
Titre:
Title:

A Regularized Interior-Point Method for Constrained Linear Least 
Squares

Auteur:
Author:

Mohsen Dehghani 

Date: 2013

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Dehghani, M. (2013). A Regularized Interior-Point Method for Constrained Linear 
Least Squares [Mémoire de maîtrise, École Polytechnique de Montréal]. 
PolyPublie. https://publications.polymtl.ca/1121/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/1121/

Directeurs de
recherche:

Advisors:
Dominique Orban 

Programme:
Program:

Mathématiques appliquées

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/1121/
https://publications.polymtl.ca/1121/
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RÉSUMÉ

Nous proposons une méthode de points intérieurs non réalisable pour le problème aux

moindres carrés linéaire avec contraintes basée sur la régularisation primale-duale de problèmes

quadratiques convexes de Friedlander and Orban (2012). À chaque itération, la méthode

effectue une factorisation LDLT creuse d’une matrice symétrique et quasi définie. Cette

matrice est uniformément bornée et non singulière. Nous établissons des conditions sous les-

quelles la méthode produit une solution du problème original. La régularisation nous per-

met d’éliminer l’hypothèse que les gradients actifs sont linéairement indépendants. Bien

que l’implémentation proposée ici repose sur une factorisation, elle ouvre la voie à une

implémentation itérative dans laquelle on résout un problème aux moindres carrés régularisé

sans contraintes de façon inexacte à chaque itération. Nous illustrons notre approche sur

plusieurs applications qui mettent en évidence ses avantages.



vi

ABSTRACT

We propose an infeasible interior-point algorithm for constrained linear least-squares pro-

blems based on the primal-dual regularization of convex programs of Friedlander and Orban

(2012). At each iteration, the sparse LDLT factorization of a symmetric quasi-definite ma-

trix is computed. This coefficient matrix is shown to be uniformly bounded and nonsingular.

We establish conditions under which a solution of the original problem is recovered. The

regularization allows us to dispense with the assumption that the active gradients are li-

nearly independent. Although the implementation described here is factorization based, it

paves the way for a matrix-free implementation in which a regularized unconstrained linear

least-squares problem is solved at each iteration. We report on computational experience and

illustrate the potential advantages of our approach.
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CHAPTER 1

INTRODUCTION

We are concerned with the constrained linear least-squares problem in standard form

minimize
x∈Rn

cTx+ 1
2
∥Ax− d∥2 subject to Bx = b, x ≥ 0, (1.1)

where c ∈ Rn, A ∈ Rp×n, d ∈ Rp, B ∈ Rm×n, b ∈ Rm and inequalities are understood

componentwise. It is typically assumed that p > n and m < n but the approach proposed

in this document allows us to do away with these restrictions. If A = 0, (1.1) reduces to the

linear programming problem in standard form. In all other cases, (1.1) is a convex quadratic

program. An interior-point method applied directly to (1.1) might suffer several difficulties.

Firstly, the matrix ATA, which may be rather dense, will appear explicitly in the Newton

step computation. Secondly, numerical instabilities will arise if the constraint matrix B does

not have full row rank. We remove the first difficulty in two different ways that lead to

two slightly different implementations. The second difficulty disappears by considering the

following regularization of (1.1) proposed by Friedlander and Orban (2012):

minimize
x∈Rn,w∈Rm

cTx+ 1
2
∥Ax− d∥2 + 1

2
ρ∥x− xk∥2 + 1

2
δ∥w + yk∥2

subject to Bx+ δw = b, x ≥ 0,
(1.2)

where ρ > 0 and δ > 0 are regularization parameters, xk and yk are the current approxi-

mations of the optimal primal variables and Lagrange multipliers, respectively, and w are

auxiliary variables playing the role of a constraint residual. In this document, we specialize

the interior-point framework of Friedlander and Orban (2012) and apply it to (1.2) with ulti-

mately constant regularization parameters. At each iteration, a step is computed by solving

a large and sparse symmetric quasi-definite linear system (Vanderbei, 1995). Contrary to

most interior-point implementations, partial block elimination is not applied to this system

to reduce it to the so-called augmented system form or to the normal equations. Instead,

a similarity transformation is applied that guarantees that the system remains uniformly

bounded and nonsingular throughout the iterations and in the limit provided strict comple-

mentarity is satisfied at a solution. We establish global convergence under weak assumptions.

In particular, no assumption on the rank of B or A is made. A distinctive feature of the

regularization (1.2) is that it allows to recover a solution of (1.1) in many situations and
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not only a solution of a perturbed problem. In addition, (1.2) is never solved to optimality

for fixed values of ρ, δ, xk and yk. Instead, it is used to compute a single Newton step be-

fore attention turns to the next regularized subproblem. In (1.2), the primal regularization

term 1
2
ρ∥x − xk∥2 serves the dual purpose of regularizing A whenever it is rank deficient

and simplifying the implementation of the interior-point method in the presence of free vari-

ables. The dual regularization term 1
2
δ∥w + yk∥2 regularizes B whenever it is rank deficient.

The implementation proposed below relies on a sparse LDLT factorization of the symmetric

quasi-definite coefficient matrix. This factorization may be obtained at lower cost than the

symmetric indefinite factorization, such as that of Duff (2004), and typically yields sparser

factors. Its stability on symmetric quasi-definite systems has been analyzed by Gill et al.

(1996). Many applications only provide A and B in the form of linear operators instead of ex-

plicit matrices. Iterative methods specialized to symmetric quasi-definite systems have been

recently proposed by Arioli and Orban (2012). Our algorithm paves to way to a matrix-free

implementation using such iterative methods. This yields an elegant framework in which an

unconstrained regularized linear least-squares problem must be solved at each iteration. Our

analysis and implementation differ from those of Friedlander and Orban (2012) in several

respects. Firstly, the linear systems used in the definition of the Newton steps are larger,

sparser and tailored to the special structure of (1.1). If strict complementarity holds at

a solution, they also have uniformly bounded condition number. Secondly, our approach

illustrates how to apply the primal-dual regularization of Friedlander and Orban (2012) se-

lectively, leaving some variables and some constraints untouched. This has the benefit of

exploiting the structure of the problem at hand.

1.0.1 Notation

The notation X and Z is used to denote the diagonal matrices diag(x) and diag(z). The

vector e denotes the vector of all ones of appropriate dimension. The notation ∥·∥ denotes the
Euclidian norm throughout. The i-th component of a vector x is denoted [x]i while the value

of x at the k-th iteration of a process is denoted xk. For a given positive definite matrix M ,

the M -norm is defined as ∥x∥2M = xTMx. The notation blkdiag(A1, . . . , Ak) denotes a block-

diagonal matrix having the blocks A1 through Ak consecutively on the diagonal. Whenever

a block Aj is an identity block, its size is dictated by the context. For two related sequences

{αk} and {βk} of positive numbers, we write αk = O(βk) if there exists a constant C > 0

such that αk ≤ Cβk for all sufficiently large k. We write αk = Θ(βk) if αk = O(βk) and

βk = O(αk).
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CHAPTER 2

LITERATURE REVIEW

Carl Friedrich Gauss is credited with developing the fundamentals of the basis for least-

squares (LS) analysis in 1795 at the age of eighteen. Gauss’s method came to be on January

1, 1801. The modern approach was first exposed in 1805 by the French mathematician

Legendre Levenberg (1944). Nowadays, the LS method is widely used to find or estimate

the numerical values of parameters to fit a function to a set of data. In this thesis, we are

concerned with constrained and unconstrained linear least-squares problems. The second

is the (Un)constrained Non-Linear Least-Squares method (NLS). We shall explain the NLS

problem in a future section. There are essentially three different families of algorithms for

solving a unconstrained linear-least square problem:

1. methods based on the normal equations;

2. methods based on the QR factorization;

3. methods based on the singular-value decomposition (SVD).

The first approach is the fastest and the most sensitive to ill conditioning. On the other

hand, SVD is the most expensive and most accurate. Using the QR factorization to solve LS

is numerically stable. An overview of those families of methods is provided in the following

sections.

2.1 Factorization

The matrix factorization is a very useful linear algebra transformation, which targets

the presentation of a matrix A as an appropriate product of matrices. There are many

different matrix decompositions. Each finds use among a particular class of problems. Here

we introduce a summary of the important matrix factorizations.

2.1.1 QR Factorization

The QR factorization decomposes the matrix A ∈ Rm×n as

A = QR, (2.1)

where R is upper triangular and Q is orthogonal, i.e., QTQ = I. Such a decomposition can

be performed both for a square matrix A with dimensions n × n, as well as more general
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rectangular A with dimensions m×n. To solve the linear system of equations Ax = b, firstly

the vector QT b = bQ is evaluated and then the triangular linear system Rx = bQ is solved.

Due to the upper triangular form of R, this system of linear equations is easily solved by

back substitution. The standard algorithm for the QR decomposition involves a sequence of

Householder transformations. In the following sections, we provide more details about the

answers to the following questions:

1. Does the QR factorization always exist?

2. Is this factorization unique?

3. Which Algorithms perform the QR factorization?

4. How is the QR factorization useful for solving linear least-squares problems?

5. What codes are available to perform the QR factorization?

2.1.1.1 Existence of the QR Factorization

For every matrix A, a QR factorization exists, even if A does not have full rank. The

existence of this factorization follows from Householder transformations. One can prove the

following two theorems related to the QR factorization of a matrix A.

Theorem 2.1.1. Every matrix A possesses a QR factorization.

Theorem 2.1.2. (Full QR Factorization)(Trefethen and Bau (1997)[Theorem 5.1]) Let

A be a non-singular matrix. There exists a unique pair (Q,R), where Q is an orthogonal

matrix and R is an upper triangular matrix, whose diagonal entries are real, satisfying

A = QR.

The overall complexity (number of oating points) of the QR factorization is n3

2.1.1.2 Forms of the QR Factorization

– If A has full rank

1. If A is square, R has the form

Rn,n =


⋆ ⋆ · · · ⋆

0 ⋆ · · · ⋆
...

...
. . .

...

0 0 · · · ⋆

 .
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If A is non-square, R is non-square too,

2. If A has more columns than rows, i.e., n > m we can write R =
[
R1 | R2

]
where R1 is upper triangular.

3. The most common case encountered in linear least-squares problems is where A is

m× n, with m > n. In this case we have R =

[
R1

0

]
where R1 is n× n triangular,

and

Q =
[
Q1 | Q2

]
A =

[
Q1 | Q2

] [R1

0

]
= Q1R1 +Q20

= Q1R1,

where Q1 is an m× n matrix whose columns are orthogonal.

– If A does have not full rank

In this case R has the form

R =



⋆ ⋆ · · · ⋆

⋆ · · · ⋆
. . .

...

0 ⋆

0 0 0 0


.

It is often of interest to discover the rank of A. Given a decomposition of the form (2.1),

rank(A) = rank(R), and in practice, this QR decomposition is a good way to determine the

rank of a matrix. The computations are quite sensitive to rounding, however, and therefore it

must be done with some care. If columns of A are linearly independent, then this factorization

is unique. There are many practical algorithms in Golub and Van Loan (1996).

2.1.1.3 Codes Available to Perform the QR Factorization

1. BAND–QR is a FORTRAN90 library which includes LAPACK–style routines to com-

pute the QR factorization of a banded matrix.

2. From python using the scipy package, we can use scipy.linalg.qr.

3. Using qr from Matlab.
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2.1.2 SVD

The Singular Value Decomposition (SVD) of a matrix A takes the form,

A = UΣV,

where U and V are orthogonal and Σ is a diagonal positive semidefinite matrix.

Theorem 2.1.3. (The Singular Value Decomposition Theorem ) Let A be a real

m× n matrix. Then there exist orthogonal matrices U and V such that

UTAV =

[
Σ1 0

0 0

]
= Σ,

where Σ1 is a nonsingular diagonal matrix. The diagonal entries of Σ are all nonnegative

and can be arranged in a non increasing order. The number of nonzero diagonal entries

of Σ equals the rank of A.(Datta (2010)[Theorem 10.2.1])

The SV D of a matrix A is typically computed by a two-step procedure. In the first step,

the matrix is reduced to a bidiagonal matrix. This takes O(mn2) floating-point operations

(flops), assuming that m ≥ n (this formulation uses the big O notation). The second step is

to compute the SV D of the bidiagonal matrix. This step can only be done with an iterative

method (as with eigenvalue algorithms Trefethen and Bau III 1997, Lecture 31).

2.1.3 Cholesky Factorization

Theorem 2.1.4. (The Cholesky Factorization Theorem ) If A is symmetric and

positive definite, then A can be decomposed as

A = LLT

where L is a lower triangular matrix with strictly positive diagonal entries. (Trefethen

and Bau (1997)[Theorem 32.1.])

The cost of computing the Cholesky factorization is 1/3n3 flops if A is of order n.
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2.1.4 SQD Matrix and LDLT Factorization

A symmetric matrix is called quasidefinite if it can be written, perhaps after a symmetric

permutation, as [
−E A

AT D

]
,

where E and D are symmetric and positive definite matrices. The LDLT factorization can

be used on this kind of matrix. The following theorem states a nice feature of SQD matrices.

This property can be used to have a sparse L in the LDLT factorization of a SQD matrix.

Theorem 2.1.5. Any symmetric permutation P of a SQD matrix K possesses a factor-

ization PKP T = LDLT , where L is unit lower triangular and D is diagonal. (Vanderbei

(1995)[Theorem 12])

2.2 Unconstrained Linear Least-Squares Problems

Suppose A ∈ Rp×n, p ≥ n, d ∈ Rp are given. We can write the residual vector as

r(x) = Ax− d for x ∈ Rn.

The linear least-squares problem is defined as the following optimization problem

min
x∈Rn

f(x), (2.2)

where f(x) = 1
2
∥r(x)∥2 = 1

2
∥Ax − d∥2. By definition of f(x) the gradient and the Hessian

of f(x) are ∇f(x) = AT (Ax − d) and ∇2f(x) = ATA. Since xTATAx = ∥Ax∥2 ≥ 0 for

any x ∈ Rn, ∇2f(x) is positive semi-definite. Therefore, f(x) is convex and any point x∗

for which ∇f(x∗) = 0 is a global minimizer of f . Therefore a solution, x∗ must satisfy the

following linear system of equations:

ATAx∗ = ATd. (2.3)

In other words, since ∇2f(x) is positive semi-definite, ∇f(x) = 0 are not only necessary but

also sufficient conditions for optimality. We call (2.3) the normal equations of (2.2).
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2.2.0.1 Using the QR Factorization to Solve LS

The Householder implementation of the QR factorization requires 2mn2− 2
3
n3 flops. The

Euclidean norm of any vector is not affected by orthogonal transformations. Therefore, we

have

∥Ax− d∥ = ∥QT (Ax− d)∥, (2.4)

for any m ×m orthogonal matrix Q. Suppose we perform a QR factorization on matrix A,

so that

A =
[
Q1 Q2

] [R1

0

]
= Q1R1, (2.5)

where Q1 is n× n, Q2 is (m− n)× n and R1 is n× n. From (2.4) and (2.5) we have

∥Ax− d∥2

=

∥∥∥∥∥
[
QT

1

QT
2

]
(Ax− d)

∥∥∥∥∥
2

=

∥∥∥∥∥
[
QT

1

QT
2

]([
Q1 Q2

] [R1

0

]
x− d

)∥∥∥∥∥
2

=

∥∥∥∥∥
[
R1

0

]
x−

[
QT

1 d

QT
2 d

]∥∥∥∥∥
2

=

∥∥∥∥∥
[
R1x−QT

1 d

0−QT
2 d

]∥∥∥∥∥
= ∥R1x−QT

1 d∥2 + ∥QT
2 d∥2

The second term of the last expression is not dependent on x. If we want to minimize (2.2),

the optimal solution is equal to

x∗ = R−1
1 QT

1 d,

and the optimal objective value is ∥QT
2 d∥. In summary, we can use the following procedure

1. Compute the reduced QR factorization A = QR.

2. Compute the vector QTd.

3. Solve the upper-triangular system Rx = QTd for x.

Fore more information, see (Nocedal and Wright (1999)[ 10.2]).
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2.2.0.2 Using the Cholesky Factorization to Solve LS

The classical way to solve least-squares problems is to solve the normal Equation (2.3).

The standard method of solving (2.3) is to use the Cholesky factorization, ATA = LLT where

L is lower-triangular, reducing (2.3) to

LLTx = ATd. (2.6)

Now consider the factorization A = QR, then ATA = RTR. The uniqueness of the Cholesky

factors then implies that R = LT . In summary, we can use the following procedure:

1. Compute the coefficient matrix ATA and the right-hand-side ATd.

2. Compute the Cholesky factorization of the symmetric matrix ATA = LLT = RTR.

3. Solve the lower-triangular system Ly = ATd for y.

4. Solve the upper-triangular system LTx = y for x.

Computing ATA requires mn2 flops and the Cholesky factorization requires n3

6
flops. All

together, solving least-squares problems by the normal equations involve mn2 + 1
6
n3 flops. If

m ≫ n this method is twice as fast as the QR factorization.

2.2.0.3 Using the SVD Factorization to Solve LS

Let A = UΣV T be the SV D of A. Then we have

∥Ax− d∥2 = ∥UΣV Tx− d∥2
= ∥U(ΣV Tx− UTd)∥2
= ∥Σy − d′∥2

where V Tx = y and UTd = d′. Thus, the use of SV D of A reduces the least-squares problem

for a full matrix A to one with a diagonal matrix Σ. Now we need to solve the following

trivial optimization problem (Datta (2010)[ 10.2]).

minimize
y

∥Σy − d′∥.

2.2.1 Iterative Methods to Solve LS

Linear least-squares problems can also be solved using iterative methods that generally

fall into the category of Krylov methods Bjorck (1996). We give a brief overview of such

methods in the rest of this section.
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2.2.1.1 Conjugate Gradient Method on the Normal Equations (CGNE)

The conjugate gradient method can be applied to an arbitrary system Ax = d by applying

it to the normal equations matrix ATA and right-hand side vector ATd, since ATA is a sym-

metric positive-semidefinite matrix for any A. The result is the conjugate gradient method

on the normal equations (CGNE). As an iterative method, it is not necessary to form ATA

explicitly in memory; rather, only to perform matrix-vector and transpose matrix-vector

multiplications. Therefore (CGNE) is particularly useful when A is a large sparse matrix

since these operations are usually extremely efficient. However, the downside of forming the

normal equations is that the condition number Cond(ATA) is equal to Cond2(A) and so the

rate of convergence of (CGNE) may be slow and the quality of the approximate solution may

be sensitive to roundoff errors. Finding a good preconditioner is often an important part

of using the (CGNE) method. Several algorithms have been proposed (e.g., CGLS, LSQR).

The LSQR algorithm purportedly has the best numerical stability when A is ill-conditioned,

i.e., A has a large condition number (Lawson and Hanson (1995)[ 20]).

2.2.1.2 LSQR

LSQR is an algorithm for solving sparse least-squares problems. Consider the following

regularized problem

minimize
x

1
2

∥∥∥∥∥
[
A

λI

]
x−

[
d

0

]∥∥∥∥∥
2

(2.7)

where A and d are given data and λ is an arbitrary real scalar. The matrix A may be square

or rectangular over-determined or under-determined, and may have any rank. The solution

of (2.7) satisfies the symmetric quasi-definite system[
I A

AT −λ2I

][
r

x

]
=

[
d

0

]
,

where r is the residual vector d−Ax. Paige and Saunders (1982) use an iterative method based

on the bidiagonalization procedure of Golub and Kahan. LSQR is algebraically equivalent to

applying CG to the normal equations (ATA)x = ATd, but has better numerical properties,

especially if A is ill-conditioned (Paige and Saunders (1982)).
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2.3 Constrained Linear Least-Squares Problems

In terms of linear least-squares with linear equality constraints, we have the following

base methods. One could consider the LS problem as

minimize
x

cTx+ 1
2
∥Ax− d∥2 subject to Bx = b, x ≥ 0. (2.8)

Background and suggestions for further reading can be found in the seminal book of Hanson

and Lawson (1969), who have described three methods for solving (2.8) as follows:

1. methods based on the null space;

2. methods based on direct elimination;

3. methods based on weighted LS.

2.4 Regularization

In this thesis, we consider a primal-dual regularization of convex QPs which specializes

the interior-point framework of Friedlander and Orban (2012). Consider the convex quadratic

program (QP)

minimize
x

cTx+ 1
2
xTQx subject to Ax = b, x ≥ 0. (2.9)

Now consider the regularization

minimize
x,r

cTx+ 1
2
xTQx+ 1

2
ρ∥x− xk∥2 + 1

2
δ∥r + yk∥2 subject to Ax+ δr = b, x ≥ 0,

(2.10)

of (2.9), where ρ > 0 and δ > 0 are regularization parameters, and xk and yk are current

estimates of primal and dual solutions. The strength of the approach is that the dual of

(2.10) is the regularization of the dual of (2.9). It is easy to see that a constrained linear least-

squares problem is a special case of convex QP. Indeed, consider the following constrained

linear least-squares problem

minimize
x∈Rn

cTx+ 1
2
∥Ax− d∥2 subject to Bx = b, x ≥ 0. (2.11)

It is equivalent to the following convex QP:

minimize
x,r

cTx+ 1
2
∥r∥2

subject to Bx = b, Ax+ r = d, x ≥ 0.
(2.12)
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CHAPTER 3

A VARIANT OF THE METHOD OF FRIEDLANDER AND ORBAN (2012)

In this chapter we are going to specialize an infeasible regularized interior-point algo-

rithm called primal-dual for constrained linear least-squares problems (2.8) based on the

primal-dual regularization of convex programs (2.9) of Friedlander and Orban (2012). Our

approach illustrates how to apply the primal-dual regularization of Friedlander and Orban

(2012) selectively, leaving some variables and some constraints untouched.

3.0.1 Regularization in the Primal-Dual Interior-Point Method

Consider the regularized form of (2.11)

minimize
x,w

cTx+ 1
2
∥Ax− d∥2 + 1

2
ρ∥x− xk∥2 + 1

2
δ∥w + yk∥2

subject to Bx+ δw = b, x ≥ 0,
(3.1)

proposed by Friedlander and Orban (2012) where ρ > 0 and δ > 0 are regularization parame-

ters, and xk and yk are current estimates of primal and dual solutions. The original problem

(2.11) can be recovered by considering ρ = 0 and δ = 0. The dual is given by

maximize
x,y,s,z

bTy − (ATd)Tx− 1
2
∥Ax− d∥2 − 1

2
δ∥y − yk∥2 − 1

2
ρ∥s+ xk∥2 (3.2)

subject to BTy + z − ATAx = c− ATd, z ≥ 0,

where {y, z} are Lagrange multipliers corresponding to the equalities and bound constraints

of (2.11) and s = x− xk are auxiliary variables.

An interior-point method places the slacks in a barrier term, leading to the following

primal-dual pair in which µ > 0 is a barrier parameter:

minimize
x,w

cTx+ 1
2
∥Ax− d∥2 + 1

2
ρ∥x− xk∥2 + 1

2
δ∥w + yk∥2 − µk

n∑
i=1

lnxi

subject to Bx+ δw = b,

(3.3)
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maximize
x,y,s,z

bTy − (ATd)Tx− 1
2
∥Ax− d∥2 − 1

2
δ∥y − yk∥2 − 1

2
ρ∥s+ xk∥2 − µk

n∑
i=1

ln zi

subject to BTy + z − ATAx = c− ATd.

(3.4)

3.0.2 Newton System

Let (xk, yk) be temporarily fixed. A primal-dual interior point method applied to the

regularized problems (3.3) and (3.4) is based on applying a single Newton iteration to a

sequence of non-linear equations of the form

ωk(v; ρ, δ, µk) :=



c+ ρs− AT r −BTy − z

Ax+ r − d

ρx− ρ(s+ xk)

δy − δ(w + yk)

Bx+ δw − b

Xz − σµke


= 0, (x, z) ≥ 0, (3.5)

where v = (x, r, s, w, y, z), µk > 0 is the current duality measure, which is equal to xT
k zk/n,

and σ ∈ [0, 1] is a centring parameter. For fixed ρk, δk, xk, and yk the central path is the

exact solution of (3.5) with σ = 1 (Wright, 1997). As µk → 0, it can be illustrated that

this central path leads to a primal-dual solution to (3.3) and (3.4). Since objective function

and constraints are convex, the necessary and sufficient optimality conditions can be written

more succinctly as

ω(v; 0, 0, 0) = 0, and (x, z) ≥ 0.

A Newton step for (3.5) from the current iterate ωk is based on solving the system

0 −AT ρI 0 −BT −I

A I 0 0 0 0

ρI 0 −ρI 0 0 0

0 0 0 −δI δI 0

B 0 0 δI 0 0

Z 0 0 0 0 X





∆x

∆r

∆s

∆w

∆y

∆z


= −



c+ ρs− AT r −BTy − z

Ax+ r − d

ρx− ρ(s+ xk)

δy − δ(w + yk)

Bx+ δw − b

Xz − σµe


. (3.6)
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The block matrix in (3.6) can be reduced by eliminating the variables ∆w and ∆s:
−ρI AT BT I

A I 0 0

B 0 δI 0

Z 0 0 X



∆x

∆r

∆y

∆z

 =


c− AT r −BTy − z

d− Ax− r

b−Bx

XZ − σµe

 . (3.7)

The remaining directions may be recovered via

∆w = ∆y − wk, ∆s = ∆x− sk. (3.8)

By eliminating the variable ∆z from (3.7) we arrive at−(X−1Z + ρI) AT BT

A I 0

B 0 δI


∆x

∆r

∆y

 =

c− AT r −BTy − σµX−1e

d− Ax− r

b−Bx

 , (3.9)

where the variable ∆z is recovered via

∆z = −z −X−1Z∆x+ σµX−1e. (3.10)

The system (3.9) will be discussed further in this chapter. Note that upon setting ρ = δ = 0,

we recover the Newton equations used to compute a step from the k-th iterate of an interior-

point method applied to (3.1)–(3.2). As shown in (3.9) we take x = xk, r = rk, and y = yk at

each iteration. More precisely, the central path C is an arc of strictly feasible points defined

as the solutions of

Bx+ δw − b = 0 (3.11a)

Ax+ r − d = 0 (3.11b)

c− AT r + ρs−BTy − z = 0 (3.11c)

δy − δ(w + yk) = 0 (3.11d)

ρx− ρ(s+ xk) = 0 (3.11e)

Xz = µe (3.11f)

(x, z) > 0, (3.11g)

for positive values of µ. If (xµ, rµ, sµ, wµ, yµ, zµ) solves (3.11) then the central path is the set

C = {(xµ, rµ, sµ, wµ, yµ, zµ) | µ > 0}.
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It can be shown that (xµ, rµ, sµ, wµ, yµ, zµ) is defined uniquely for any µ > 0 if and only if C
is non-empty (Wright, 1997, Theorem 2.8).

3.0.3 Nk Neighbourhood

A difference between our approach and traditional interior-point methods is that during

the course of the iterations, the regularization parameters ρ and δ may be updated. At

the k-th iteration, the current iterate is vk := (xk, rk, sk, wk, yk, zk) and the regularization

parameters have values ρk and δk. We consider a neighbourhood Nk of the central path as

the set of points (x, r, s, w, y, z) that satisfy the following conditions:

γ̄Cx
T z/n ≥ [x]i[z]i ≥ γCx

T z/n, (3.12a)

xT z ≥ γP∥Bx+ δkw − b∥, (3.12b)

xT z ≥ γR∥Ax+ r − d∥, (3.12c)

xT z ≥ γD∥c+ ρks−BTy − AT r − z∥, (3.12d)

xT z ≥ γS∥ρkx− ρk(s+ xk)∥, (3.12e)

xT z ≥ γW∥δky − δk(w + yk)∥, (3.12f)

where 0 < γC < 1 < γC and (γP , γD, γR, γS, γW ) > 0 are given constants. Our interior-point

scheme generates the new iterate vk+1 as follows:

vk(αk) := (xk + αk∆x, rk + αk∆r, sk + αk∆s, wk + αk∆w, yk + αk∆y, zk + αk∆z),

where αk ∈ (0, 1] and (∆x,∆r,∆s,∆w,∆y,∆z) is computed via (3.9), (3.8), and (3.10).
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3.0.4 Algorithm

Our algorithm is the same as (Friedlander and Orban, 2012, Algorithm 4.1) with the

exception of the linear system used in Step 2, and is formalized as Algorithm 3.0.1.

Algorithm 3.0.1 Primal-Dual Regularized Interior-Point Algorithm

Step 0 [Initialize] Choose minimum and maximum centering parameters 0 < σmin ≤
σmax < 1, a constant σmax < β < 1, proximity parameters 0 < γC < 1 < γ̄C and
(γP , γR, γD, γS, γW ) > 0, initial regularization parameters ρ0 > 0, δ0 > 0, and a stop-
ping tolerance ϵ > 0. Let the neighborhood of the central path be defined by (3.12a),
(3.12b), (3.12c) and (3.12d). Choose initial primal x0 ∈ Rn

++, r0 ∈ Rm, w0 ∈ Rm and
dual guesses s0 ∈ Rn, y0 ∈ Rm, and z0 ∈ Rn

++ so that v0 ∈ N0. Set µ0 := xT
0 z0/n and

k = 0.

Step 1 [Test convergence ] If xT
k zk ≤ ϵ, declare convergence.

Step 2 [Step computation] Choose a centering parameter σk ∈ [σmin, σmax]. Compute the
Newton step ∆vk from vk, e.g., by solving (3.9) with and recovering the remaining
components from (3.8) and (3.10).

Step 3 [Linesearch] Select δk+1 ∈ (0, δk] and ρk+1 ∈ (0, ρk] and compute αk as the largest
α ∈ (0, 1] such that

vk(α) ∈ Nk+1 and µk(α) ≤ (1− α(1− β))µk, (3.13)

where µk(α) := xk(α)
T zk(α)/n.

Step 4 [Update iterates] Set vk+1 := vk(αk), µk+1 := µk(αk). Increment k by 1 and go to
Step 1.

3.1 Global Convergence Analysis

We begin our analysis by providing bounds on the eigenvalues of the matrix

Kk :=

[
−Hk ÃT

Ã Iδk

]
, (3.14)

where

Hk = (X−1
k Zk + ρkI), Ã =

[
A

B

]
, and Iδk =

[
I 0

0 δkI

]
.

The block matrix Kk in (3.14) is the matrix that appears in Step 2 of Algorithm 3.0.1. In

the remainder of this section, we simplify the notation by dropping the iteration counter k.

The inertia of a symmetric matrix K is the triple of non-negative integers (n+, n−, n0),

where n−, n0, and n+ are the number of negative, zero, and positive eigenvalues of K,
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respectively. The following lemma states the relation between the inertia of matrix K and

that of BTKB where B ∈ Rn×n is nonsingular.

Lemma 3.1.1. (Sylvester’s Law of Inertia) If K ∈ Rn×n is symmetric and B ∈ Rn×n is

nonsingular, then K and BTKB have the same inertia.

Proof. See (Golub and Van Loan, 1996, Theorem 8.1.17).

The eigenvalue bounds

λmin(H) ≥ λmin(Ã) + min
1≤i≤n

[z]i
[x]i

+ ρ and λmax(H) ≤ λmax(Ã) + max
1≤i≤n

[z]i
[x]i

+ ρ, (3.15)

and the congruence relation[
−H ÃT

Ã Iδ

]
=

[
I 0

−ÃH−1 I

][
−H 0

0 ÃH−1ÃT + Iδ

][
I −H−1ÃT

0 I

]
(3.16)

are useful for the next theorem, which is a variant of (Friedlander and Orban, 2012, Theo-

rem 5.1) for least-squares problems.
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Theorem 3.1.2. For all (x, z) > 0 and all ρ > 0 and δ > 0, K possesses precisely n

negative eigenvalues and m+ n positive eigenvalues. Let them be denoted and ordered as

−λ−n ≤ λ−n+1 ≤ · · · ≤ λ−1 < 0 < λ1 ≤ · · · ≤ λm+n−1 ≤ λn+m.

The largest positive and smallest negative eigenvalues of K satisfy the bounds

λ−n ≥ 1

2
[δ − λmax(H)]− 1

2
[(λmax(H)− δ)2 + 4(σmax(Ã)

2 + λmax(H)δ)]
1
2 , (3.17a)

λn+m ≤ 1

2
[δ − λmin(H)] +

1

2
[(λmin(H)− δ)2 + 4(σmin(Ã)

2 + λmin(H)δ)]
1
2 . (3.17b)

The smallest positive and largest negative eigenvalues of K satisfy the bounds

λ−1 ≤ −λmin(H), (3.17c)

λ1 ≥
1

2
[δ + λmax(H)]− 1

2
[(λmax(H)− δ)2 + 4(σmin(Ã)

2 + λmax(H)δ)]
1
2 . (3.17d)

Moreover, λ1 = δ̃ where δ̃ = min(1, δ) is the smallest positive eigenvalue of K if and only

if Ã does not have full row rank. In this case, its associated eigenspace is {0}×Null(ÃT ).

Its geometric multiplicity is thus m+n-rank(Ã).

Proof. The first part of the theorem follows from (3.16) and Sylvester’s law of inertia. Note

that H and ÃH−1ÃT + Iδ are positive definite because of the positivity assumption on x, z, ρ,

and δ. The rest of the proof parallels (Silvester and Wathen, 1994, Lemma 2.2).

If (u, v) ̸= 0 is an eigenvector of K associated to the eigenvalue λ, then

−Hu+ ÃTv = λu (3.18a)

Ãu+ Iδv = λv. (3.18b)

Note that λ = 1 is an eigenvalue of K if and only if A does not have full row rank, and its

associated eigenspace is {0}×Null(AT ), similarly, λ = δ is an eigenvalue of K if and only if

B does not have full row rank, and its associated eigenspace is {0} × {0} ×Null(BT ) Now,

suppose λ ̸= δ and λ ̸= 1. From (3.18b), we have v = (λI − Iδ)
−1Ãu. Necessarily, u ̸= 0.

Substituting into (3.18a) and taking the inner product with u yields

λ∥u∥2 = −uTHu+ (λI − Iδ)
−1uT ÃT Ãu. (3.19)

If λ < δ̃, then, because the right-hand side of (3.19) is negative, we must have λ < 0, and
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so λ1 ≥ δ. But by the implication drawn from (3.18), λ1 = δ if and only if Ã is rank deficient.

This proves the last statement of the theorem.

If λ > δ̃, we deduce from (3.19) that

λ∥u∥2 ≤ −λmin(H)∥u∥2 + (λ− δ̃)−1σmax(Ã)
2∥u∥2.

Upon simplifying and substituting ℓ for λ, we see that the quadratic

ℓ2 + (λmin(H)− δ̃)ℓ− (σmax(B)2 + λmin(H)δ̃)

in ℓ takes a nonpositive value when evaluated at an eigenvalue λ > δ of K. In particular this

must be true of λm, which yields (3.17b).

If λ < 0, (3.19) yields the bound

λ∥u∥2 ≥ −λmax(H)∥u∥2 + (λ−max(1, δ))−1σmax(Ã)
2∥u∥2.

In turn, this implies that the quadratic in ℓ,

ℓ2 + (λmax(H)− δ̃)ℓ− (σmax(B)2 + λmax(H)δ̃),

takes a nonpositive value when evaluated at an eigenvalue λ < 0 of K. In particular this

must be true of λn < 0, which yields (3.17a). We now establish (3.17a). we have two cases

for λ

1. If λ < 0 by multiplying uT and vT to left hand side of (3.18a) and (3.18a) respectively

we have

−uTHu+ uT ÃTv = λ∥u∥2, (3.20)

vT ÃTu+ vT Iδv = λ∥v∥2. (3.21)

By subtracting (3.20) from (3.21) we obtain

−uTHu− vT Iδv = λ(∥u∥2 − ∥v∥2). (3.22)

Since we have

−uTHu ≤ −λmin(H)∥u∥2 ≤ −ρ∥u∥2,

−vT Iδv ≤ −δ̃∥v∥2,

from (3.22) we get

λ∥u∥2 − λ∥v∥2 ≤ −ρ∥u∥2 − δ̃∥v∥2.
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Therefore, the following inequality is obtained

(λ+ ρ)∥u∥2 ≤ (λ− δ̃)∥v∥2 ≤ 0.

So necessarily u must be nonzero and we have

λ−1 ≤ −ρ.

2. If λ > 0 using u = (H + λI)−1ÃTv from (3.20) and substituting in (3.21) we get

Ã (H + λI)−1 ÃTv + Iδv = λv,

by multiplying vT from left we have that

vT Ã (H + λI)−1 ÃTv + vT Iδv = λ∥v∥2. (3.23)

Since

vT Ã (H + λI)−1 ÃTv ≥

λmin

(
Ã(H + λI)−1ÃT

)
∥v∥2 ≥

λmin

(
ÃÃT

)
λmin

(
(H + λI)−1

)
∥v∥2 ≥

σmin(Ã)
2 1

λmax(H) + λ
∥v∥2

and vT Iδv ≥ δ̃∥v∥2 from (3.23) we have that

λ∥v∥2 ≥

(
σmin(Ã)

2

λmax(H) + λ
+ δ̃

)
∥v∥2 ≥ δ̃∥v∥2

So we have

λ > min(1, δ),

and

λ1 > δ̃,

which completes the proof.
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Corollary 3.1.3. For all (x, z) > 0 and ρ > 0 and δ > 0 the smallest positive and the

largest negative eigenvalues of K satisfy

1. λ1 > δ̃

2. λ−1 ≤ −ρ

3. ∥K∥−1 ≤ 1
min(ρ,δ̃)

Proof. Because ∥K∥−1 = max( −1
λ−1

, 1
λ1
),

∥K∥−1 ≤ max

(
1

ρ
,
1

δ̃

)
=

1

min(ρ, δ̃)
.

Turning now to the right hand side of the Newton system (3.6), i.e.,

−Ax− r + d, (3.24a)

−c+ AT r +BTy − ρs+ z, (3.24b)

−ρx+ ρ(s+ xk), (3.24c)

−δy + δ(w + yk), (3.24d)

b−Bx− δw, (3.24e)

XZ − σµe, (3.24f)

from (3.24a) we have

− A(x+ α∆x)− (r + α∆r) + d = −Ax− r + d− α(A∆x+∆r).

Since

∆r = −A∆x− Ax− r + d, (3.25)

(3.25) becomes

− Ax− r + d− α(−Ax− r + d) = (1− α)(Ax− r + d).

(3.26)
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From (3.24b) we have

− c+ AT (r + α∆r) +BT (y + α∆y)− ρ(s+ α∆s) + z + α∆z =

− c+ AT r + αAT∆r +BTy + αBT∆y − ρs− αρ∆s+ z + α∆z =

(−c+ AT r +BTy − ρs+ z)− α[−AT∆r −BT∆y + ρ∆s+

(−ρ∆s+ AT∆r +BT∆y − c+ AT r +BTy + z)],

the last equality becomes

−α(−c+ AT r +BTy − ρs+ z)(1− α)(−c+ AT r +BTy − ρs+ z). (3.27)

From (3.24c) we have

ρ(s+ α∆s) = ρs+ ρα∆x− ραs = (1− α)ρs+ ρα∆x, (3.28)

and from (3.24d) we have

δ(w + α∆w) = δw + δα∆w = δw + δα(∆y − w) = (1− α)δw + δα∆y. (3.29)

From (3.24e) and δ∆w = −B∆x+ b−Bx− δw we arrive at

b−B(x+ α∆x)− δ(w + α∆w) = b−Bx− αB∆x− δw − αδ∆w = (1− α)(b−Bx− δw).

(3.30)

From (3.24f) and the fact that Z∆x+X∆z = −Xz + σµe we have

zT∆x+ xT∆z = −xT z + nσµ = −xT z + σxT z = −(1− σ)xT z, (3.31)

and

zi[∆x]i + xi[∆z]i = −xizi + σ
xT z

n
. (3.32)

3.1.1 Fixed Regularization

Our first method, described in Algorithm 3.1.1, holds the regularization parameters ρ and

δ fixed at all iterations and enforces conditions (3.12a)-(3.12d) at each iteration. Since the

regularization parameters are constant in this section, we simply denote them ρ and δ for

readability. Convergence properties rely on the following technical lemma.
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Algorithm 3.1.1 Variation of the primal–dual method with constant regularization

Apply Algorithm 3.0.1 with ρk := ρ0 > 0 and δk := δ0 > 0 for all k. In step 3, only
conditions (3.12a)- (3.12d) are enforced.

Lemma 3.1.4. Suppose that (∆x,∆r,∆y,∆z) is given by Step 2 of Algorithm 3.1.1, and

the sequence {(sk, wk, zk)} is bounded. Then there exists a constant π, dependent only on

n, such that

|[∆x]i[∆z]i| ≤ π, |[∆x]i[∆z]i − γC∆xT∆z/n| ≤ π, and

|[∆x]i[∆z]i − γ̄C∆xT∆z/n| ≤ π.

Proof. The proof is similar to (Friedlander and Orban, 2012, Lemma 5.3). In order to prove

the required result, it is sufficient to demonstrate that (∆x,∆r,∆y,∆z) is bounded. To that

end, we first show that (∆x,∆r,∆y) is bounded, and second show that ∆z is bounded. We

have from (3.12b) and (3.13) that

∥Bxk − b∥ ≤ ∥Bxk + δwk − b∥+ δ∥wk∥ ≤ xT zk/γP + δ sup
k

∥wk∥,≤ xT
0 z0/γP + δ sup

k
∥wk∥

∥d− Axk − rk∥ ≤ xT
k zk/γR ≤ xT

0 z0/γR,

which shows that the second block of the right-hand side in (3.9) is bounded. We now show

that the first block in (3.9) is bounded. It follows from (3.12a) that

σ

γ̄C
z ≤ σµX−1e ≤ σ

γC
z,

componentwise. As a consequence,

∥σkµkX
−1e− zk∥ ≤ M sup

k
∥zk∥, where M := max

(∣∣∣∣ σγC − 1

∣∣∣∣ , ∣∣∣∣ σγ̄C − 1

∣∣∣∣) .

Combining this last inequality with (3.12d) and (3.13), we obtain

∥c− AT rk −BTyk − σµX−1e∥ = ∥c− AT rk −BTyk − σµX−1e± ρsk ± zk∥

≤ xT
0 z

T
0 /γD + ρ sup

k
∥sk∥+M sup

k
∥zk∥.

By Corollary 3.1.3, the inverse of the matrix in (3.9) is bounded, and so (∆x,∆r,∆y) is
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bounded because the right-hand side of (3.9) is bounded. To show that ∆z is bounded, we

note that ∆z satisfies (3.9), which has a bounded right-hand side.

Our convergence analysis rests upon a variation of (Friedlander and Orban, 2012, Theo-

rem 5.4) stating the convergence properties of Algorithm 3.1.1. The next result implies that

the duality measure µk converges to zero under a boundedness assumption.

Theorem 3.1.5. Suppose that Algorithm 3.1.1 with ϵ = 0 generates the sequence {vk},
and that the sequence {(sk, wk, zk)} is bounded. Then µk → 0.

Proof. We follow Kojima et al. (1993), and express (3.13) in Step 3 of the algorithm as

(fi(α)), f̄i(α) ≥ 0, h(α) ≥ 0, gP (α) ≥ 0, gR(α) ≥ 0, and gD(α) ≥ 0, (3.33)

for i = 1, · · · , n, where, dropping for the moment the subscript k,

fi(α) := ([x]i + α[∆x]i)
T ([z]i + α[∆z]i)− γC(x+ α∆x)T (z + α∆z)/n, (3.34a)

f̄i(α) := γ̄C(x+ α∆x)T (z + α∆z)/n− ([x]i + α[∆x]i)
T ([z]i + α[∆z]i), (3.34b)

h(α) := (1− α(1− β))xT z − (x+ α∆x)T (z + α∆z), (3.34c)

gP (α) := (x+ α∆x)T (z + α∆z)− γP∥B(x+ α∆x) + δ(w + α∆w)− b∥, (3.34d)

gR(α) := (x+ α∆x)T (z + α∆z)− γR∥A(x+ α∆x) + (r + α∆r − d)∥, (3.34e)

gD(α) := (x+ α∆x)T (z + α∆z)− γD∥c+ ρ(s+ α∆s)−BT (y + α∆y) (3.34f)

− AT (r + α∆r)− (z + α∆z)∥, (3.34g)

and by contradiction, we assume that xT z ≥ ϵ̄ for some ϵ̄ > 0. We use (3.31) and (3.32) and

Lemma 3.1.4, and the inequality xT z ≥ ϵ̄ to show that fi(α) ≥ 0, f̄i(α) ≥ 0 and h(α) ≥ 0 .

We establish a similar property for gP (α), gR(α), and gD(α). Using (3.30), (3.27), (3.31), and

(3.34a) and the rest of proof is similar to (Friedlander and Orban, 2012, Theorem 5.4).

In the next chapter, we propose a variation of Algorithm 3.0.1 in which the linear system

(3.9) differs. Partial block elimination is not applied and this results in a larger but sparser

SQD system. The convergence analysis rests upon a variation on (Armand and Benoist,

2011, Theorem 1) stating that the inverse of the coefficient matrix of Newton system remains

uniformly bounded as long as {xk} and {zk} remain bounded away from zero.
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CHAPTER 4

A REGULARIZED INTERIOR-POINT METHOD FOR CONSTRAINED

LINEAR LEAST SQUARES

4.1 Background and Preliminaries

As a convex quadratic program, the dual of (1.1) may be written as the constrained linear

least-squares problem

maximize
x,y,z

bTy − (ATd)Tx− 1
2
∥Ax− d∥2

subject to BTy + z − ATAx = c− ATd, z ≥ 0,
(4.1)

where y ∈ Rm and z ∈ Rn are the vectors of Lagrange multipliers associated to the equality

constraints and bounds of (1.1), respectively.

Friedlander and Orban (2012) justify the regularization (1.2) of (1.1) as an application

of the proximal method of multipliers of Rockafellar (1976). It consists in the addition of

a proximal-point term 1
2
ρ∥x − xk∥2, to which we will refer as a primal regularization term,

and of augmented Lagrangian terms consisting of the objective term 1
2
δ∥w + yk∥2 and the

constraint residual term δw, to which we will collectively refer as a dual regularization term.

The regularized problem (1.2) is still a convex quadratic program and its dual may be written

as the regularized constrained linear least-squares problem

maximize
x,s,y,z

bTy − (ATd)Tx− 1
2
∥Ax− d∥2 − 1

2
δ∥y − yk∥2 − 1

2
ρ∥s+ xk∥2

subject to BTy + z − ATAx− ρs = c− ATd, z ≥ 0,
(4.2)

where s = x− xk are auxiliary variables playing the same role as w in (1.2). The strength of

this regularization approach is that (4.2) is precisely the primal-dual regularization of (4.1).

For convenience, we let u := (x, s, w, y, z) and we define the function

Fk(u; ρ, δ, τ) :=


c− ATd−BTy − z + ATAx+ ρs

ρx− ρ(s+ xk)

δy − δ(w + yk)

Bx+ δw − b

Xz − τe

 , (4.3)
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where τ ≥ 0 is a parameter.

Using this notation, the common necessary and sufficient optimality conditions of (1.2)

and (4.2) may be written compactly as

Fk(u; ρ, δ, 0) = 0, (x, z) ≥ 0.

Note also that setting additionally ρ = δ = 0 recovers the optimality conditions of the original

primal-dual pair (1.1) and (4.1).

An interior-point method applied to the primal-dual pair (1.2) and (4.2) iteratively seeks

approximate solutions to the nonlinear system

Fk(u; ρ, δ, τk) = 0, (x, z) > 0,

for a sequence of parameters {τk} ↓ 0. For each fixed value of τk, a Newton step ∆u is

computed from the current approximation uk as the solution of the linear system

∇uFk(uk; ρ, δ, τk)∆u = −Fk(uk; ρ, δ, τk),

where the Jacobian is given by

∇uFk(uk; ρ, δ, τk) =


ATA ρI −BT −I

ρI −ρI

−δI δI

B δI

Z X

 .

Of particular concern is that the matrix ATA is (nearly) dense if A has a (nearly) dense row.

One way to circumvent this difficulty is to introduce ξ := d−A∆x−Ax. An equivalent way

to write the previous system is then
AT ρI −BT −I

A I
...



∆x

ξ
...

 =


−c+BTy + z − ρs

d− Ax
...

 ,

where the ellipses indicate that the rest of the system is unchanged. This system is larger

but sparser and does away with the matrix-matrix product ATA.

A more natural way to give rise to the previous sparse Jacobian is to systematically
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transform every problem of the form (1.1) to the form

minimize
x,r

cTx+ 1
2
∥r∥2

subject to Bx = b, Ax+ r = d, x ≥ 0,
(4.4)

whose dual may be written

maximize
x,r,y,z

bTy − (ATd)Tx− 1
2
∥r∥2

subject to BTy + z + AT r = c, Ax+ r = d, z ≥ 0.
(4.5)

It is interesting to note that the constraints Ax + r = d, defining the residual r, appear in

both the primal and the dual problem. This simple fact turns out to guide our choice of

regularization.

We formulate the regularization of (4.4) as

minimize
x,r,w

cTx+ 1
2
∥r∥2 + 1

2
ρ∥x− xk∥2 + 1

2
δ∥w + yk∥2

subject to Bx+ δw = b, Ax+ r = d, x ≥ 0.
(4.6)

The former regularization differs from (1.2) in two respects. Firstly, no primal regularization

term is added for the variables r because the objective function of (4.4) is already strictly

convex in r. Secondly, the constraints Ax+ r = d are not regularized since they already have

full row rank. Since the variables r do not appear elsewhere in the constraints, the equality

constraints of (4.6) have full row rank. No harm would be done in regularizing Ax + r = d

although a larger system would be obtained. The dual of (4.6) may be stated as

maximize
x,r,y,s

bTy − (ATd)Tx− 1
2
∥r∥2 − 1

2
δ∥y − yk∥2 − 1

2
ρ∥s+ xk∥2

subject to AT r +BTy + z − ρs = c,

Ax+ r = d, z ≥ 0,

(4.7)

where we introduced the auxiliary variables s = x− xk. Because the dual (4.7) also features

the full-rank constraints Ax+ r = d, it offers an additional elegant justification for omitting

the primal regularization term for the variables r in (4.6). Indeed, regularizing those con-

straints in (4.7) precisely amounts to adding the primal regularization term in question. It

is now visible that upon setting ρ = δ = 0, (4.6) and (4.7) coincide with (4.4) and (4.5),

respectively. In the rest of this document, we concentrate on the formulation (4.6)–(4.7).
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Proceeding as before, we let v := (x, r, s, w, y, z) and define

Ψk(v; ρ, δ, τ) :=



c+ ρs−BTy − AT r − z

ρx− ρ(s+ xk)

δy − δ(w + yk)

Bx+ δw − b

Ax+ r − d

Xz − τe


. (4.8)

Note that the definition of Ψ does not involve the Lagrange multipliers associated to the

constraints Ax + r = d. This is because those can be readily eliminated and are always

equal to r. Once again, the optimality conditions of (4.6)–(4.7) can be succinctly stated as

Ψk(v; ρ, δ, 0) = 0 and (x, z) ≥ 0 while those of (4.4)–(4.5) can be expressed as Ψk(v; 0, 0, 0) = 0

and (x, z) ≥ 0.

In the next section, we outline the main features of a long-step interior-point method

applied to (4.6)–(4.7).

4.2 Interior-Point Method

This section describes the linear systems to be solved at each iteration of an interior-point

method applied to (4.6)–(4.7) and the neighborhood of the central path used to guide the

iterates to a solution of (1.1) and (4.1). We end the section by stating our algorithm formally.

4.2.1 Linear Systems

As in the previous section, the Newton correction ∆v for (4.8) from the current approxima-

tion vk with barrier parameter τk solves the system ∇vΨk(vk; ρ, δ, τk)∆v = −Ψk(vk; ρ, δ, τk).

After eliminating ∆s and ∆w, and slightly rearranging, there remains
−ρI AT BT I

A I

B δI

Zk Xk



∆x

∆r

∆y

∆z

 =


c−BTyk − AT rk − zk

d− Axk − rk

b−Bxk

τke−Xkzk

 . (4.9)

The remaining directions may be recovered via

∆w = ∆y − wk, ∆s = ∆x− sk. (4.10)
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Note that upon setting ρ = δ = 0, we recover the Newton equations used to compute a step

from the k-th iterate of an interior-point method applied to (4.4)–(4.5).

Rather than using (4.9) directly, our implementation, described in §4.4 makes use of the

following symmetrization, obtained via the similarity transformation defined by the diagonal

matrix blkdiag(I, I, I, Z
− 1

2
k ):

−ρI AT BT Z
1
2
k

A I

B δI

Z
1
2
k Xk




∆x

∆r

∆y

Z
− 1

2
k ∆z

 =


c−BTyk − ATλk − zk

d− Axk − rk

b−Bxk

τkZ
− 1

2
k e−XkZ

1
2
k e

 . (4.11)

The above symmetric system differs from that traditionally used in interior-point methods,

which results from an additional step of block Gaussian elimination about the (4, 4) block.

Our motivation for using (4.11) stems from recent results of Greif et al. (2012) who establish

that as long as ρ and δ remain bounded away from zero and strict complementarity holds at

the limiting solution, the above coefficient matrix remains uniformly bounded and uniformly

nonsingular. Moreover, its condition number remains sufficiently small along the iterations

that a reasonable number of significant digits in the solution may be expected. By contrast,

the coefficient matrix of the traditional system is increasingly ill-conditioned as τk ↓ 0 and

typically diverges, even if strict complementarity holds.

Note that the coefficient matrix of (4.11) is symmetric and quasi definite (Vanderbei,

1995). It is therefore strongly factorizable, i.e., any symmetric permutation of it possesses

a LDLT factorization with L unit lower triangular and D diagonal indefinite. The compu-

tation of this factorization is typically cheaper than that of a sparse symmetric indefinite

factorization since pivoting need only be concerned with sparsity (Gill et al., 1996).

There is an elegant interpretation of (4.11) that is particularly fitting in the present

least-square framework. For simplicity of exposition, let us rewrite (4.11) as[
ρI BT

B −D

][
∆x

t

]
=

[
f

g

]

where we defined

BT =
[
AT BT Z

1
2
k

]
, D = blkdiag(I, δI,Xk), t = (∆r,∆y, Z

− 1
2

k ∆z)

and the right-hand side is defined accordingly. This last system may be solved in two stages.

Firstly, let t̄ := −D−1g. Since D is diagonal, computing t̄ is trivial. The system may now
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equivalently be written [
ρI BT

B −D

][
∆x

∆t

]
=

[
f̄

0

]
where t = t̄+∆t and f̄ := f−BT t̄. This shifted system represents the necessary and sufficient

optimality conditions of the unconstrained regularized linear least-squares problem

minimize
∆t

1
2
∥BT∆t− f̄∥2M−1 + 1

2
∥∆t∥2D, (4.12)

where M := ρI.

Any method requiring the solution of a symmetric quasi-definite system at each iteration

may be interpreted as solving a regularized linear least-squares problem of the form (4.12)

at each iteration. In the present context of solving (1.1), this interpretation is particularly

fitting. It also forms the basis for the iterative methods developed by Arioli and Orban (2012)

and hence paves the way to a matrix-free interior-point method for (1.1). In §4.4 however,

we solve (4.11) using a sparse LDLT factorization.

4.2.2 Neighborhood of the Central Path

The central path is the set of exact roots v(τ) of Ψk(v; ρ, δ, τ) for τ > 0. For fixed ρ

and δ, as τ approaches zero, it can be shown that v(τ) approaches a solution of (4.4)–(4.5).

Note that the last block equation of Ψk(v; ρ, δ, τ) = 0 implies that [x(τ)]i[z(τ)]i = τ for all

i = 1, . . . , n.

Typical interior-point methods compute estimates vk for some sequence {τk} ↓ 0 that are

close, in some sense, to v(τk). This concept of proximity is formalized by a neighborhood of

the central path. A usual choice is τk := σkµk, where σk ∈ (0, 1) is a centering parameter and

µk := xT
k zk/n, which measures the average centrality. If vk lies exactly on the central path,

we have [xk]i[zk]i = µk for all i = 1, . . . , n. The quantity µk is also directly proportional to

the duality gap between (4.4) and (4.5) in the case where vk is primal-dual feasible.

A difference between our approach and traditional interior-point methods is that during

the course of the iterations, the regularization parameters ρ and δ may be updated. At the

k-th iteration, the current iterate is vk and the regularization parameters have values ρk and
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δk. The neighborhood Nk is defined by an appropriate subset of the following conditions:

γ̄Cx
T z/n ≥ [x]i[z]i ≥ γCx

T z/n, (4.13a)

xT z ≥ γP∥Bx+ δkw − b∥, (4.13b)

xT z ≥ γR∥Ax+ r − d∥, (4.13c)

xT z ≥ γD∥c+ ρks−BTy − AT r − z∥, (4.13d)

xT z ≥ γS∥ρkx− ρk(s+ xk)∥, (4.13e)

xT z ≥ γW∥δky − δk(w + yk)∥, (4.13f)

where 0 < γC < 1 < γ̄C and (γP , γR, γD, γS, γW ) > 0 are given constants. Our interior-point

scheme computes a steplength αk ∈ (0, 1] as well as updated regularization parameters ρk+1

and δk+1 so that the next iterate vk+1 = vk(αk) := vk + αk∆v ∈ Nk+1.

4.2.3 Algorithm

Our algorithm is the same as (Friedlander and Orban, 2012, Algorithm 4.1) with the

exception of the linear system used in Step 2, and is formalized as Algorithm 4.2.1.

Algorithm 4.2.1 Primal-Dual Regularized Interior-Point Algorithm

Step 0 [Initialize] Choose minimum and maximum centering parameters 0 < σmin ≤
σmax < 1, a constant σmax < β < 1, proximity parameters 0 < γC < 1 < γ̄C and
(γP , γR, γD, γS, γW ) > 0, initial regularization parameters ρ0 > 0, δ0 > 0, and a stop-
ping tolerance ϵ > 0. Let the neighborhood of the central path be defined by (4.13a),
(4.13b), (4.13c) and (4.13d). Choose initial primal x0 ∈ Rn

++, r0 ∈ Rm, w0 ∈ Rm and
dual guesses s0 ∈ Rn, y0 ∈ Rm, and z0 ∈ Rn

++ so that v0 ∈ N0. Set µ0 := xT
0 z0/n and

k = 0.

Step 1 [Test convergence ] If xT
k zk ≤ ϵ, declare convergence.

Step 2 [Step computation] Choose a centering parameter σk ∈ [σmin, σmax]. Compute the
Newton step ∆vk from vk, e.g., by solving (4.9) with τk := σkµk and recovering the
remaining components from (4.10).

Step 3 [Linesearch] Select δk+1 ∈ (0, δk] and ρk+1 ∈ (0, ρk] and compute αk as the largest
α ∈ (0, 1] such that

vk(α) ∈ Nk+1 and µk(α) ≤ (1− α(1− β))µk,

where µk(α) := xk(α)
T zk(α)/n.

Step 4 [Update iterates] Set vk+1 := vk(αk), µk+1 := µk(αk). Increment k by 1 and go to
Step 1.
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Friedlander and Orban (2012) present two variants of Algorithm 4.2.1. The first variant

keeps ρ and δ fixed throughout the iterations and only considers (4.13a), (4.13b), (4.13c) and

(4.13d) in the definition of Nk. In the second variant, ρk and δk are allowed to decrease at

most linearly and Nk is defined by (4.13a), (4.13e) and (4.13f). Both variants have similar

convergence properties. In our implementation, described in §4.4, we initially decrease ρk

and δk so as to speed up convergence and eventually keep them fixed at a level that guar-

antees numerical stability of the factorization of the coefficient matrix of (4.11). For this

reason, in the next section, we only cover the convergence properties of the variant with fixed

regularization parameters.

4.3 Convergence Analysis

Our convergence analysis rests upon a variation on (Armand and Benoist, 2011, Theo-

rem 1) stating that the inverse of the coefficient matrix of (4.9) remains uniformly bounded

as long as {xk} and {zk} remain bounded away from zero. The reason for this unconventional

last assumption is that the convergence proof proceeds by contradiction on the fact that {µk}
converges to zero. We begin by stating the result on the boundedness of the inverse coefficient

matrix.
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Theorem 4.3.1. Let {Mk} be a sequence of n × n real symmetric matrices, {Ak} be a

sequence of p × n real matrices, {Bk} be a sequence of m × n real matrices, and {δk} be

a sequence of positive numbers. Let {xk} and {zk} be two sequences of Rn with positive

components. Define for all k ∈ N,

Jk :=


Mk AT

k BT
k −I

Ak −I

Bk −δkI

Zk Xk

 .

Assume the following properties are satisfied:

1. The sequences {Mk}, {Ak} and {Bk} are bounded.

2. The sequence {δk} is bounded away from zero.

3. There exists η > 0 such that for all k ∈ N and all i ∈ {1, . . . , n},

[xk]i[zk]i ≥ η. (4.14)

4. There exists λ > 0 such that for all k ∈ N and all d ∈ Rn,

dTHkd ≥ λ∥d∥2,

where Hk := Mk +X−1
k Zk + δ−1

k BT
k Bk + AT

kAk.

Then the sequence {J−1
k } is well defined and bounded.

Proof. It suffices to apply (Armand and Benoist, 2011, Theorem 1) to the matrix

blkdiag(I,
√
δkI, I, I)Jk blkdiag(I,

√
δkI, I, I).

Our interest in Theorem 4.3.1 is to set Mk := ρI, Ak := −A and Bk := −B for all

k. This guarantees that Assumption (1) is satisfied. Assumption (2) is satisfied since Al-

gorithm 4.2.1 works with fixed regularization parameters. Assumption (4) is also satisifed

because of our definition of Mk. Assumption (3) will be the main contradiction assumption.

Note also that the matrix Jk of Theorem 4.3.1 is the coefficient matrix of (4.9) multiplied

by the diagonal matrix blkdiag(−I,−I,−I, I). Therefore, their inverses are simultaneously

uniformly bounded.

Our first result consists in giving conditions under which the right-hand side of (4.9) is

bounded.
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Lemma 4.3.2. Let {vk} be the sequence generated by Algorithm 4.2.1. Assume {(sk, wk)}
remains bounded. Then the right-hand side of (4.9) is uniformly bounded.

Proof. Using our assumption that {wk} is bounded, we have

∥b−Bxk∥ ≤ ∥b−Bxk − δwk∥+ δ∥wk∥ ≤ γ−1
P nµk + δ sup

k
∥wk∥,

where we used the definition of µk = xT
k zk/n and (4.13b). Since Algorithm 4.2.1 ensures that

{µk} is decreasing, the above establishes boundedness of {b−Bxk}. The boundedness of {c−
AT rk−BTyk− zk} follows similarly from the boundedness of {sk} and (4.13d). Boundedness

of {Axk+rk−d} follows directly from (4.13c). Finally, Boundedness of {σkµk−Xkzk} follows

from (4.13a) and the boundedness of {σk} and {µk}.

Using Theorem 4.3.1 and Lemma 4.3.2 we obtain uniform boundedness of the direction

∆v under the contradiction assumption.

Lemma 4.3.3. Let {vk} be the sequence generated by Algorithm 4.2.1. Assume {(sk, wk)}
remains bounded and assume that there exists η > 0 such that (4.14) is satisfied. Then

the direction ∆v is uniformly bounded.

Proof. Using Theorem 4.3.1 and Lemma 4.3.2, we obtain that (∆x,∆r,∆y,∆z) is uniformly

bounded. Finally, (4.10) and boundedness of {sk} and {wk} yield boundedness of {∆s} and

{∆w}.

A careful inspection of (Friedlander and Orban, 2012, §5.2 and §5.4) reveals that all that is
required to establish that the sequence {µk} converges to zero in Algorithm 4.2.1 is precisely

Lemma 4.3.3. More precisely, we have the following global convergence result.

Theorem 4.3.4 (Friedlander and Orban 2012, Theorem 5.10). Let {vk} be the sequence

generated by Algorithm 4.2.1 with ϵ = 0. Assume {(sk, wk)} remains bounded. Then

{µk} → 0.

Proof. The proof is by contradiction. Assume that {µk} ̸→ 0. Then there must exist η > 0

such that (4.14) is satisfied. We conclude from Lemma 4.3.3 that ∆v is uniformly bounded.

The rest of the proof proceeds as (Friedlander and Orban, 2012, Theorem 5.4) to conclude

that

0 < η ≤ µk+1 ≤ γµk ≤ · · · ≤ γk+1µ0,
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for some constant γ ∈ (0, 1). Since the right-hand side of the previous inequalities converges

to zero, we obtain the contradiction.

The nature of the limit points of the sequence generated by Algorithm 4.2.1 is stated in

the next two results. The first states that in general, a solution of a perturbed primal-dual

pair is identified. This primal-dual pair coincides with the original pair (1.1) and (4.1) but

has shifted linear terms and right-hand sides.

Theorem 4.3.5 (Friedlander and Orban 2012, Theorem 5.5). Let {vk} be the sequence

generated by Algorithm 4.2.1 with ϵ = 0. Assume {(sk, wk)} remains bounded. If w∗ and

s∗ denote particular limit points of {wk} and {sk} defined by subsequences indexed by the

index set K ⊆ N, every limit point of {(xk, rk, zk)}K determines a primal-dual solution of

the primal-dual pair

minimize
x,r

(c+ ρs∗)
Tx+ 1

2
∥r∥2

subject to Bx = b− δw∗, Ax+ r = d, x ≥ 0,
(4.15)

and
maximize

x,r,y,z
(b− δw∗)

Ty − (ATd)Tx− 1
2
∥r∥2

subject to BTy + z + AT r = c+ ρs∗, Ax+ r = d, z ≥ 0.
(4.16)

It is now clear, in light of Theorem 4.3.5, that whenever s∗ = 0 and w∗ = 0, we recover a

primal-dual solution of the original problem. That is the essence of the second result.

Theorem 4.3.6 (Friedlander and Orban 2012, Theorem 5.6). Let {vk} be the sequence

generated by Algorithm 4.2.1 with ϵ = 0. Assume {(sk, wk)} remains bounded. Then

1. If {wk}K → 0 for some index set K ⊆ N, every limit point of {(xk, rk)}K is feasible

for (1.1).

2. If {sk}K′ → 0 for some index set K′ ⊆ N, every limit point of {(xk, rk, zk)}K′

determines a feasible point for (4.1).

3. If {(sk, wk)}K′′ → 0 for some index set K′′ ⊆ N, every limit point of {(xk, rk, zk)}K′′

determines a primal-dual solution of (1.1)–(4.1).
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4.4 Implementation and Numerical Results

Our implementation is strongly based on that of Friedlander and Orban (2012) with the

difference that a step ∆v is computed using (4.11) instead of a partial reduction of this

system. The implementation accepts problems with free variables in so-called slack form

minimize
x,t

cTx+ 1
2
∥Ax− d∥2 subject to Bx+B1t = b, t ≥ 0, (4.17)

whose dual may be written

maximize
x,y,z

bTy − (ATd)Tx− 1
2
∥Ax− d∥2

subject to BTy − ATAx = c− ATd, BT
1 y + z = 0, z ≥ 0.

(4.18)

The problem is systematically turned to the form (4.4)–(4.5). The system used to compute

a Newton step at iteration k now takes the form
−ρI AT BT

−ρI BT
1 Z

1
2

A I

B B1 δI

Z
1
2 T




∆x

∆t

∆r

∆y

Z− 1
2∆z

 =


c− AT r −BTy

−BT
1 y − z

d− Ax− r

b−Bx−B1t

Z− 1
2 (σkµke− Tkzk)

 ,

where T = diag(t). This system is solved by way of a sparse LDLT factorization using

MA57 from Duff (2004) as implemented in the HSL (2007) and setting the pivot tolerance

to zero. Although in theory some components of T typically converge to zero, and therefore

the limiting matrix is not symmetric and quasi definite, all components of T remain larger

than, say, 10−8 in practice and we have not encountered numerical difficulties related to the

factorization. In §4.5, we discuss alternatives that rule out such potential numerical difficulty.

The important advantage of the coefficient matrix above is that its condition number remains

uniformly bounded provided strict complementarity holds in the limit.

The algorithm implemented is a predictor-corrector variant of the long-step method de-

scribed in Algorithm 4.2.1. All initialization and updates are as described by Friedlander

and Orban (2012). In particular, ρ and δ are initialized to the value 1 and divided by 10 at

each iteration but are not allowed to decrease below 10−8. The method is implemented in

the Python language as part of the NLPy library (Orban, 2012).
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4.5 Discussion

Gill et al. (1996) show that the LDLT factorization of a symmetric and quasi-definite

matrix becomes increasingly unstable if either diagonal block approaches singularity or if an

off-diagonal block becomes large. Specifically, we have the result

Theorem 4.5.1 (Gill et al. 1996, Result 4.2). Let

K :=

[
H BT

B −G

]

be a symmetric quasi-definite matrix. The factorization PKP T = LDLT , where L is unit

lower triangular and D is diagonal, is stable for every permutation matrix P if

θ(K) :=

(
∥B∥2

max(∥G∥2, ∥H∥2)

)2

max(κ2(G), κ2(H)),

is not too large, where κ2 denotes the spectral condition number.

Clearly, ifG approaches singularity, θ(K) becomes large. This is not to say that there does not

exist some permutation P for which the factorization is stable. However, this permutation,

if it exists, may not yield particularly sparse factors.

One possibility in this case is to resort to the usual symmetric indefinite factorization

LBLT , where B is now block diagonal. The additional cost incurred may be acceptable since

it should only be necessary in the last few iterations. Another possibility is to perform the

usual block elimination on (4.11) and reduce it to a system with coefficient matrix−(X−1
k Zk + ρI) AT BT

A I

B δI

 .

Zero elements on the diagonal no longer occur but unfortunately the above matrix no longer

has a bounded condition number. Theorem 4.5.1 also suggests that the LDLT factorization

is still unstable. A third possibility is to perform an additional transform by multiplying the

coefficient matrix of (4.11) on the left and right by blkdiag(I, I, I,X− 1
2 ) and scale the vector
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of unknowns and the right-hand side accordingly. This yields the coefficient matrix
−ρI AT BT X

− 1
2

k Z
1
2
k

A I

B δI

X
− 1

2
k Z

1
2
k I

 .

This time it is ∥B∥2 that becomes large in Theorem 4.5.1. Finally, eliminating the small

diagonal elements of x in the vein of Gould (1986) again produces a limiting matrix that is

not quasi definite. It appears difficult to maintain safe quasi definiteness in the limit if at

least one bound constraint is active at a solution.

In our situation however, we conjecture that there exists a permutation that produces a

stable factorization of (4.11) for the following reason. Suppose the sequences {xk} and {zk}
generated by Algorithm 4.2.1 converge to x∗ and z∗, respectively. Define the index sets

A := {i | [x∗]i = 0} I := {i | [x∗]i > 0}.

By complementarity, we have [z∗]i = 0 for all i ∈ I. If we assume that strict complementarity

holds at (x∗, z∗), then we also have [z∗]i > 0 for all i ∈ A. Therefore, for all sufficiently large

indices k, (4.13a) implies that

[xk]i = Θ(µk) [zk]i = Θ(1) (i ∈ A) (4.19)

[zk]i = Θ(µk) [xk]i = Θ(1) (i ∈ I). (4.20)

Consider the following example matrix representative of a problem with 3 variables and

bound constraints only, two of which are active at a solution.

K =



−1
√
µ

−1 1

−1 1
√
µ 1

1 µ

1 µ


.
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Without permutation, the LDLT factorization of K yields

L =



1

1

1

−√
µ 1

−1 1

−1 1


D =



−1

−1

−1

1 + µ

1 + µ

1 + µ


Therefore, this factorization is stable in the sense that there exists a moderate constant γ > 0

such that

∥ |L| |D| |LT | ∥ ≤ γ∥K∥,

where the absolute value of a matrix is the matrix of the absolute values of its elements—see

Golub and Van Loan (1996). In fact, the relative error between the computed LDLT and K

is of the order of the machine epsilon for all µ larger than the machine epsilon. Note that µ

never becomes that small in practice. If we exchange the first and second variables in K, the

relative error for µ = 10−16 rises to about 70%. Though the above example is no proof, it

leads us to speculate that as long as the small elements of Xk—i.e., those in A—appear last

on the diagonal, the factorization will be stable. This example is inspired by and related to

similar examples by Vanderbei (1995) and Gill et al. (1996).
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CHAPTER 5

APPLICATIONS

The practice of optimization depends not only on efficient and robust algorithms, but also

on good modelling techniques, careful interpretation of results, and user-friendly software.

Here, we provide three LS problems applications.

5.1 Constrained Curve Fitting

In the constrained curve fitting example with inconsistent inequality constraints, we fit

the linear function

f(t) = xT t,

where x, t ∈ Rn,
n∑

i=1

[t]i = 1 and 0 ≤ [t]i ≤ 1 for i = 1, 2, · · · , n, to the data points (tj, [y]j)

j = 1, 2, · · · ,m and tj ∈ Rn, [y]j ∈ R. The function f(t) is to fit the data in the least-squares

sense. A further restriction is that each residual [r]j = f(tj)− [y]j must satisfy |[r]j| ≤ ϵ. It is

clear that these additional requirements lead to an inconsistent set of 2m linear inequalities

in the parameters x = (x1, x2, · · · , xn)
T . It is debatable whether this problem deserves an

approximate solution. We will not argue that point here. But given that we want to resolve

these conflicting inequalities, we introduce slack variables wj into the inequalities. This

problem may be written as a constrained linear least-squares problem as follows:

minimize
x

m∑
j=1

(f(tj)− [y]j)
2

subject to |f(tj)− [y]j| ≤ ϵ, for j = 1, 2, · · · ,m, (5.1)

where the parameters 0 ≤ [tj]i ≤ 1, and [y]j for j = 1, · · ·m are given. This optimization

problem is equivalent to

minimize
x,w

1
2
∥Ax− y∥2

subject to Ax+ δw = ϵ− y, Ax− δw = −ϵ+ y,
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where A =


[t1]1 [t2]1 · · · [tm]1
...

... · · · ...

[t1]n [t2]n · · · [tm]n

 , x = (x1, x2, · · · , xn), w = (w1, w2, · · · , wm), and

y = ([y]1, · · · , [y]m).

5.2 Large-Scale ℓ-Regularized LS Problems

A lot of attention has been paid to ℓ-regularization based methods for sparse signal re-

construction, e.g., basis pursuit denoising and compressed sensing. These problems can be

cast as ℓ-regularized LS problems, which can be reformulated as convex quadratic programs,

and then solved by several standard methods such as interior-point methods. For small and

medium sized problems, the primal-dual interior-point method can be used. In general, the

interior-point method can solve large sparse problems, with a million variables and observa-

tions, in a few minutes.

Here, we introduce this kind of problem as an application to our approach, although we

will not go into the details. For further details, see e.g. Kim et al. (2007a). Suppose that we

have a linear model of the form

d = Ax+ v,

where x ∈ Rp is the vector of unknowns, d ∈ Rp is the vector of observations, v ∈ Rp is the

noise, and A ∈ Rp×n is the data matrix. When p ≥ n we can determine x by solving the

least-squares problem of minimizing the quadratic loss 1
2
∥Ax− d∥2. A standard technique to

prevent over-fitting is ℓ regularization, which can be written as

minimize
x

1
2
∥Ax− d∥2 + δ∥x∥ℓ, (5.2)

where δ > 0 is the regularization parameter. Another technique is to use ℓ2-regularization,

which is called Tikhonov regularization, and can be written as

minimize
x

1
2
∥Ax− d∥2 + δ∥x∥22, (5.3)

where δ > 0 is the regularization parameter. The ℓ2-regularized least-squares program has

the analytic solution

x∗ = (ATA+ δI)−1ATd.

The solution to the ℓ2- regularization problem can be computed by direct methods, which

require O(n3) flops. The solution can also be computed by applying iterative (non-direct)
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methods (e.g., the conjugate gradient method) to the linear system of equations

(AAT + δI)x = ATd.

Iterative methods are efficient, especially when there are fast algorithms for the matrix-vector

multiplications with the data matrix A and its transpose AT (i.e., Au and ATv with u ∈ Rn

and v ∈ Rm), which is the case when A is sparse or has a special form such as partial Fourier

and wavelet matrices.

5.3 LS with ℓ1-Norm Regularization

As another application, we consider a LS problem with ℓ1-norm regularization. In ℓ1-

regularized LS Problem, we substitute a sum of absolute values for the sum of squares used

in Tikhonov regularization, to obtain

minimize
x

1
2
∥Ax− d∥2 + δ∥x∥1, (5.4)

where ∥x∥1 =
n∑

i=1

|[x]i| denotes the ℓ1 norm of x and δ > 0 is the regularization parameter.

This kind of problem always has a solution, but it need not be unique. Some problems do

not have the standard form (5.4) but have a more general form

minimize
x

1
2
∥Ax− d∥2 +

n∑
i=1

[δ]i|[x]i|, (5.5)

where [δ]i ≥ 0 are regularization parameters. The variables [x]i that correspond to [δ]i = 0

are not regularized. The ℓ1-norm LS problem can be transformed to a convex quadratic

problem with linear equality constraints. The equivalent LS problem can be solved by stan-

dard convex optimization methods such as interior-point methods. It can readily handle

small and medium-sized problems. Standard methods cannot efficiently handle large-scale

problems in which there are fast algorithms for the matrix-vector operations with A and AT .

Specialized interior-point methods that exploit such algorithms can scale to large problems,

as demonstrated by Chen et al. (2001) and Johnson et al. (2000). The method of chapter 3

also can handle large-scale problems. Now, we show how we can transform (5.5) to a convex

quadratic problem.
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Theorem 5.3.1. Let f and gi for i = 1, 2, · · · ,m, be real-valued with dom(f) , dom(gi)

and C ⊆ Rn. The two following programs are equivalent

minimize
x

f(x) + g1(x) + · · ·+ gm(x) subject to x ∈ C (5.6a)

minimize
t,u1,··· ,um,x

t+ u1 + · · ·+ um

subject to f(x) ≤ t, gi(x) ≤ ui, for i = 1, 2, · · · ,m, x ∈ C (5.6b)

Proof. The second problem (5.6b) looks like the epigraph of (5.6a). Problem (5.6a) is a

problem in Rn and (5.6b) is in Rn+m+1. We show that x∗ ∈ Rn solves (5.6a) if and only

if (t∗, u∗
1, · · · , u∗

m, x
∗) ∈ Rn+m+1 solves (5.6b), where t∗ = f(x∗) and u∗

i = gi(x
∗) for i =

1, 2, · · · ,m. Let x∗ solve (5.6a) and t∗ = f(x∗), u∗
i = gi(x

∗) for i = 1, 2, · · · ,m. We claim

that (t∗, u∗
1, · · · , u∗

m, x
∗) is an optimal solution of (5.6b). For all (t, u1, · · · , um, x) feasible for

(5.6b) we have

f(x) + g1(x) + · · ·+ gm(x) ≤ t+ u1 + · · ·+ um ∀x ∈ C.

Therefore,

f(x∗) + g1(x
∗) + · · ·+ gm(x

∗) ≤ f(x) + g1(x) + · · ·+ gm(x) ≤ t+ u1 + · · ·+ um ∀x ∈ C,

i.e.,

t∗ + u∗
1 + · · ·+ u∗

m ≤ t+ u1 + · · ·+ um.

Now, let w∗ = (t∗, u∗
1, · · · , u∗

m, x
∗) solve (5.6b). By feasibility of w∗ we have

f(x∗) ≤ t∗,

gi(x
∗) ≤ u∗

i , for i = 1, 2, · · · ,m.

Since (f(x), g1(x), · · · , gm(x), x) is feasible for (5.6b), we get

f(x∗) + g1(x
∗) + · · ·+ gm(x

∗) ≤ t∗ + u∗
1 + · · ·+ u∗

m ≤ f(x) + g1(x) + · · ·+ gm(x) ∀x ∈ C.

This completes the proof of the theorem.
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A special case is when g(x) = ∥x∥1 =
n∑

i=1

|[x]i|, which leads to

minimize
x

f(x) +
n∑

i=1

ri subject to |[x]i| ≤ ri ∀i = 1, 2, · · · , n. (5.7)

Now, (5.7) is equivalent to

minimize
x

f(x) + eT r subject to − r ≤ x ≤ r. (5.8)

In another words we can say that by moving the ℓ1 norm in (5.3) to the constraints we have

minimize
x,r

1
2
∥Ax− d∥2 + δeT r subject to − r ≤ x ≤ r. (5.9)

Using theorem 5.3.1, it is easy to show that (5.9) is equivalent to (5.4). The former program

becomes

minimize
x,r,t

1
2
∥Ax− d∥2 + δeT r subject to

(
−I −I I

I −I I

)x

r

t

 =

0

0

0

 , t ≥ 0.

We give a simple example of (5.4), then apply the methods of Chapter 2 and 3 on large-

scale sparse signal reconstruction problems. We tested our methods versus ℓ1 − ℓs (Kim

et al. (2007a)), CPLEX (CPLEX (2007)), IPOPT (Waechter (2007)), and LOQO (Vanderbei

(1999)) with a special kind of matrix called 2-D discrete cosine transform (DCT2) that is

used in image compression. DCTs are important in numerous applications and in data

compression. DCT is especially used in audio (e.g. MP3) and in colour or grey scale images

(e.g. JPEG).

We use a standard MATLAB routine called dct2.m to generate DCT2 matrices. Suppose

matrix A is given by DCT2, set x0 as a random vector and d = Ax0. Now, we try to solve

the following optimization problem to find a sparser optimal solution with an optimal value

equal to zero

minimize
x

1
2
∥Ax− d∥2 + δ

n∑
i=1

|[x]i|. (5.10)

Given

A =


1 0 0 0.5

0 1 0.2 0.3

0 0.1 1 0.2

1 0 1 1

 ,
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we set x0 = (1, 0, 1, 0), d = Ax0, and δ = 0.01. Using ℓ1 − ℓs (Kim et al. (2007a)), we get the

optimal objective value 1.990410e− 02, solve time 0.160 seconds, and the minimizer:

x = (0.9877, 0.0007, 0.9891, 0.0046).

For this point on, we refer to the method of Chapter 2 as 3× 3 method and to the method of

Chapter 3 as the 4×4. The 4×4 method, we obtain the optimal objective value 1.990227e−02,

solve time 0.012 seconds, and the minimizer:

x = (0.9900, 0.0000, 0.9904, 0.0000).

Using the 3 × 3 method we obtain the optimal objective value 1.990244e − 02, solve time

0.007 seconds, and the minimizer:

x = (0.9899, 0.0000, 0.9903, 0.0001).

Table 5.1 reports results of applying (Un)Scaled3 × 3, (Un)Scaled4 × 4, and ℓ1 − ℓs imple-

mentations . The columns are, from left to right, the problem name, number of iterations,

final objective value, KKT residual, solve time, and number of nonzero elements in the mini-

mizer. We can see that the (Un)Scaled4×4 and (Un)Scaled3×3 achieve a sparser and better

solution in this simple example. For this example there is no significant difference between

the scaled and unscaled forms. The scaled method automatically scaled the problem prior

to solution so as to equilibrate the rows and columns of the constraints. Equilibration is

done by first dividing every row by its largest element in absolute value and then by dividing

every column by its largest element in absolute value. An advantage of this method is that

it is not sensitive to dense columns. This property makes the method typically more robust

than a standard implementation and the linear system solves often much faster than in a

traditional interior-point method in augmented form. Scaling is especially effective on large-

scaled problems, as shown in the next section. ℓ1 − ℓs is an inexact Newton interior-point

method specifically designed for (5.9) also described by Kim et al. (2007a). In ℓ1 − ℓs, a

primal barrier method is applied to (5.4) and approximate Newton steps are computed using

the preconditioned conjugate-gradient method. In particular, the Hessian contains a term of

the form ATA and this term is preconditioned by its diagonal.

5.4 Application to Sparse Signal Recovery

We can denote any discrete signal or data as a real vector x in a high dimensional space.

In general, sparse vectors are vectors for which most components are zero. To quantitatively
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Table 5.1 A simple example of ℓ1 − ℓs

Name Iter Cost KKTresidual Time Nnz–Minimizer
UnScaled-4x4 10 1.990227e-02 6.887167e-09 1.49e-02 50%
Scaled-4x4 10 1.990227e-02 6.887167e-09 1.17e-02 50%
UnScaled-3x3 7 1.990244e-02 8.164790e-09 8.02e-03 75%
Scaled-3x3 7 1.990244e-02 8.164790e-09 7.70e-03 75%
l1-ls 16 1.990411e-02 1.439952e-05 5.70e-01 100%

describe this, for an integer k we call a vector k-sparse if at most k of its components are

non-zero. Formally, a vector x ∈ Rn is k-sparse if ∥x∥0 = k where ∥x∥0 =
∑n

i=1[x]
0
i (with

the convention 00 = 0). We consider sparse signal recovery problems with matrices A of size

4096 × 1024 and vectors x ∈ R1024 with sparsity ∥x∥0 = k where k = 100 and k = 150. For

the given matrix A the vector Ax = d is known. The measurement matrix A is generated by

the command A = rand(4096, 1024). Let x be a Gaussian random vector whose entries are

independent identically distributed (i.i.d.). We solve (5.4) with the 3× 3 and 4× 4 methods

and compare the result, the successful sparse recovery rate, with that of the ℓ1 − ℓs method.

Here, we also set the parameter δ = 0.01. From these results, we can see that our method

can perform better than the ℓ1 − ℓs method when we expect sparsity in the optimal solution.

5.5 Generation of Test Problems

We generate data for the following least-squares problem

minimize
x

1
2
∥Ax− d∥2 subject to Bx ≥ b, (5.11)

where:

A = (qij), qij ∈ (−10, 10) randomly chosen , i = 1, · · · , p, j = 1, · · · , n,

d = (di), di =
n∑

j=1

qij, for i = 1, · · · , p,

B = (qij), qij ∈ (−3, 3) randomly chosen, i = 1, · · · ,m, j = 1, · · · , n,

bi =


n∑

j=1

qij if i = 1,

n∑
j=1

qij −mµi if i ̸= 1,

(5.12)
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with µi ∈ (0, 1), randomly chosen. The exact solution x∗ of these problems is given by

x∗ = (1, · · · , 1).

The first constraint is active at x∗ and the exact minimal value of the least-squares problem

is zero. The subsequent examples are chosen such that the exact solution x∗ of LS problem

is known. So it is possible to compare the number of exact digits in the comparison with

other solvers.

5.6 Numerical Comparison of Four Algorithms Solving LS

We now compare (Un)Scaled-4× 4 and (Un)scaled-3× 3 with three different algorithms:

ℓ1 − ℓs, IPOPT, and LOQO for the numerical solution of (2.11). Tables 5.2–5.17 show the

results of this comparison. The columns are, from left to right, the problem name, number

of iterations, final objective value, KKT residual, and solve time. We generate a DCT2

matrix and solve (5.10). All stopping tolerances are set to 10−6 and presolve is turned off. In

Figures 5.6–5.6, we illustrate the performance of our approach against four comparable and

closely related solvers using performance profiles (Dolan and Moré, 2002). Problem names

are p-n-m-solver name, where p×n and n×m denote the dimensions of the least-squares

and constraint matrices, respectively. If n = m, problem names are p-n-solver name.

A brief overview of optimization solvers that we use for comparison

Ipopt (Interior Point OPTimizer) is a software package for large-scale nonlinear optimization.

It is designed to find (local) solutions. The objective function can be nonlinear and nonconvex,

but should be twice continuously differentiable. Ipopt is written in C++ and is released as

open source code.

LOQO is a system for solving smooth nonlinear constrained optimization problems. LOQO

is based on an infeasible, primal-dual, interior-point method applied to a sequence of QP.

Cplex is one of the most powerful commercial solvers, capable of using several CPU in

parallel calculations. Problem types that Cplex can handle: LP, MILP, (MI)QP, (MI)QCQP,

(MI)SOCP (and some more).

ℓ1−ℓs is a Matlab implementation of the interior-point method for regularized least-squares

described in Kim et al. (2007a). ℓ1 − ℓs is developed for large problems. It can solve large

sparse problems. It can also efficiently solve very large dense problems, that arise in sparse

signal recovery with orthogonal transforms, by exploiting fast algorithms for these transforms.
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Table 5.2 Comparison for problem with p = 8 and n = 12

Name Iter Cost KKTresidual Time
8-12–UnScaled-4x4 5 4.415775e-01 4.758201e-08 0.006
8-12–Scaled-4x4 5 4.436060e-01 3.790156e-07 0.006
8-12–UnScaled-3x3 5 4.435796e-01 1.333960e-07 0.006
8-12–Scaled-3x3 5 4.435796e-01 2.379830e-07 0.006
8-12–l1-ls 16 4.436101e-01 4.200664e-04 0.397
8-12–IPOPT 7 4.435786e-01 2.506328e-14 0.012
8-12–LOQO 14 4.435786e-01 1.700000e-10 0.002

Table 5.3 Comparison for problem with p = 32 and n = 8

Name Iter Cost KKTresidual Time
32-8–UnScaled-4x4 8 5.039810e-02 4.526520e-12 0.012
32-8–Scaled-4x4 6 5.064889e-02 1.087014e-08 0.008
32-8–UnScaled-3x3 6 5.064889e-02 1.192544e-08 0.008
32-8–Scaled-3x3 6 5.064889e-02 2.914584e-08 0.008
32-8–l1-ls 18 5.064888e-02 4.426570e-05 0.205
32-8–IPOPT 5 5.064889e-02 2.505982e-14 0.010
32-8–LOQO 11 5.064889e-02 1.500000e-09 0.003

Table 5.4 Comparison for problem with p = 16 and n = 24

Name Iter Cost KKTresidual Time
16-24–UnScaled-4x4 8 1.016159e-01 1.132528e-10 0.012
16-24–Scaled-4x4 7 1.018095e-01 2.018836e-08 0.010
16-24–UnScaled-3x3 6 1.018206e-01 1.304466e-08 0.008
16-24–Scaled-3x3 6 1.018206e-01 4.551537e-08 0.008
16-24–l1-ls 16 1.018058e-01 9.485795e-05 0.250
16-24–IPOPT 6 1.018034e-01 2.505982e-14 0.012
16-24–LOQO 12 1.018034e-01 1.500000e-09 0.003
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Table 5.5 Comparison for problem with p = 64 and n = 16

Name Iter Cost KKTresidual Time
64-16–UnScaled-4x4 7 8.333846e-02 9.663905e-09 0.012
64-16–Scaled-4x4 7 8.343721e-02 3.657231e-10 0.011
64-16–UnScaled-3x3 6 8.343960e-02 2.416399e-08 0.009
64-16–Scaled-3x3 6 8.343954e-02 1.213753e-07 0.010
64-16–l1-ls 19 8.343721e-02 5.338899e-05 0.337
64-16–IPOPT 6 8.343723e-02 2.505982e-14 0.014
64-16–LOQO 11 8.343722e-02 4.000000e-09 0.005

Table 5.6 Comparison for problem with p = 128 and n = 32

Name Iter Cost KKTresidual Time
128-32–UnScaled-4x4 11 1.022355e-01 2.304974e-10 0.028
128-32–Scaled-4x4 6 1.023510e-01 6.286439e-07 0.014
128-32–UnScaled-3x3 6 1.032129e-01 6.890546e-08 0.015
128-32–Scaled-3x3 6 1.032304e-01 8.811947e-07 0.015
128-32–l1-ls 17 1.022411e-01 9.131019e-05 0.195
128-32–IPOPT 6 1.022411e-01 2.505982e-14 0.026
128-32–LOQO 12 1.022411e-01 8.200000e-10 0.022

Table 5.7 Comparison for problem with p = 256 and n = 64

Name Iter Cost KKTresidual Time
256-64–UnScaled-4x4 9 1.547477e-01 6.786164e-12 0.059
256-64–Scaled-4x4 6 1.550747e-01 9.862409e-07 0.030
256-64–UnScaled-3x3 6 1.551046e-01 6.123953e-09 0.033
256-64–Scaled-3x3 6 1.551061e-01 1.731912e-07 0.034
256-64–l1-ls 20 1.547542e-01 1.219684e-04 0.340
256-64–IPOPT 8 1.547542e-01 1.776357e-14 0.087
256-64–LOQO 13 1.547542e-01 2.300000e-10 0.134
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Table 5.8 Comparison for problem with p = 1024 and n = 256

Name Iter Cost KKTresidual Time
1024-256–UnScaled-4x4 12 6.069454e-01 9.750109e-10 0.849
1024-256–Scaled-4x4 6 6.086937e-01 3.062681e-07 0.401
1024-256–UnScaled-3x3 4 9.228976e-01 8.034770e-07 0.285
1024-256–Scaled-3x3 7 6.081951e-01 1.112049e-07 0.496
1024-256–l1-ls 20 6.069323e-01 4.734477e-04 0.612
1024-256–IPOPT 10 6.069326e-01 2.842171e-14 2.873
1024-256–LOQO 15 6.069323e-01 8.500000e-10 5.444

Table 5.9 Comparison for problem with p = 1072 and n = 768

Name Iter Cost KKTresidual Time
1072-768–UnScaled-4x4 11 1.912995e+00 5.778455e-12 2.955
1072-768–Scaled-4x4 6 1.921405e+00 6.686542e-07 1.614
1072-768–UnScaled-3x3 3 5.039887e+00 9.130975e-07 0.874
1072-768–Scaled-3x3 6 2.107093e+00 6.404760e-07 1.595
1072-768–l1-ls 21 1.913003e+00 1.551190e-03 1.243
1072-768–IPOPT 10 1.913004e+00 1.136868e-13 9.275
1072-768–LOQO 16 1.913003e+00 1.300000e-10 42.021

Table 5.10 Comparison for problem with p = 1576 and n = 634

Name Iter Cost KKTresidual Time
1576-634–UnScaled-4x4 11 1.598491e+00 5.310856e-07 3.007
1576-634–Scaled-4x4 6 1.605521e+00 1.999222e-07 1.658
1576-634–UnScaled-3x3 3 4.236755e+00 6.896229e-07 0.827
1576-634–Scaled-3x3 6 1.839050e+00 8.566569e-07 1.653
1576-634–l1-ls 23 1.598489e+00 1.285429e-03 1.221
1576-634–IPOPT 10 1.598490e+00 2.842171e-14 16.026
1576-634–LOQO 15 1.598489e+00 1.800000e-09 45.298
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Table 5.11 Comparison for problem with p = 2048 and n = 512

Name Iter Cost KKTresidual Time
2048-512–UnScaled-4x4 12 1.266813e+00 5.560368e-09 3.510
2048-512–Scaled-4x4 6 1.272650e+00 1.765203e-07 2.111
2048-513–UnScaled-3x3 3 3.379576e+00 5.885186e-07 0.907
2048-512–Scaled-3x3 6 1.441661e+00 7.486843e-07 1.770
2048-512–l1-ls 21 1.266812e+00 8.485015e-04 1.252
2048-512–IPOPT 1 1.266812e+00 1.000000e+00 0.572
2048-512–LOQO 15 1.266812e+00 1.800000e-10 42.958

Table 5.12 Comparison for problem with p = 2144 and n = 1536

Name Iter Cost KKTresidual Time
2144-1536–UnScaled-4x4 12 3.823373e+00 3.980785e-10 22.817
2144-1536–Scaled-4x4 6 3.840569e+00 1.733043e-07 10.909
2144-1536–UnScaled-3x3 3 1.029325e+01 3.267540e-07 5.369
2144-1536–Scaled-3x3 7 3.831230e+00 1.768381e-08 13.402
2144-1536–l1-ls 25 3.823393e+00 3.079818e-03 3.569
2144-1536–IPOPT 10 3.823395e+00 3.410605e-13 68.007
2144-1536–LOQO 15 3.823393e+00 2.100000e-09 334.691

Table 5.13 Comparison for problem with p = 1536 and n = 1072

Name Iter Cost KKTresidual Time
2288-1072–UnScaled-4x4 11 2.772483e+00 1.099068e-10 11.028
2288-1072–Scaled-4x4 6 2.782258e+00 1.740290e-07 6.150
2288-1072–UnScaled-3x3 3 7.241645e+00 3.645765e-07 2.774
2288-1072–Scaled-3x3 7 2.777928e+00 1.684233e-08 6.472
2288-1072–l1-ls 21 2.772473e+00 2.166878e-03 2.225
2288-1072–IPOPT 10 2.772474e+00 1.705303e-12 55.683
2288-1072–LOQO 16 2.772473e+00 1.300000e-10 193.910
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Table 5.14 Comparison for problem with p = 3192 and n = 2048

Name Iter Cost KKTresidual Time
3192-2048–UnScaled-4x4 12 5.047011e+00 1.361515e-12 52.103
3192-2048–Scaled-4x4 6 5.079541e+00 1.516105e-07 25.994
3192-2048–UnScaled-3x3 3 1.387182e+01 1.913808e-07 13.731
3192-2048–Scaled-3x3 7 5.056596e+00 1.425411e-08 30.298
3192-2048–l1-ls 23 5.047030e+00 3.383664e-03 5.695
3192-2048–IPOPT 1 5.047030e+00 1.000000e+00 9.803
3192-2048–LOQO 16 5.047030e+00 5.700000e-10 936.265

Table 5.15 Comparison for problem with p = 1536 and n = 2192

Name Iter Cost KKTresidual Time
3768-2192–UnScaled-4x4 10 5.499013e+00 5.086452e-07 54.753
3768-2192–Scaled-4x4 6 5.521418e+00 1.362809e-07 32.843
3768-2192–UnScaled-3x3 3 1.481956e+01 1.560411e-07 19.010
3768-2192–Scaled-3x3 7 5.509311e+00 1.151996e-08 43.067
3768-2192–l1-ls 23 5.498724e+00 3.631953e-03 7.614
3768-2192–IPOPT 1 5.498724e+00 1.000000e+00 12.851
3768-2192–LOQO 16 5.498724e+00 6.400000e-10 1266.820

Table 5.16 Comparison for problem with p = 4096 and n = 1024

Name Iter Cost KKTresidual Time
4096-1024–UnScaled-4x4 11 2.507106e+00 6.057688e-13 17.565
4096-1024–Scaled-4x4 6 2.526827e+00 1.415525e-07 9.638
4096-1024–UnScaled-3x3 3 6.884260e+00 2.106426e-07 4.986
4096-1024–Scaled-3x3 7 2.512113e+00 9.796640e-09 11.317
4096-1024–l1-ls 22 2.507109e+00 2.048682e-03 3.107
4096-1024–IPOPT 1 2.507109e+00 1.000000e+00 6.477
4096-1024–LOQO 16 2.507109e+00 8.000000e-10 359.174
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Table 5.17 Comparison for problem with p = 4152 and n = 2288

Name Iter Cost KKTresidual Time
4152-2288–UnScaled-4x4 12 5.768351e+00 7.942647e-12 82.323
4152-2288–Scaled-4x4 6 5.791925e+00 1.340150e-07 41.158
4152-2288–UnScaled-3x3 3 1.548851e+01 1.383680e-07 22.056
4152-2288–Scaled-3x3 7 5.779492e+00 1.059316e-08 50.750
4152-2288–l1-ls 23 5.768362e+00 4.532695e-03 8.096
4152-2288–IPOPT 1 5.768362e+00 1.000000e+00 11.931
4152-2288–LOQO 16 5.768362e+00 4.500000e-10 1565.130
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Figure 5.1 Performance in Terms of Time Using 3x3

Figure 5.2 Performance in Terms of Number of Iterations Using 3x3
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Figure 5.3 Performance in Terms of Time Using 4x4

Figure 5.4 Performance in Terms of Number of Iterations Using 4x4

If we generate the data defined by (5.12), the table 5.18 shows the results of the 3 × 3

method and that of LOQO, CPLEX and IPOPT.
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CHAPTER 6

CONCLUSION

6.1 Summary of Work

In this work, we consider constrained linear least-squares problems in standard form

minimize
x∈Rn

cTx+ 1
2
∥Ax− d∥2 subject to Bx = b, x ≥ 0. (6.1)

An interior-point method applied directly to (6.1) might encounter several difficulties. We

remove the difficulties in different ways and obtain two slightly different implementations.

We consider the following regularization of (6.1) proposed by Friedlander and Orban (2012):

minimize
x∈Rn,w∈Rm

cTx+ 1
2
∥Ax− d∥2 + 1

2
ρ∥x− xk∥2 + 1

2
δ∥w + yk∥2

subject to Bx+ δw = b, x ≥ 0.
(6.2)

At each iteration, a step is computed by solving a large and sparse symmetric quasi-definite

linear system (Vanderbei, 1995). Contrary to most interior-point implementations, partial

block elimination is not applied to this system to reduce it to the so-called augmented system

form or to the normal equations. Instead, a similarity transformation that guarantees that

the system remains uniformly bounded and nonsingular throughout the iterations is applied.

We establish global convergence under weak assumptions. In particular, no assumption on

the rank of B or A is made. A distinctive feature of the regularization (6.2) is that it enables

a solution of (6.1) to be recovered in many situations, and not only a solution to a perturbed

problem. In addition, (6.2) is never solved to optimality for fixed values of ρ, δ, xk and

yk. Instead, it is used to compute a single Newton step before attention shifts to the next

regularized subproblem.

Our method is implemented in the Python language as part of the NLPy library (Orban,

2012). We illustrate the performance of our approach against ℓ1−ℓs on sparse single recovery

problems generated randomly following the procedure given by Kim et al. (2007b). We try

to find a point that is guaranteed to be no more than one percent suboptimal, i.e., the

regularization parameter was taken as δ = 0.01. All large-scale problems, scaled form achieves

significantly better performance in terms of number of iterations, run time, and sparsity of

minimizer.
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6.2 Limitations of the Proposed Solution and Future Improvements

Many applications only provide A and B in the form of linear operators instead of explicit

matrices in (6.1) or they have very large dimensions. Using sparse LDLT factorization in

the case of large dimensions requires a lot of memory. Iterative methods specialized to

symmetric quasi-definite systems have been recently proposed by Arioli and Orban (2012).

Our algorithm paves the way to a matrix-free implementation using such iterative methods.

This yields an elegant framework in which an unconstrained regularized linear least-squares

problem must be solved at each iteration. Other future improvements include the solution

of constrained nonlinear least-squares problems.

6.2.1 Nonlinear Least-Squares with Linear Constraints

In this section, we consider a regularization technique for nonlinear least-squares problems

with linear constraints. Nonlinear least-square problems can be written as:

min
x∈Rn

1
2

m∑
i=1

fi(x)
2 subject to Ax = b, x ≥ 0, (6.3)

where each function fi : Rn → R is twice continuously differentiable. Numerical difficulties

can arise when the matrix A and/or the Jacobian of F : Rn → Rm, F (x) := (f1(x), . . . , fm(x))

do not have full row rank. We propose a primal-dual interior point method. New challenges

may occur if at a solution x∗, some components are such that x∗
i = 0 and z∗i = 0, where

z∗ is the vector of dual variables associated with the non-negativity constraints x ≥ 0. We

separate our methodology into numerical and theoretical considerations.

6.2.2 Numerical Aspects

The application of an interior-point method to (6.3) gives us the perturbed optimality

conditions J(x)
TF (x)− ATy − z

A(x)− b

Xz − µe

 = 0, (x, z) > 0, (6.4)

where µ > 0 is the barrier parameter, J(x) is the Jacobian of F (x), y is the vector of Lagrange

multipliers associated with the equality constraints, and X = diag(x). The calculation of the
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Newton step (∆x,∆y,∆z) for (6.4) requires solving the linear systemH(x) AT −I

A 0 0

Z 0 X


 ∆x

−∆y

∆z

 = −

J(x)
TF (x)− ATy − z

A(x)− b

Xz − µe

 , (6.5)

where H(x) = J(x)TJ(x)+
∑m

i=1 fi(x)∇2fi(x) is the Hessian of the Lagrangian of (6.3). After

elimination of ∆z, we need to solve the following symmetric system[
H(x) +X−1Z AT

A 0

][
∆x

−∆y

]
= −

[
J(x)TF (x)− ATy − µX−1e

Ax− b

]
, (6.6)

and recover ∆z by ∆z = −z+ µX−1e−X−1Z∆x. A disadvantage of this system is that the

term J(x)TJ(x), hidden in H(x), can be relatively dense. To avoid this difficulty, we propose

defining the auxiliary variables ξ := J(x)∆x, and we need to solve the following larger but

sparse system

B(x) +X−1Z AT J(x)T

A 0 0

J(x) 0 −I


 ∆x

−∆y

ξ

 = −

J(x)
TF (x)− ATy − µX−1e

Ax− b

0

 , (6.7)

where B(x) represents
m∑
i=1

fi(x)∇2fi(x) or a symmetric to it. A second advantage of the above

approach is that the system (6.7) is always invertible if A is full rank, even if J(x) is not

full rank. We propose solving (6.7) via a regularization of this system, which is in the very

simple form

B(x) +X−1Z + ρI AT J(x)T

A −δI 0

J(x) 0 −I


 ∆x

−∆y

ξ

 = −

J(x)
TF (x)− ATy − µX−1e

Ax− b

0

 , (6.8)

where ρ > 0 and δ > 0 are regularization parameters. They affect only the coefficient matrix

of the system and not the right hand side. These parameters make the system (6.8) invertible

independent of A and J(x). The role of the parameter δ is to regularize the constraints that

may be (nearly) dependent, while the role of ρ is to regularize the (1, 1) block in the case

where some variables are not subject to a non negativity constraint and/or in the case of a

linear least-squares problem i.e., B(x) = 0.
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Under these conditions, it is natural to assume that for sufficiently small values of ρ and

δ, the solutions of (6.5) and (6.8) are close and that we can find a solution of (6.3).

6.2.3 Theoretical Aspects

We believe that the regularization (6.8) is justified by a mixed proximal point and aug-

mented Lagrangian applied to (6.3). Indeed, by applying the augmented Lagrangian method

to (6.3) we get

min
x

1
2

m∑
i=1

fi(x)
2 − yTk (Ax− b) + 1

2δ
∥Ax− b∥2 subject to x ≥ 0,

which can also be written as:

min
x,r

1
2

m∑
i=1

fi(x)
2 + 1

2
δ∥r + yk∥2 subject to Ax+ δr = 0, x ≥ 0.

We propose adding a proximal type term to this sub-problem in the spirit of Friedlander and

Orban (2012) :

min
x,r

1
2

m∑
i=1

fi(x)
2 + 1

2
δ∥r + yk∥2 + 1

2
ρ∥x− xk∥2 subject to Ax+ δr = 0, x ≥ 0. (6.9)

Applying Newton’s method to the Lagrangian of (6.9) as before, we obtain the Newton

system


H(x) + ρI 0 −AT −I

0 δI −δI 0

A δI 0 0

Z 0 0 X



∆x

∆r

∆y

∆z

 = −


J(x)TF (x) + ρ(x− xk)− ATy − z

δ(r + yk)− δy

Ax+ δr − b

Xz − µe

 .

Eliminating ∆r, we find the system

H(x) + ρI AT −I

A −δI 0

Z 0 X


 ∆x

−∆y

∆z

 = −

J(x)
TF (x) + ρ(x− xk)− ATy − z

Ax+ δ(y − yk)− b

Xz − µe

 . (6.10)

Rather than using (6.10) directly, we propose the following symmetrization, obtained via the
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similarity transformation defined by the diagonal matrix blkdiag(I, I, I, Z− 1
2 )

B AT J(x)T Z
1
2

A −δI

J(x) −I

−Z
1
2 −X




∆x

∆r

∆y

Z
− 1

2
k ∆z

 =


c−BTyk − ATλk − zk

d− Axk − rk

b−Bxk

τkZ
− 1

2
k e−XkZ

1
2
k e

 , (6.11)

the advantages of (6.11) is that the linear systems used in the definition of the Newton steps

are larger, sparser and tailored to the special structure of (6.9).
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ANNEXE A : IMPLEMENTATION

Until now, we have considered our problems to be given in standard form. However, for

real-world problems it is often convenient to formulate problems in the following form:

minimize
x

cTx+ 1
2
∥Ax− d∥2

subject to L ≤ Bx ≤ U,

l ≤ x ≤ u.

(6.12)

Two-sided constraints such as those given here are called constraints with ranges. The vector

L is called the vector of lower bound constraints, U is the vector of upper bound constraints,

l is called the vector of lower bound variables, and u is the vector of upper bound variables.

We allow some of the data to take infinite values, that is, for each i = 1, 2, · · · ,m

−∞ ≤ Li ≤ Ui ≤ ∞,

and for each i = 1, 2, · · · , n
−∞ ≤ li ≤ ui ≤ ∞.

We have implemented the primal-dual regularization methods described in Algorithm (Fried-

lander and Orban, 2012, Algorithm 4.1) and specialized in Algorithms 3.1.1 in the Python

programming language as part of the NLPy programming platform for optimization (Orban,

2012). Our implementation handles least-squares problem in the slack formulation form of

(6.12), i.e., the primal-dual pair

minimize
x,r,t

cTx+ 1
2
∥r∥2

subject to Bx+B1t = b, Ax+ r = d, t ≥ 0,

and
maximize

x,r,y,z
bTy − (ATd)Tx− 1

2
∥r∥2

subject to BTy − ATAx = c− ATd, BT
1 y + z = 0, z ≥ 0,

where c ∈ Rn, A ∈ Rp×n, B ∈ Rm×n, B1 ∈ Rm×q, b ∈ Rm, d ∈ Rp, x ∈ Rn, r ∈ Rn, t ∈ Rq, y ∈
Rm, and z ∈ Rn. We consider two approaches to compute the Newton step at iteration k. In

this thesis, we work with a 4× 4 system, which is obtained by eliminating ∆Z from Newton
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system, i.e., 
−ρI AT BT

−ρI BT
1

A I

B B1 δI



∆x

∆t

∆r

∆y

 =


c− AT r −BTy

−BT
1 y − z

d− Ax− r

b−Bx−B1t

 .

In Chapter 4, we consider the following 5× 5 system
−ρI AT BT

−ρI BT
1 Z

1
2

A I

B B1 δI

Z
1
2 T




∆x

∆t

∆r

∆y

Z− 1
2∆z

 =


c− AT r −BTy

−BT
1 y − z

d− Ax− r

b−Bx−B1t

Z− 1
2 (σkµke− Tkzk)

 .

In this case, we have a sparser system and the LDLT factorization performs better.
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ANNEXE B : NUMERICAL ALGEBRA REVIEW

In this section, we discuss implementation issues that arise in solving linear systems. The

most important issue is to find a way to solve the systems of equations discussed in the

previous section. Factoring a positive definite matrix is the main part of solving a linear

system. We shall study factorization techniques for the reduced KKT matrix. We factor

square positive definite matrices into lower, upper, and diagonal components. The LDLT

Factorization factors the square matrix K as

K = LDLT . (6.13)

Every symmetric and positive definite matrix K can be written as (6.13), where L is a

lower triangular matrix with unit diagonal elements and D is a diagonal matrix with positive

elements on the diagonal. By equating the elements in (6.13), column by column, it is easy to

derive formulas for computing L and D. The LDLT factorization for indefinite matrices may

not exist. In a general case, we call LDLT factorization as symmetric indefinite factorization

PKP T = LDLT , (6.14)

where P is a permutation matrix, L is unit lower triangular, and D is block diagonal with

diagonal blocks of diminution 1 or 2. The second factorization is produced by Aasen’s method

PKP T = LTLT , (6.15)

where P is a permutation matrix, L is unit lower triangular, and T is unit lower triangular

with first column e1. This kind of factorization is much less widely used than block LDLT

factorization, but it is mathematically interesting. The reduced KKT system is an example

of a symmetric quasi-definite system.
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ANNEXE C : THE APPROXIMATE MINIMUM DEGREE (AMD)

When solving large sparse symmetric linear systems of the form Kx = r, it is common to

precede the numerical factorization by a symmetric reordering. This reordering is chosen so

that pivoting down the diagonal in order on the resulting permuted matrix PKP T = LLT

produces much less fill-in and less work than computing the factors of K by pivoting down

the diagonal in the original order. The goal of the preordering is to find a permutation matrix

P so that the subsequent factorization has the least fill-in. Unfortunately, this problem is

NP-complete, so heuristics are used. For more details, see, for example, Amestoy et al.

(2004). The minimum degree ordering algorithm is one of the most widely used heuristics,

since it produces factors with relatively low fill-in on a wide range of matrices. In python,

the following command can be used

commentstyle

1 >>> from cvxopt import spmatrix , amd

2 >>> A = spmatrix ( [ 10 , 3 , 5 , −2 ,5 , 2 ] , [ 0 , 2 , 1 , 2 , 2 , 3 ] , [ 0 , 0 , 1 , 1 , 2 , 3 ] )

3 >>> P = amd . order (A)

4 >>> print (P)

5 [ 1 ]

6 [ 0 ]

7 [ 2 ]

8 [ 3 ]

In MATLAB, we can use the amd command.



71

ANNEXE D : SQD MATRIX AND LDLT FACTORIZATION

A symmetric quasi-definite system is a special case of systems that arise in interior point

methods when we are searching for the new direction by solving the Newton system. Co-

efficient matrix in such a system is closely related to a symmetric positive-definite matrix

called symmetric quasi-definite (SQD) matrix. The advantages of the SQD matrix is that

it is nonsingular, and that its inverse is again symmetric quasi-definite. We can extend the

facts of positive definite matrix to this kind of matrix. Here, we define SQD matrix and we

shall show how LDLT factorization can be used for this kind of matrix.

Theorem 6.2.1. Let matrix K have the following form[
A B

D C

]
,

where A , B, C, and D are matrices and A is positive definite.

K is positive definite, if and only if C −DA−1B is positive definite.

Proof. Using the fact that K is positive definite implies that

[
xT yT

] [A B

D C

] [
x y

]
= xTAx+ xTBy + yTDx+ yTCy > 0.

Fix a vector y ̸= 0, and put x = −A−1By. Using this choice in the last equation, we get

yTBTA−TAA−1By − yTBTA−1By − yTDA−1By + yTCy = yT (C −DA−1B)y > 0.

Since y is an arbitrary nonzero vector, it follows that C −DA−1B is positive definite. Now,

suppose that C −DA−1B is positive definite since we have that

K =

[
A B

D C

]
=

[
I 0

DA−1 I

][
A 0

0 C −DA−1B

][
I A−1B

0 I

]
, (6.16)

the eigenvalues of K are the eigenvalues of the A and its Schur complement, which are

therefore positive.
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Corollary 6.2.2. Let matrix K have the following form[
a bT

b C

]
,

where a is a scaler and b is a vector and C is a symmetric matrix.

If K is positive definite, then so is C − bbT

a
.

Proof. The proof is an immediate application of theorem 6.2.1

Definition 6.2.3. A symmetric matrix is called quasi-definite if it can be written perhaps

after a symmetric permutation as [
−E A

AT D

]
,

where E and D are positive definite matrices.

Quasi-definite matrices inherit some of the nice properties of positive definite matrices.

In fact, any arbitrary symmetric permutation of rows or columns gives us a factorization of

a permuted matrix. When we perform an arbitrary symmetric permutation and elimination,

the fact is that the remaining uneliminated part of the whole matrix is still quasi-definite.

Below, we illustrate the justification of this fact.

Let us break out the first row/column of the matrix and look at the first step of the

elimination process. Breaking out the first row/column of K, we write−a −bT fT

−b −C G

f GT D

 ,

where a is a scalar, b and f are vectors, and C, D, and G are symmetric matrices of the

appropriate dimensions. One step of the elimination process transforms K into1
−bT

a
fT

a

0 −(C − bbT

a
) G+ bfT

a

0 GT + fbT

a
D + ffT

a

 ,

the uneliminated part is [
−(C − bbT

a
) G+ bfT

a

GT + fbT

a
D + ffT

a

]
.
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Clearly, the lower-left and upper-right blocks are transposes of each other. Also, the upper-

left and lower-right blocks are symmetric. Therefore, the whole matrix is symmetric. The

theorem 6.2.2 tells us C− bbT

a
andD+ ffT

a
are positive definite. Since we have the fact that the

sum of a positive definite matrix and a positive semidefinite matrix is positive definite, the

uneliminated part is indeed quasi-definite. Hence, it is clear that the uneliminated part is also

quasi-definite no matter which diagonal element is selected as the first pivot element. Every

step of the elimination process needs to choose a pivot element from the diagonals of the

matrix. Since these diagonals come from either a positive definite sub matrix or the negative

of such a matrix, we can say that they are nonzero but many of them will be negative.

Therefore, for any positive definite matrix, an arbitrary symmetric permutation of such a

matrix can be factored without any difficulty of encountering a zero pivot element. Hence,

after one step of the elimination, the uneliminated part is positive definite. It therefore follows

by induction that the uneliminated part is positive definite at every step of the elimination.

We implemented the procedure called sqd pivoit.m in MATLAB. The following is a simple

example: let

A =


2 −1 0 0 −1

−1 3 −1 −1 0

0 −1 2 −1 0

0 −1 −1 3 −1

−1 0 0 −1 3

 ,

at the end of the four steps of the elimination without permutations, we end up with the lower

triangular matrix L with ones on the diagonal and the diagonal matrix D. It is convenient to

combine the lower triangular matrix with the diagonal matrix to get a new lower triangular

matrix with ones on the diagonal. But the current L is exactly the transpose of the upper

triangular matrix. Hence, to preserve symmetry, we should combine the diagonal matrix

with both the lower and the upper triangular matrices to have an LDLT factorization of A

where

L =


1 0 0 0 0

−1/2 1 0 0 0

0 −2/5 1 0 0

0 −2/5 −7/8 1 0

−1/2 −1/5 −1/8 −1 1
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and

D =


2 0 0 0 0

0 5/2 0 0 0

0 0 8/5 0 0

0 0 0 11/8 0

0 0 0 0 1

 .

Of course, once a factorization is found, it is easy to solve systems of equations using forward

and backward substitution. The following theorem states a nice feature of SQD matrices.

This property can be used to have sparse L in LDLT factorization of a SQD matrix.

Theorem 6.2.4. Any symmetric permutation of a SQD yields a factorization PKP T =

LDLT , where L is unit lower triangular matrix and D is diagonal.

Proof. See Vanderbei (1995).

If K is symmetric indefinite there might not exist a permutation matrix P such that

PKP T = LDLT for some L unit lower triangular and diagonal D. As a simple example, let

K =

[
0 1

1 0

]
.

It is easy to see that K is not SQD and dos not have LDLT factorization. It is also obvious

that for any permutation matrix P we have PKP T = K. Even when there exists such P we

may have a numerical stability problem. Example:[
ϵ 1

1 ϵ

]
=

[
1 0

1/ϵ 1

][
ϵ 0

0 ϵ− 1/ϵ

][
1 1/ϵ

1 0 1

]
.

The Cholesky factorization is LDLT with D = I. Another fact about SQD matrices is that

they are indefinite and non-singular. To see this, consider the following system.[
−E AT

A F

][
x

y

]
=

[
b

c

]
.

The positive definiteness of E allows us to solve the first set of equations for x in terms of y

and obtain

x = E−1(b− ATy),
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substituting x into the second set of equations yields

y = (F + AE−1AT )(c+ AE−1b).

The positive definiteness of E and F ensures that F + AE−1AT is positive definite. Hence,

there exists a unique solution for any b and c, which implies that the SQD matrix is nonsin-

gular.
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ANNEXE E : MATLAB CODE FOR LDLT FACTORIZATION OF SQD

1 function [L,D,P,p,error ]= sqd_pivot(A)

2 dim = size(A);

3 p = amd(A);

4 p = [1 3 4 2];

5 tmp = A(p,p);

6 for i=1: dim(1)-1

7 tmp=pivot(tmp ,i);

8 end

9 D = diag(diag(tmp ));

10 U = triu(tmp);

11 U = sparse(diag (1./ diag(U)))*U;

12 L = U’;

13 B = L*D*L’;

14 I = eye(dim (1));

15 q = 1:dim (1);

16 P = I(p,q);

17 error = sparse(A-P’*B*P);

18 end

19

20 function [P1,P2] =permut(A,i,j,p,q)

21 dim = size(A);

22 n = dim (1);

23 P=eye(n);

24 P(i,i)= 0;

25 P(p,p)= 0;

26 P(i,p)= 1

27 P(p,i)= 1;

28 P1 =P;

29 P=eye(n);

30 P(j,j)= 0;

31 P(q,q)= 0;

32 P(j,q)= 1;

33 P(q,j)= 1;

34 P2 =P;

35 end

1 function x=sqd_solve(A,b)

2 %Using the SQD decomposition to solve Ax = b and return x.

3 %We rewrite Ax = b as LDL ’x = b and let Ux = y.

4 %First we solve Ly = b using forward substitution to get y.

5 %Next , using this , we solve Ux = y using backward substitution to get x.

6 %Example:

7 %A=creat_sqd (3,4);

8 %b=rand (7,1);

9 % x=sqd_solve(A,b)

10

11 [L,D] = sqd_pivot(A);

12

13 y= forward_sub(L,b);

14 x= back_sub(D*L’,y);
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15

16 end

17

18 function y= forward_sub(L,w)

19

20 if nargin ~= 2

21 error ’Only two inputs are required.’

22 end

23

24 if ~( isnumeric(L)& isnumeric(w))

25 error ’input must be numeric.’

26 end

27

28 [nRow ,nCol]=size(w);

29 if nRow >1 & nCol >1

30 error ’w must be a vector not a matrix.’

31 end

32

33 [nRow ,nCol]=size(L);

34 if nRow ~= nCol

35 error ’Matrix L must be square.’

36 end

37

38 if length(w) ~= nRow

39 error ’w length does not match L matrix dimension ’

40 end

41

42 y=zeros(nRow ,1);

43 y(1) = w(1)/L(1 ,1);

44

45 w=w(:);

46

47 for n=2: nRow

48 y(n)=( w(n) - L(n,1:n-1)*y(1:n-1) ) / L(n,n);

49 end

50

51 end

52

53 function x=back_sub(U,v)

54

55 if nargin ~= 2

56 error ’Only two inputs are required.’

57 end

58

59 if ~( isnumeric(U)& isnumeric(v))

60 error ’input must be numeric.’

61 end

62

63 [nRow ,nCol]=size(v);

64 if nRow >1 & nCol >1

65 error ’v must be a vector not a matrix.’

66 end

67

68 [nRow ,nCol]=size(U);

69 if nRow ~= nCol
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70 error ’Matrix U must be square.’

71 end

72

73 if length(v) ~= nRow

74 error ’v length does not match U matrix dimension.’

75 end

76

77 x=zeros(nRow ,1);

78 x(nRow)=v(nRow)/U(nRow ,nRow);

79

80 v=v(:);

81

82 for n=(nRow -1): -1:1

83 x(n)=(v(n)-(U(n,n+1:end)*x(n+1: end ))) / U(n,n);

84 end

85

86 end


