure 2 depicts every lattice in the direct product. The solid lines and the dotted lines in
Figure 3 are replicas of the lattice in Figure 2(b); the dashed lines in Figure Figure 3 are
replicas of the lattice in Figure 2(a).

{ 1 }

{1, 2}

(a) The lattice [{1}, {1, 2}].

{{3}, {4}, {5}}

{{3}, {4, 5}} {{4}, {3, 5}} {{5}, {3, 4}}

{3, 4, 5}

(b) The lattice [{{3}, {4}, {5}}, {{3, 4, 5}}].

Figure 2: The elements of the product.

4Here we use the order defined for a direct product.
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({1}; {{2}, {3, 4, 5}, {6}})

({1, 2}; {{3, 4, 5}, {6}})({1}; {{2}, {3}, {4, 5}, {6}})({1}; {{2}, {4}, {3, 5}, {6}})({1}; {{2}, {5}, {3, 4}, {6}})

({1, 2}; {{3}, {4, 5}, {6}})({1}; {{2}, {3}, {4}, {5}, {6}})({1, 2}; {{4}, {3, 5}, {6}})({1, 2}; {{5}, {3, 4}, {6}})

({1, 2}; {{3}, {4}, {5}, {6}})

Figure 3: An example of the result in Proposition 10.

Next we characterize the Möbius function of (ECN ,v). Notice that the embedded coalitions
of type (S;N \ S) with S ⊆ N , S 6= ∅ can be written as

(S;N \ S) = ∨i∈S({i};N \ {i}).

Then, µ(⊥, (S;P )) =
∑

A⊆{({i};N\{i}): i∈S}(−1)|A| = (−1)|S|. Thus, the characterization of the
Möbius function of (ECN ,v) is not a trivial task. We do that in the next result.
Proposition 11. The Möbius function on ECN is given by

1. If S 6= ∅,

µ(⊥, (S;P )) =
{

(−1)|S| if (S;P ) = (S;N \ S)
0 otherwise.

2. Let (S;P ), (T ;Q) ∈ ECN \{⊥}, (S;P ) v (T ;Q) and {i} ∈ P for every i ∈ T \S or S = T .
Then,

µ((S;P ), (T ;Q)) =

(−1)|Q|−|P |
|P−T \Q|∏

j=1
(mj − 1)! if |P−T \Q| ≥ 1

(−1)|T |−|S| otherwise

where mj ≥ 1 for every j = 1, . . . , |P−T \Q|,
|P−T \Q|∑

j=1
mj = |Q \ P |.

3. Let (S;P ), (T ;Q) ∈ ECN \ {⊥} such that (S;P ) 6= ⊥, (S;P ) v (T ;Q) and there is some
i ∈ T \ S with {i} 6∈ P . Then, µ((S;P ), (T ;Q)) = 0.

Proof. Item 1 is clear. Item 2 follows from Proposition 10, Item 1 in Proposition 9, the chara-
terization of the Möbius functions of the Boolean lattice, and the partition lattice as we show
next. Notice that

µ((S;P ), (T ;Q)) = (−1)|T |−|S|(−1)|Q\P |−|P−T \Q|
|P−T \Q|∏

j=1
(mj − 1)!
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where mj ≥ 1 for every j = 1, . . . , |P−T \Q|,
|P−T \Q|∑

j=1
mj = |Q \ P |. Besides,

|Q \ P | − |P−T \Q| = |Q| − |Q ∩ P | − (|P | − |Q ∩ P | − |T |+ |S|)
= |Q| − |P |+ |T | − |S|.

If |P−T \Q| ≥ 1, then

µ((S;P ), (T ;Q)) = (−1)|Q|−|P |
|P−T \Q|∏

j=1
(mj − 1)!

where mj ≥ 1 for every j = 1, . . . , |P−T \Q|,
|P−T \Q|∑

j=1
mj = |Q \ P |. If P−T = Q, then Q \ P = ∅

and
µ((S;P ), (T ;Q)) = (−1)|T |−|S|.

It remains to prove Item 3. We check that the meet of the coatoms of the lattice [(S;P ), (T ;Q)] is
different from (S;P ) and apply Item 2 in Proposition 9 to derive the result since [(S;P ), (T ;Q)]
is also a lattice with 0̂ = (S;P ) and 1̂ = (T ;Q). First, notice that any coatom (every embedded
coalition covered by (T ;Q)) is given by

1. (T \ {i};Mi) with Mi = {{i}} ∪Q, for every i ∈ T \ S, or

2. (T ;M lk) with |M lk| = |Q| − 1 and U ∈M lk if

• U = Pr \ T in case there are Ql, Qk ∈ Q such that Ql ∪Qk ⊆ Pr \ T , or
• U = Qt for every t 6= l, k.

Let A be the whole family of coatoms defined above. By definition, we have (S;P ) v (U ;M) v
(T ;Q), for every (U ;M) ∈ A. Thus, ∧(U ;M)∈A(U ;M) ∈ [(S;P ), (T ;Q)]. We claim that
∧(U ;M)∈A(U ;M) = (S;H) with H = {{i} : i ∈ T \ S} ∪ P−T . Clearly, (S;H) v (U ;M)
for every (U ;M) ∈ A and ∩(U ;M)∈AU = S. Besides,

∨
(U ;M)∈AM = H because

• for every i ∈ T \ S there is (T \ {i};Mi) ∈ A with {i} ∈ Mi. We have {i} ∩ R = ∅ for
every R ∈M with (U ;M) ∈ A \ {(T \ {i};Mi)}. Then, {i} ∈

∨
(U ;M)∈AM .

• every R ∈ P−T can be obtained as a union of some elements ofM \U for every (U ;M) ∈ A
since Q � P−T .

In addition, we have (S;P ) v (S;H), but the partition H is different from P because there
is some i ∈ T \ S such that {i} 6∈ P but {i} ∈ H. Then, using Item 2 in Proposition 9, we
obtain µ((S;P ), (T ;Q)) = 0.

Example 6. In this example we will illustrate the proof of Item 3 in Proposition 11. We consider
N = {1, 2, 3, 4} and (S;P ) = ({1};N \ {1}) and (T ;Q) = ({1, 2}; {{3}, {4}}. In Figure 4, we
depict the Hasse diagram of the lattice [(S;P ), (T ;Q)]. Dotted lines join the coatoms and their
infimum.
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({1}; N \ {1})

({1}; {{2}, {3, 4}})({1}; {{3}, {2, 4}})({1}; {{4}, {2, 3}})

({1, 2}; {3, 4})({1}; {{2}, {3}, {4}})

({1, 2}; {{3}, {4}})

Figure 4: An example of the procedure of Item 3 in Proposition 11.

5 Partition function form games
Finally in this section, we use our previous results to characterize the scalars related to the basis
proposed in de Clippel and Serrano (2008) of the vector space of partition function form games.
We also show that there are additive partition function form games concordant with the order
v.

Let N be a finite set. A partition function form game on N is a map v : ECN −→ R with
v(⊥) = 0. Let U = {e(T ;Q) : (T ;Q) ∈ ECN \ {⊥}} be the family of partition function form
games given by

e(T ;Q)(S;P ) =
{

1 if (T ;Q) v (S;P ),
0 otherwise

for every (T ;Q) ∈ ECN \ {⊥}. The set of partition function form games U is a basis of the
vector space of partition function form games as de Clippel and Serrano (2008) proved. Then,

v =
∑

(T ;Q)∈ECN\{⊥}

α(T ;Q)e(T ;Q). (4)

These coefficients are characterized next.
Proposition 12. Let v be a partition function form game. Then, for every (T ;Q) ∈ ECN \ {⊥}

α(T ;Q) =
∑

M∈[Q,N\T ],
R(T

(−1)|Q|−|M |−|R|
max{1,|M\Q|}∏

j=1
(mj − 1)!v(T \R;M ∪ {{i} : i ∈ R})

with mj ≥ 1 for every j = 1, . . . ,max{1, |M \ Q|},
∑max{1,|M\Q|}

j=1 mj = max{1, |M \ Q|} for
every M ∈ [Q,N \ T ].

Proof. Let (T ;Q) ∈ ECN \ {⊥}. The coefficient α(T ;Q) in Equation 4 can be obtained through
the Möbius inversion formula as follows

α(T ;Q) =
∑

⊥6=(S;P )v(T ;Q)

µ((S;P ), (T ;Q))v(S;P ).
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Using Proposition 11, the only embedded coalitions ⊥ 6= (S;P ) v (T ;Q) with a non null
µ((S;P ), (T ;Q)) correspond to any partition

P = ∪{{i} : i ∈ T \ S} ∪M

with ∅ 6= S ⊆ T and M ∈ [Q,N \ T ]. Then,

α(T ;Q) =
∑

M∈[Q,N\T ],
R(T

(−1)|Q|−|M |−|R|
max{1,|M\Q|}∏

j=1
(mj − 1)!v(T \R;M ∪ {{i} : i ∈ R})

with mj ≥ 1 for every j = 1, . . . ,max{1, |M \ Q|},
∑max{1,|M\Q|}

j=1 mj = max{1, |M \ Q|} for
every M ∈ [Q,N \ T ].

In particular,
α> =

∑
R(N

(−1)|R|v(N \R; {{i} : i ∈ R})

Example 7. Let us consider |N | = 3. In Figure 5 we depict the lattice of the embedded coalitions
for n = 3. Next we obtain the non null values of its Möbius function.

⊥

({1}; {2, 3})({2}; {1, 3})({3}; {1, 2})

({1}; {{2}, {3}})({2}; {{1}, {3}})({3}; {{1}, {2}})

({1, 2}; {3})({1, 3}; {2})({2, 3}; {1})

>

Figure 5: The lattice of ECN for n = 3.

µ((S;P ), (S;P )) = 1, for every (S;P ) ∈ ECN ,
µ(⊥, ({i}; {j, k}) = −1, for every i ∈ N \ {j, k},
µ(⊥, ({j, k}; {i})) = 1, for every {j, k} ∈ N \ {i},
µ((S;P ), (T ;Q)) = −1, for every (S;P ), (T ;Q)
such that (S;P ) v (T ;Q), h(T ;Q)− h(S;P ) = 1,
µ(({i}; {{j}, {k}}),>)) = 1, for every i ∈ N \ {j, k}.

Then,
α⊥ = 0, α({i};N\{i}) = v({i};N \ {i}),
α({i};{{j},{k}}) = v({i}; {{j}, {k}})− v({i};N \ {i}),
for every i, j, k ∈ N, i 6= j, k, j 6= k,
α({i,j};N\{i,j}) = v({i, j}; {k})− v({i}; {{j}, {k}}})− v({j}; {{i}, {k}}),
for every i, j, k ∈ N, i 6= j, k, j 6= k,
α> = v(>)−

∑
i∈N

∑
j∈N\i v({i, j}; {k}) +

∑
i∈N v({i}; {{j}, {k}}}),

i, j, k ∈ N, i 6= j, k, j 6= k.
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We apply this to the example in Grabisch (2010, pp. 486). The game is

v(>) = 3, v({1, 2}; {3}) = 2, v({3}; {1, 2}) = 0, v({1}; {{2, 3}}) = 1,
v({2, 3}; {1}) = 2, v({1, 3}; {2}) = 1, v({2}; {1, 3}) = 1,
v({1}; {{2}, {3}}) = v({2}; {{1}, {3}}) = 1, v({3}; {{1}, {2}}) = 0

and it can be written as

v = e({1};N\{1}) + e({2};N\{2}) + e({2,3};{1})

If we consider (N ;w) with w({3}; {{1}, {2}}) = 2 and w(S;P ) = v(S;P ) for every (S;P ) 6=
({3}; {{1}, {2}}). We obtain

w = e({1};N\{1}) + e({2};N\{2}) + 2e({3};{{1},{2}})
−2e({1,3};{2}) − e({2,3};{1}) + 2e(N ;{∅}).

Grabisch (2010) showed that there is no additive partition function form game in (ECN ,v0)
different from v(S;P ) = 0 for every (S;P ) ∈ ECN if |N | ≥ 3. On the contrary we show that
any additive TU game is also additive in (ECN ,v). In lattice theory the concept of a valuation
corresponds to the concept of an additive function in the setting of partition function form
games. Let (L,≤) be a finite lattice. A valuation is a real-valued function f on L satisfying

f(∨i∈Ixi) =
∑

J⊆I, J 6=∅

(−1)|J|+1f(∧i∈Jxi) (5)

for every finite set I and {xi : i ∈ I} ⊂ L. A valuation f is monotone if f(x) ≤ f(y) whenever
x ≤ y.
Proposition 13. There are non-constant monotone valuations on (ECN ,v).

Proof. Let us take n non-negative real numbers a1, . . . , an. Let us define

v(S;P ) =
∑
i∈S

ai − (|S| − 1)v(⊥) if (S;P ) 6= ⊥.

It is clear that v is monotone if 0 ≤ v(⊥) ≤ 1
n min{ai : i ∈ N}. We prove that v is a

valuation function by checking Equation 5 for |I| = 2 because the remaining cases follow applying
induction on |I| immediately. Let (S;P ), (T ;Q) ∈ ECN . We check that v(S;P ) + v(T ;Q) =
v((S;P ) ∨ (T ;Q)) + v((S;P ) ∧ (T ;Q)). Notice that

v(T ;Q) + v(S;P ) =
∑

i∈T ai − (|T | − 1)v(⊥) +
∑

i∈S ai − (|S| − 1)v(⊥)
=

∑
i∈T∪S ai − (|T |+ |S| − 2)v(⊥) +

∑
i∈T∩S ai

=
∑

i∈T∪S ai − (|T |+ |S| − |T ∩ S| − 1)v(⊥)
+
∑

i∈T∩S ai − (|T ∩ S| − 1)v(⊥)
= v((S;P ) ∨ (T ;Q)) + v((S;P ) ∧ (T ;Q))

because |T ∪ S| = |T |+ |S| − |T ∩ S|.

If v(⊥) = 0, the valuation defined above can be seen as an additive TU game. We can choose
adequate non-null values for v(⊥) and obtain different valuations. The valuation defined above
is not strictly monotone because v(S;P ) = v(S;Q) for every P,Q ∈ Π(N \ S) and ∅ 6= S ( N .
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6 Concluding remarks
We study some structural properties of the set of embedded coalitions endowed with the partial
order outlined in de Clippel and Serrano (2008). In particular we prove that this partial ordered
set is a lattice. Moreover, we characterize the set of atoms, the set of coatoms, the join or
meet-irreducible elements, as well as the number of embedded coalitions that cover any other
embedded coalition, the number of embedded coalitons covered by any other embedded coalition,
the height of every irreducible chain and the number of embedded coaliton per level. Besides,
we obtain the Möbius function of this partial ordered set. This finding allows us to calculate
explicitly the scalars related to the basis of the vector space of partition function form games
that de Clippel and Serrano (2008) used. We expect that our results can contribute to a
better understanding of some values proposed in the context of partition function form games.
Moreover, we can also define new values in this context using some properties that appear in
this paper.
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