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ABSTRACT

Information extraction from an L-fuzzy context becomes a hard problem when we
work with a large set of objects and/or attributes. The goal of this paper is to present
two different and complementary techniques to reduce the size of the context. First,
using overlap indexes, we will establish rankings among the elements of the context
that will allow us to determine those that do not provide relevant information and
eliminate them. Second, by means of Choquet integrals, we will aggregate some ob-
jects or attributes of the context in order to jointly use the provided information.
One interesting application of the developed theory consists on helping in the differ-
ential diagnoses of diseases that share a large number of symptoms and, therefore,
that are difficult of distinguish.
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1. Introduction

The L-fuzzy concept analysis [Burusco and Fuentes-Gonzalez (1994, 1998); Burusco
and Fuentes-Gonzdlez (2000)] is a theory that studies the information arising from
an L-fuzzy context using the L-fuzzy concepts as tools. An L-fuzzy concept is a pair
of L-fuzzy sets that can be interpreted as a group of elements (objects) that shares
some characteristics (attributes). The set of these L-fuzzy concepts has the structure
of complete lattice.

When the cardinality of this L-fuzzy concept lattice is large, the obtained result may
not be manageable. One of the factors that determines the size of the L-fuzzy concept
lattice is the cardinality of the lattice L. The other is the size of the L-fuzzy context.
In most situations, not all objects or attributes are of equal importance from the
point of view of the concepts. In fact, some objects or attributes could be eliminated
(eliminating their corresponding row or column) without loss of relevant information,
thus reducing the size of the context.
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Over the past, several researchers have developed models in order to reduce the
size of this lattice. In [Belohldvek and Vychodil (2005, 2012)], the authors used hedges
to control the size of the concept lattice. A different approach is developed by these
authors in [Belohldvek and Vychodil (2006, 2013)]. Also Wei and Qi [Wei and Qi
(2010)], and Medina [Medina (2012)] have published works from the point of view of
the attributes for fuzzy oriented concept lattices or using T-implications as Li and
Zhang do [Li and Zhang (2013)].

Other methods to reduce the complexity of the lattice using fuzzy similarity [Be-
lohlavek (2000)] or block relations [Konecny and Krupka (2011)] have also been de-
veloped.

None of the previous works use aggregation operators for the purpose of studying
this task.

Sometimes, the L-fuzzy context values are independent and we can use usual ag-
gregations as weighted means [Calvo and Mesiar (2003b,a)], OWA operators [Fodor,
Marichal, and Roubens (1995); Yager (1998)] and WOWA operators [Torra (1998)].
However, these studies are incomplete when we have values that present dependencies
among them. In these situations the use of Choquet integrals [Choquet (1953); Gra-
bisch (1995)] can be very useful as a tool for doing a proper analysis without lost of
information as we did in [Alcalde and Burusco (2017)].

The paper addresses the study of the relevance of objects and attributes using
overlap indexes and proposes a method for the reduction of the size of the L-fuzzy
context when L = [0, 1] using Choquet integrals. Firstly, in Section 2 we will introduce
the L-fuzzy concept analysis, overlap indexes and Choquet integrals that will be used
in the paper. The rest of the paper is organized as follows: Section 3 applies overlap
indexes to establish orderings among objects an attributes, Section 4 studies the use
of Choquet integrals to reduce the size of the L-fuzzy contexts aggregating some rows
or columns. Finally, in Section 5 we apply the developed methods to deal with the
problem of differential diagnosis of erythemato-squamous diseases. Conclusions are
detailed in last section.

2. Preliminaries

2.1. L-Fuzzy concept analysis

The R. Wille’s Formal Concept Analysis [Wille (1982)] extracts information from a
binary table that represents a formal context (X,Y,R) with X and Y finite sets of
objects and attributes respectively and R C X x Y. The hidden information consists
of pairs (A, B) with A C X and B C Y, called formal concepts, verifying A* = B and
B* = A, where (-)* is the derivation operator that associates the attributes related to
the elements of A to every object set A, and the objects related to the attributes of
B to every attribute set B. These formal concepts can be interpreted as a group of
objects A that shares the attributes of B.

In previous works [Burusco and Fuentes-Gonzélez (1994, 1998)] we defined the L-
fuzzy contexts (L, X,Y, R), with L a complete lattice, X and Y sets of objects and
attributes respectively and R € LX*Y a fuzzy relation between the objects and the
attributes. This is an extension of Wille’s formal contexts to the fuzzy case when we
want to study the relations between the objects and the attributes with values in a
complete lattice L, instead of binary ones.

In our case, to work with these L-fuzzy contexts, we defined the derivation operators



1 and 2 given by means of these expressions [Burusco and Fuentes-Gonzélez (1998);
Burusco and Fuentes-Gonzalez (2000)]:
VAe LX VBeLY

Aiy) = inf {T(A(), R(,9))}

By(z) = yig{f(B(y), R(z,y))}

with I a fuzzy implication operator defined in (L, <).

The information stored in the context is visualized by means of the L-fuzzy concepts
that are pairs (A4, A1) € LX x LY with A € fiz(y), set of fixed points of the operator
¢, being defined from the derivation operators 1 and 2 as p(A) = (41)2 = Aje.
These pairs, whose first and second components are said to be the fuzzy extension and
intension respectively, represent a group of objects that share a group of attributes.

Using the usual order relation between fuzzy sets, that is, VA,C € LX, A < C <
A(z) < C(x),Vx € X, we define the set £L = {(A4,A41) | A € fiz(p)} with the order
relation < defined as: V(A4, A1), (C,C1) € L,(A, A1) X (C,C1) if A< C (or A1 > ().

As ¢ is an order preserving operator, then the set fiz(y) is a complete lattice and
(£, =) is also a complete lattice that is said to be the L-fuzzy concept lattice [Burusco
and Fuentes-Gonzélez (1994, 1998)].

In addition, in the case of using a residuated implication (I(a,b) = sup{z | T(a,x) <
b}, with T a t-norm), given A € LX, (or B € LY) we can obtain the associated
L-fuzzy concept applying twice the derivation operators. In this case, the L-fuzzy
concept associated to A is (412, A1) (or (Ba, Ba1)). In the paper, residuated implication
operators will be used.

In particular, if we represent every object z € X,i € {1,...,n}, by the L-fuzzy set
x; such that xj(z;) = 1 and x3(z) = 0, for any = # z;, we can define the following
L-fuzzy concept:

Definition 2.1. For every x; € X,i € {1,...,n}, the pair Cx, = ((xi)12, (xi)1) is said
to be the L-fuzzy concept derived from x;.

Analogously Cy, = ((yj)2, (¥j)21),7 € {1,...,m} is the L-fuzzy concept derived
from yj, being yj the L-fuzzy set that represents the attribute y;.

In the rest of the paper we will denote Cy, = (C,,Cx,) and Cy, = (Qyj,ayj). These
concepts are the closest to the departure sets represented by x; or y; (study of a single
object or attribute), and they give us a general idea about the behavior of the objects
and the attributes in the L-fuzzy concept lattice with a low computational cost.

Our last results are related to the use of two relations in the definition of the L-fuzzy
context [Alcalde and Burusco (2015a)], the study of fuzzy context sequences [Alcalde,
Burusco, and Fuentes-Gonzalez (2013)], the composition of L-fuzzy contexts [Alcalde
and Burusco (2012)] and the study of multivalued contexts associated with criteria
[Alcalde and Burusco (2018a)]. We have also developed this theory in different areas
as the treatment of incomplete information [Alcalde et al. (2009); Alcalde, Burusco,
and Fuentes-Gonzdlez (2005)] or Mathematical Morphology [Alcalde, Burusco, and
Fuentes-Gonzalez (2014); Alcalde et al. (2017a,b)].

Other important works that generalize the Formal Concepts Analysis using resid-
uated implication operators are due to Bélohldvek [Belohlavek (1999, 2002)] and S.



Pollandt [Pollandt (1997)]. Moreover, extensions of Formal Concept Analysis to the
interval-valued case are in [Alcalde et al. (2009); Djouadi and Prade (2010, 2011)]
and to the fuzzy property-oriented and multi-adjoint concept lattices framework in
[Medina and Ojeda-Aciego (2010, 2013)].

In this paper, we are going to work with L-fuzzy contexts when L = [0, 1].

2.2. Choquet integrals

In order to aggregate information, several operators have been developed in the liter-
ature. The best known are weighted means [Calvo and Mesiar (2003b,a)] and OWA
operators [Yager (1998); Fodor, Marichal, and Roubens (1995)] which use weighting
vectors, in the first case to weight the reliability, and to weight the values according to
their ordering in the second one. When the use of both orderings is interesting, WOWA
operators [Torra (1998)] can be a good option. We have applied these operators to ag-
gregate values in different situations [Alcalde, Burusco, and Fuentes-Gonzélez (2013);
Alcalde et al. (2016); Alcalde and Burusco (2014, 2015b)]. Choquet integrals [Grabisch
(1995)] are defined as a generalization of the previous ones when not only individual
observations but also groups are relevant. We will see next the main definitions.

We will begin with the definition of generalized measure [Klir and Wang (2009)]
defined in P(X), the set of parts of X.

Definition 2.2. A function p: P(X) — [0, 1] is a generalized measure on X if and
only if it satisfies the p(0) = 0.

Usually monotonicity is also required: A € B C X implies u(A) < u(B). Besides,
although it is not necessary, we will assume here p(X) = 1.

Definition 2.3. A generalized measure pu is said to be additive if for all A,B C X
such that AN B =0,

(AU B) = pu(A) + u(B).
The Choquet integral was formulated by Grabisch [Grabisch (1995)] as follows:

Definition 2.4. Given a generalized measure p, the Choquet integral with respect to
1 is defined as:

N
Chu(al c.an) = Z Qg (k) (M(Ao(k)) - N(Aa(k—l)))
k=1

ag(ny and Aggy = {0(j)|j < k} (therefore A,y = {o(1),...,0(r)} when r > 1 an
Ayy =0.)
(0)

where {o(1),...0(N)} is a permutation of {1,..., N} such that as(1) > ay@) > -+ >

Remark 1. ;From this definition we can see that weighted means, OWA and WOWA
operators are particular types of Choquet integral [Torra (1998)].

Remark 2. If p is an additive generalized measure, then the Choquet integral with



respect to p can be calculated as:

N

Chylai...an) = Zaa(k)u({U(k)})

k=1

A key issue in the use of Choquet integrals is the election of the measure to calculate
the weights of the elements that will be aggregated. We propose in this work measures
defined from overlap indexes [Paternain et al. (2016)]. In this way the defined measure
will give a higher value to those sets of elements that have a stronger relationship
among them.

2.3. Measures constructed from overlap indexes

Given L = [0,1] and LY the fuzzy sets of U, in [Paternain et al. (2016)] the authors
define an overlap index as a mapping O : LY x LV — [0, 1], such that VA, B € LY:
i) O(A, B) = 0if and only if in A and B have disjoint supports; that is, A(i)B(i) =
0 for every i € U
ii) O(A,B) =0(B,A)
iii) If B C C, then O(A,B) < O(A,C)

An overlap index such that:

iv) O(A, B) =1 if there exists ¢ € U such that A(i) = B(i) =1
is called a normal overlap index.

In addition, if the overlap index verifies that

v) O(E,ANB)+O(E,AUB) =0(E,A) + O(E,B) YA,B € LY,
O is called E-modular.

Examples of overlap indexes are the following ones:

(1) Zadeh’s consistency index:

Oz(A, B) = max (min(A(i), B(7)))

1<i<n

(2) Let M : [0,1]> — [0,1] be a symmetric aggregation function such that
M(x,y) = 0 if and only if zy = 0. We have that:

Onm,z(A, B) = max (M(A(z), B(i)))

1<i<n
is a normal overlap index that generalizes the Zadeh’s index.

(3) If in the previous example, we consider a symmetric, increasing function M :
[0,1]> — [0,1] such that M(1,1) < 1 and M (x,y) = 0 if and only if xy = 0,
then we obtain an overlap index which is not normal. For instance, when taking
M(z,y) = (zy)P/2 with p > 0, we arrive at the overlap index:

O(A, B) = mag <<A(i>73(i>)p>

1<i<n 2



(4) The following is also an example of overlap index:
1 n
Or(A,B)=—)» A(i)B(i
(A4.8)= 3 A0B

Let E € LY be a fixed non-empty fuzzy set. Given A C U, we define:

FEA(i) =
a(0) 0 otherwise

{E(i) ific A
Observe that F4 is the intersection of the fuzzy set E and the crisp set A.

Now it is possible introduce the definition of a measure in terms of a fuzzy set and
an overlap index, as shows the following theorem [Paternain et al. (2016)].

Theorem 2.5. If E € LY is a fized, non-empty fuzzy set, then the mapping mo,E :
P(U) — [0,1] given by mo, g(A) = 00(55’%‘)) is a generalized measure for every overlap

index O.

Remark 3. The generalized measure mo g is additive if the overlap index O is E-
modular (see [Paternain et al. (2016)]).

Example 2.6. The generalized measure mo, g is additive, and hence a classical mea-
sure, for every fuzzy set E.

3. Ordering and elimination of objects and attributes using overlap
indexes

As it has been explained in the introduction, the size of an L-fuzzy context is one of
the factors that determines the size of the L-fuzzy concept lattice and its handling.

So far, in all our works regarding the reduction of the size of the L-fuzzy context
we have used the method of removing rows or columns in the relation (eliminating
objects or attributes). In [Burusco and Fuentes-Gonzalez (2003)] we removed the ob-
jects and/or attributes of little significance, that is, that did not appear as relevant in
any L-fuzzy concept. To do this, we first obtained the L-fuzzy concept lattice, a quite
laborious task.

In another different field and in order to work with missing values, in [Alcalde,
Burusco, and Fuentes-Gonzalez (2005)] infrequently appearing objects and attributes
were studied. We removed them when they did not exceed a minimum support. To do
this, we defined support of an L-fuzzy set in terms of the membership values of the
elements in its derived set. The aim was to eliminate some rows or columns of missing
values.

We will try in this work to reduce the size of the L-fuzzy context by establishing
rankings among the objects or attributes in order to eliminate those that appear in
not relevant positions.

It is important to point out that by eliminating some elements of the context the
information corresponding to the others does not change, as shown in the following
proposition.



Proposition 3.1. Let us consider the subset of objects X C X and the relation Re
X XY such that V(z,y) € X xY R(x,y) = R(z,y). Given an object xy € X, let Cx,
and Cx, be the L-fuzzy derived concepts in (L, X,Y,R) and (L, X,Y, R) respectively.

~

Then; \V/(£U7 y) € X X Y} on ([L‘) = éxo (CC) and éxo (y) = CXU (y)

Proof. Given zp € X, Y(x,y) € X xY,

Cxo(y) = inf {I(xo(2), R(z,y))} = R(zo0,y)

Cxo(y) = inf {I(xo(w), R(z,9))} = R(zo.y)

Therefore, as g € X, Cx,(y) = EXO (y) forally e Y.
On the other hand, for all z € X,

Cy,(2) = inf {1(R(ao. ), R(w.))} = inf {I(R(z0,9). Rlz,5)} = Cx, ().

O]

Similarly, we can prove that by removing a subset of attributes from the context
the information corresponding to the others does not change either.

Proposition 3.2. Given the subset of attributes Y CY and the relation ReXxY
such that V(z,y) € X xY R(z,y) = R(x,y), consider the attribute yo € Y, and let Cy,
and éyo be the L-fuzzy derived concepts in (L, X,Y,R) and (L,X,?,R) respectively.
Then, ¥(z,y) € X X Y, Cyo () = éyo (z) and Cy,(y) = éyo (y).

3.1. Ranking obtained from supports

The definition of support of an L-fuzzy subset of objects or attributes given in [Alcalde,
Burusco, and Fuentes-Gonzalez (2005)] was extended in [Alcalde and Burusco (2018b)]
in order to assign a support to each object and attribute in the context that allows
establish rankings among them as follows.

Definition 3.3. Given an object z € X, we define its support as

> Cx(y)

yey
SUPp(m) = T

In the same way, the support of an attribute y € Y can be defined as

2. Cy(x)

supp(y) = “

| X

This support measures the average membership degree in the intention (extension)
of the concept associated with an object (attribute) and, therefore, it can be considered



as a measure of the relevance of this object (attribute). The greater the support, that
is, the greater the presence of the attributes (objects) in the associated concept, the
more relevant the object (attribute) will be.

Based on the support it is possible to define the following preorder relation among
the objects in the L-fuzzy context:

Definition 3.4. Given two objects z; and x; € X,
Xy Zsupp Tj <= Supp(xi) > Supp(xj)
Similarly, Yy;,y; € Y,

Yi Zsupp Yj <= supp(yi) > supp(y;)

Note that >g,pp is not an antisymmetric relation and therefore it is not an order
relation.

3.2. Other rankings defined from overlap indexes

Overlap indexes can be used to define other different rankings among the objects or
attributes of the context by means of the following preorder relations:

Definition 3.5. For every z;,z; € X. Let Ex € LX be a fuzzy set and O an overlap
index.

r; 20,8x Tj <= O(Ex,Cx,) > O(Ex,Cx;)
Analogously, Vy;,y; € Y and VEy € LY,

Yi >0,Ey Yj <= O(Ey,Cy,) > O(Ey,Cy,)

The obtained ranking differs if we change the considered set E and overlap index
O. The election of the preorder relation will depend on the situation that we want to
analyze.

Taking into account that the support of an object summarizes the information of its
relevance in the context, an interesting case is the one obtained when we chose the set
Ex such that Ex(z) = supp(z) € L¥ for every € X. Considering this set Ex, the
relation > g, orders the objects in function, not only of the support of these objects,
but also of the support of all those that appear related to them in the intentions of the
concepts that represent them. From the point of view of the attributes we can proceed
in a similar way considering the set Fy (y) = supp(y) € LY for every y € Y.

4. Reducing the size of an L-fuzzy context by means of the aggregation
of rows or columns

We are aware that when objects or attributes of the contexts are removed, some
information is also eliminated, so we want to study a new method that minimizes the
impact of the missing information.



Instead of deleting rows and/or columns from the context, we can think of aggregat-
ing these rows or columns among them or with others. That is, a new row or column of
the context is added by aggregating others. Again, the aim of this action is to reduce
the size of the context and its L-fuzzy concept lattice.

In this way we can aggregate objects or attributes of low relevance with others.
In addition, it is possible that we also want to aggregate other objects or attributes
that we consider important to the context in order to reduce its size. In this case we
aggregate them with the other connected ones.

On the other hand, if we are interested specifically in a group of objects, we will do
an independent study of the L-fuzzy subcontext formed by their corresponding rows
before the aggregation process as we did in [Alcalde and Burusco (2017)].

Furthermore, if we change a row or column in the context (that occurs when we
aggregate several rows or columns), we can see that the L-fuzzy concepts obtained
from the non modified objects or attributes have the same membership degrees (see
[Alcalde and Burusco (2017)]).

Proposition 4.1. Let (L, X,Y,R) and (L, X, Y,R) be L-fuzzy contexts such that
R(w y) = R(z,y),Vz € X\{xo},Vy € Y. Consider z; € X\{xo} and let Cx, and
Cx, be the L-fuzzy derived concepts in (L, X,Y,R) and (L, X,Y,R) respectively. For
any x € X\{xo} and for any y € Y, the membership degrees in both L-fuzzy concepts
are coincident.

Analogously, from the point of view of the attributes.

Proposition 4.2. Let (L,X,Y,R) and (L,X,Y, R) be L-fuzzy contexts such that
R(z,y) = R(z,y),Yz € X,Vy € Y\{yo}. Consider y; € Y\{yo} and let Cy, and Cy, be
the L-fuzzy derived concepts in (L, X,Y, R) and (L, X,Y, R). For anyy € Y\{yo} and
for any x € X, the membership degrees are coincident in both L-fuzzy concepts.

The use of these L-fuzzy concepts derived from the objects or attributes will be an
interesting tool in order to aggregate some related objects and/or attributes.

For any =, € X,k € {1,...,n}, C(xx) denotes the membership degree of the object
xx in C. Analogously, the membership degree of the attribute y; in C is represented by
C(y;) for every y; € Y.

Definition 4.3. Consider 0 < o < 1. Let (L, X, Y, R) be an L-fuzzy context and let £
be its L-fuzzy concept lattice. For any L-fuzzy concept C € L, we define the a-objects
associated with C as the set:

T*(C) = {xr € X | C(zx) > a}.
Analogously, the a-attributes associated with C are defined as:

QC)={y Y |Cly) > a}.

Definition 4.4. If x;, € T%(Cx,), k # i, then x; is said to be a-dependent on xj. On
the contrary, we say that x; is a-independent on xy.

Similarly, if y; € Q%(Cy,),l # j, then y; is said to be a-dependent on y;. Otherwise,
we say that y; is a-independent on ;.

That is, x; is a-dependent on xj when in the L-fuzzy concept derived from x;, xx



stands out in a level bigger than or equal to «. In the case o = 1, the membership
degree of zj in the L-fuzzy concept is equal to 1.

Remark 4. zj can belong to T%(Cy,), k # ¢ for different objects x;. The same can be
said for the attributes.

Proposition 4.5. The relation of a—dependence is not necessarily symmetric.
That is, if xp is a—dependent on xj, xj is not necessarily a—dependent on xy
fulfilled. The same holds for the attributes.

Definition 4.6. Given «, we say that x; is a—independent if T*(Cx,) = {x;}.
Analogously, y; is an a—independent attribute if Q*(Cy,) = {y;}-

The relation of a-dependence among the objects allows to set up a graph G§ =
(X, E%) which nodes are the objects of the context. The edge (z;,z;) € £% is in the
graph if x; € T%(Cy,).

Similarly, we can consider the graph G§ = (Y, &) on the set of attributes of the
context.

Note that, although the relation of a-dependence establishes a direction in each
edge of the context, our goal is to aggregate those objects or attributes that are
related among them and therefore we can work with the undirected graph.

The connected components of the graph G% form a partition of the set X. We
will denote this partition as X® = {X1, X, ..., X},}, where the elements X; represent
the different connected components of the graph. From the elements of this obtained
partition we can define a new L-fuzzy context.

Definition 4.7. Let be 0 < a < 1. The L-fuzzy context a—reduced by objects
(L, XY, Ry) is obtained aggregating the values of R corresponding to the elements
that form each connected component in the graph G<. That is:

VXZ = {xil,xig, ... ,a:iNi} (S Xa,Vy S Y,

R¥(X;,y) = aggr(R(za,y), R(zi2,y), ..., R(zin,, y))

The L-fuzzy context a—reduced by attributes, (L, X,Y*, R%), can be defined in an
analogous way.

Remark 5. It is obvious that given «, the L-fuzzy context a—reduced by objects
(L, X Y,R3) and the L-fuzzy context a—reduced by attributes (L, X,Y*, R%) are
not coincident.

In all the cases, we have to choose one of the sets (objects or attributes) in order
to carry out our study. The election will depend on the particularities of the problem
and the aim of study.

4.1. Choquet integral derived from objects or attributes

Choquet integrals allow to aggregate elements taking into account the existing relation
among them. We can use, for example, measures that give a higher weight to those
subsets of elements that have a closer relationship.

With this purpose of aggregate rows or columns of the L-fuzzy context when there
exists an strong relation among them from the point of view of the study of L-fuzzy
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concepts, we will adapt the idea of Choquet integral as follows:

Definition 4.8. Given the L-fuzzy context (L, X,Y, R), consider the subset of objects
X ={x1,x9,...,2n} C X. Let p be a generalized measure defined on the set P(X).

We define the X -Choquet integral with respect to p as a function Chff : L — L such
that forally € Y

WE

Ch,)f(y) = > R(@o), ) (1(Acry) — 1(Agr—1)))

B
Il

1

where {o(1),...0(N)} is a permutation of {1,...,N} such that R(z,),y) >
R(2502),) > -~ >R( o(V): Y), and Agry = {Z4(; |J<k}

Analogously, from the point of view of the attributes:

Definition 4.9. Given the subset of attributes Y = {y1,92,...,yp} C Y, Let p be a
generalized measure defined on the set P(Y). We define the Y -Choquet integral with
respect to p as a function Ch})/ : L — L such that for all x € X

M
Chy ZR Ty Yo (k Ba(k)) - p(‘Ba(kfl)))
k=1

where {o(1),...0(M)} is a permutation of {1,...,M} such that R(:U,yo_(l)) >
R($’y0(2)) > 2 R(:E7y0(M)) and Ba(k) = {ya(j)|j < k}

Proposition 4.10. Given the subset of objects X = {z1,29,...,28} C X, the X-
Choquet integral with respect to p verify the following properties.

i) If R(zi,y) =1 Vi <N, then ChX (y) = 1.
X .
w) min {R($z7 y)} <Chy (y) < lréni%{R(mz,y)}-

4.2. Context Reduction Algorithms

As commented above, the first election that we have to make is if we want to reduce
the number of objects or attributes in the context. We present here the process in
order to reduce the number of objects (see Algorithm 1).

The election of « establishes the exigency level and depends on every practical case.
We will begin with a level & = 1 and we can try with a smaller value when the size of
the a—reduced context is not manageable (the lower «, the larger will be the number
of aggregated objects).

An analogous process can be performed in order to reduce the number of attributes,
obtaining the Algorithm 2.

The computational cost of the process is low since it only uses the L-fuzzy concepts
derived from objects and/or attributes and, therefore, the entire construction of the
L-fuzzy concept lattice is not necessary.

We will choose the most appropriate measure p in each practical case.

In [Alcalde and Burusco (2017)] we presented a first approximation to the problem
of context reduction using Choquet integrals. In this paper, with the aim of improving
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Algorithm 1 Context Reduction by Objects Algorithm (CROA)
Input: (L, X,Y, R): an L-fuzzy context, a: exigence level.
Output: (L, XY, R3): the L-fuzzy context a—reduced by objects.
1: for all z € X do
2:  Obtain its derived L-fuzzy concept Cx.
3. Calculate the set T%(Cx) of a-objects associated with Cx.
4: end for
5. Establish the graph G% = (X, £%).
6
7
8
9

: Obtain the set of connected components X <.
: for all X € X* do
. forallyeY do
Calculate the relation of the L-fuzzy context a—reduced by objects:

R3(X,y) = Chj, (y).

10 end for
11: end for

Algorithm 2 Context Reduction by Attributes Algorithm (CRAA)
Input: (L, X,Y, R): an L-fuzzy context, a: exigence level.
Output: (L, X,Y, R%): the L-fuzzy context a—reduced by attributes.
: for all y €Y do
Obtain its derived L-fuzzy concept Cy .
Calculate the set Q“(Cy) of a-attributes associated with Cy.

1
2
3
4: end for

5: Establish the graph G§ = (Y, £¢).
6

7

8

9

: Obtain the set of connected components Y¢.
. for all Y € Y do
for all z € X do
Calculate the relation of the L-fuzzy context a—reduced by attributes:

R4 (z,Y) = Ch}:(aj).

10 end for
11: end for

the results, we will use the measure obtained from overlap indexes (see Theorem 2.5).

In order to measure the relationship grade among the objects, for every connected
component X; € X% X; = {xi,%2,...,zin,} C X, we will consider the fuzzy set
Eg € L*: such that Va;, € X;,

Ni

ZQXU (xlk)

=1
E ~7(:L‘Zk) = J N
(2
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Fixed an overlap index O, we will define a measure p on P(X;) as:

; O(Ex. Ex 1)
VACXi, wA)=mop, (A) =—F——"
: O(Ex,,Ex)

Thus, the higher the dependency among the objects of A the greater its measure
1(A).

In terms of computational cost, if | X| = n and |Y'| = m, Algorithm 1 has a com-
plexity of O(n?m) and Algorithm 2 is O(nm?).

5. Practical application: Differential diagnosis of similar diseases

An interesting application of the results developed above is the help in the differential
diagnosis of similar diseases that share a set of symptoms. We will illustrate here
this problem analyzing the diagnosis of six dermatological diseases. This problem was
treated in [Giivenir, Demir6z, and Ilter (1998)] with a classification algorithm that
provided good results. We will see here that same results can be obtained applying
the developed theory with a very low computational cost.

The differential diagnosis of erythemato-squamous diseases is a difficult problem in
dermatology because they share the clinical features of erythema and scaling and, at
first sight, they look very much alike.

The diseases in this group are:

x1: Psoriasis

r9: Seboreic dermatitis
x3: Lichen planus

x4: Pityriasis rosea

x5: Cronic dermatitis

xg: Pityriasis rubra pilaris

Patients are usually evaluated clinically with the following eleven features:

y1: Erythema

yo: Scaling

y3: Definite borders

ya: Itching

y5: Koebner phenomenon

ye: Polygonal papules

y7: Follicular papules

ys: Oral mucosal involvement
y9: Knee and elbow involvement
y10: Scalp involvement

y11: Family history, (0 or 1)

Some patients can be diagnosed with these clinical features only but, frequently, a
biopsy is necessary in order to evaluate the following histopathological features:

y12: Melanin incontinence

y13: Eosinophils in the infiltrate
y14: PNL infiltrate

y15: Fibrosis of the papillary dermis
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Y16: Exocytosis

y17: Acanthosis

y18: Hyperkeratosis

y19: Parakeratosis

yo0: Clubbing of the rete ridges

yo1: Elongation of the rete ridges

yoo: Thinning of the suprapapillary epidermis
yos3: Spongiform pustule

y24: Munro microabcess

y25: Focal hypergranulosis

y26: Disappearance of the granular layer

yo7: Vacuolisation and damage of basal layer
Yog: Spongiosis

Y29: Saw-tooth appearance of retes

y30: Follicular horn plug

ys1: Perifollicular parakeratosis

ys2: Inflammatory monoluclear inflitrate

y33: Band-like infiltrate

In order to define our context we have used the dataset available in the UCI Machine
Learning Repository [Dua and Taniskidou (2017)]. This dataset contains 366 instances
consisting in the disease suffered by each patient and the presented features.

We have constructed the L-fuzzy context (L, X, Y, R), in which the objects are the
different diseases, the set of attributes is formed by the analyzed 33 features, and the
relation among them is given by the proportion of cases where the corresponding fea-
ture has been observed for each of the diseases. The obtained relation R is represented
in Table 1.

The construction of the whole L-fuzzy concept lattice has a high computational
cost. So, we will apply the theory developed above to reduce the size of the L-fuzzy
context.

We will start by establishing a ranking of attributes in order to determine those that
could be eliminated because they are the less relevant in the extraction of information.
In case that with this step the context is not sufficiently reduced to allow extracting
information without great difficulty, we will apply the second step and the context will
be will be reduced by aggregation.

In this situation we have decided to consider the ranking obtained from supports
of attributes which represent the presence of the symptoms in the diseases. Once the
supports are calculated we will eliminate those attributes that occupy the highest
positions in the ranking, since the fact that the support is high means that the cor-
responding symptom is present in almost all the diseases and, therefore, it does not
provide relevant information for a differential diagnosis.

We eliminate those attributes which support is greater than 0.7, that is, they are
present in at least 70% of the patients and they are not determining symptoms to
make an appropriate diagnosis. So the eliminated attributes are (See Table 2),

{y1,v2, Y17, Y32, Y3, Y16, Y19 }
We define a new L-fuzzy context (L, X ,Y,R) without the eliminated attributes.

The new relation is in Table 3.
Since the new context still has a large number of attributes, we apply the Context
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Table 1. Relation of the L-fuzzy context

Ry Y2 Y3 Y4 Ys Y6 Y7 s Yo Yo Y11

r1 0.99 1 1 0.51 0.44
T2 1 1 0.66 0.85 0.02 0.07 0.08 0.05
3 099 097 099 097 0.72 0. 93 0.01 0.03 0.01

0 003 O
0 0
9 9
T4 1 1 0.82 033 082 0 0 0 0 0 0
0 0
0 0

0.02

0.79 0.79 0.29

rs 096 088 056 08 0 0.17 0.04 0 0
T6 1 1 0.7 045 O 095 03 05

R Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20 Y21 Y22

1 0 003 07 0 017 099 053 099 097 1 0.96
T2 0 036 072 0 098 093 0.18 0.61 0 011 0.02
xz3 097 014 0 003 099 099 025 079 O 0 0
T4 0 006 012 0 098 092 024 065 O 0 0
Ts5 0 008 O 1 0.62 1 0.48 048 0.06 09 0.02
T6 0 0 015 0 0.9 1 0.7 09 01 0.1 0

R Y23 Y24 Y25 Y26 Yor Y28 Y29 Y30 Y31 Y32 Y33

r1 054 0.7 0 059 0.01 0 0 0 0 096 0.02
r2 013 0 0 0 0 093 0 0.02 0.02 093 0.02
3 0 001 097 0.13 099 0.51 099 0.01 0 099 1
T4 0 002 0 037 0 09 002 0 0 098 0
rs 0.02 0 0 0 0 023 0 002 0 098 0.02
r¢ 005 0 005 O 0 0.7 0 095 1 0.95 0.05

Table 2. Support of the attributes ordered from highest to lowest

Y1 Y2 Yir Y32 Y3 Y16 Y19 Ya Y28 Y18 Y21

supp 0.99 098 097 096 079 0.77 074 066 0.56 04 0.35

Ys Yo Y14 Y7 Y10 Y20 Y33 Y26 Y15 Y25 Y31

supp 033 031 028 0.2 02 019 018 0.18 0.17 0.17 0.17

Y29 Y22 Y30 Yo7 Y12 Ye Ys Y11 Y23 Y24 Y13

supp 0.17 0.17v 0.17 0.17 0.16 0.16 0.16 0.14 1.12 0.12 0.11

Reduction by Attributes Algorithm (CRAA) in order to reduce them.
First of all, we calculate the L-fuzzy concept derived for each of the attributes
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Table 3. Relation of the L-fuzzy context

Ry Ys Y6 Y7 Y8 Yo Yo Y1 Y2 Y13 Y4 Yis

z1 051 044 O 003 O 079 079 029 0 0.03 0.7 0
z2 08 002 0 002 0 007 008 005 0 036 072 0
xz3 097 0.72 096 0 093 0.01 003 001 097 014 0 0.03
rqg 033 082 0 0 0 0 0 0 0 006 012 0
rs 085 0 0 017 0 004 O 0 0 008 0 1
¢ 045 0 0 1 0 09 03 05 0 0 015 0

A~

R Y18 Y20 Y21 Y22 Y23 Y24 Yas Y26 Yar Y28 Y29 Y30

z1 053 097 1 096 054 0.7 0 059 001 O 0 0
z2 018 0 011 0.02 013 0 0 0 0 093 0 0.02
z3 025 0 0 0 0 001 097 013 099 051 099 0.01
g 024 O 0 0 0 002 0 037 0 09 002 O
s 048 0.06 09 002 002 0 0 0 0 023 0 0.02
xz¢ 0.7 01 0.1 0 005 0 005 O 0 0.7 0 095

R y31 33
T 0 0.02
o 0.02 0.02
T3 0 1

T4 0 0

T5 0 0.02
Tg 1 0.05

Cy, and, for a = 1 we obtain the sets of a-attributes associated with these L- fuzzy
concepts:

—

CYG) = {y47y67y127y25;y277y297y33}
Cys) = {y47y6,ys,y12,y257y27,y29,y33}

—

Y(Cyar) = {0, y11, 118}
"(Cyya) = {ya, 12, Y25, Y27, Y29, Y33}
HCyis) = {1, 13}
y20) = {Y20, Y21}
Y(Cyaa) = {y21, Y22}

._.
)

{y4,y25,y33}
var) = {Y27, Y33}
Yao0) = {Z/gay?,o}

Cyar) = {y7,y31}
Cy,) = {y;} in other case

Y25

,_.
)

,_.
)

)
)
)
)
ya2)
)
)
)
)

—

—

OO0 0000000000
/‘\/‘\AAAA/&\/-\/-\/‘\/‘\/‘\
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iJFrom these sets of attributes we construct the graph G%(Y, 811/) represented in
Figure 1 such that the edge (y;,yx) € 5%/ if yr € Q*(Cy,)-

Figure 1. Graph obtained from the sets of a-attributes Ql(Cyj)

There are twelve connected components in the undirected graph (see Figure 2):

371 = {y47y6,ys,y12,y137y257y27,y29,y33}
Yo = {y9, Y11, ¥18, Y30}
Y3 = {y20, Y21, Y22}

Yi={yr,yn}
Vs = {ys}

Yo = {y10}

Y7 = {14}

Ys = {y15}

Yo = {23}
}710 = {924}
5}11 = {3/26}
Vio = {y2s}

that form the set of attributes of the new L-fuzzy context a-reduced by attributes
(L, X, Y1 RY).

The relation of the reduced context (L, X ,Yl,R}L‘) is calculated aggregating the
values corresponding to the elements that form the connected components by the
Y-Choquet integral as:

\V/(QSZ,?]) e X x Yl, R}A(SL‘Z,?V]) = Chzj (IZ)

where, in order to use an additive measure, p has been defined from the overlap index
Or. The obtained relation can be seen in Table 4.
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Figure 2. Connected components of the graph

Table 4. Relation of the L-fuzzy context a-reduced by attributes

Ry Y Yo Y3 Y4 Y5 Y5 Y Yy Yy Yo Y Y

r1 0.01 033 097 0.01 044 0.79 0.7 0 054 07 059 O

x2 0.04 0.07r 0.02 002 0.02 008 072 0 013 O 0 093
3 09 006 0 0 0v2 003 0 003 0 001 013 0.51
rg 0.01 004 O 0 082 0 012 O 0 002 037 0.96
rs 0.02 0.1 011 0.08 O 0 0 1 0.02 0 0 023
ze 0.02 0.74 0.05 1 0 03 015 0 005 O 0 0.7

Using this new context we can obtain diagnoses calculating the L-fuzzy concepts
derived from the sets of attributes that represent the situations reported by the pa-
tients.

For example, let us suppose that the patient reports the symptoms y1, yo, y3, Y4, ys,

Y9, Y105 Y175 Y185 Y19, Y20, Y21, Y22, Y23, Y24 and y32. We represent this situation by the
L-fuzzy set B € LY such that B(y) = 1 if the symptom y is reported by the patient

and B(y) = 0 otherwise.
After the corresponding aggregations we obtain the subset of attributes:

B = {Y1/0.01,Y2/0.33,Y3/1,Y4/0,Y5/1,Ys/1,Y7/0,Y3/0, Yo /1, Y10/1,Y11/0, Y12/0}
The extension of the L-fuzzy concept derived from the set B is:
By = {21/0.44,5/0, x3/0, 24/0, 250, 26 /0}
The diagnosis is provided by the element that has the highest membership value.

Hence, in this situation we will diagnose the disease x;.
If, for instance, the reported symptoms are y1, y2, Y3, Y4, Y14, Y16, Y17, Y28 and ys2,
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the subset of attributes given by this situation is:
B = {Y1/0.01,Y2/0,Y3/0,Y4/0,Y5/0,Ys/0,Y7/1,Ys/0,Yy/0,Y10/0, Y11 /0, Y12 /1}
and the extension of the derived L-fuzzy concept:
By = {21/0,22/0.72,23/0, £4/0.12, x5 /0, 26 /0.15}

Therefore, in this case, the diagnosed disease should be xs.

As can be seen, the diagnoses obtained in the examples are the same as those that
were obtained in [Giivenir, Demirdz, and Ilter (1998)] starting from the same situa-
tions. The advantage in this case is the lower computational cost (the time complexity
is O(n|Y?|) € O(nm)). It is noteworthy that, once the reduced L-fuzzy context is cal-
culated, obtaining a new diagnosis simply consists in calculating the L-fuzzy concept
derived from the set of attributes that represents the symptoms related by patient.

6. Conclusions

In this work, we have seen that Choquet integrals can be useful tools for the treatment
of L-fuzzy contexts with large size. Specifically, these operators are suitable for the
aggregation of rows or columns of the L-fuzzy context. In addition, the use of measures
obtained from overlap indexes allows to consider the existing relationship between
objects or attributes in the aggregation process. Finally, we have shown the efficiency
of the developed theory to solve the problem of finding differential diagnoses of diseases
that share a large number of symptoms.
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