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Abstract

We provide the first analytical expressions for the expected waiting time of high-
priority customers in the delayed APQ by exploiting a classical conservation law for
work-conserving queues. Additionally, we describe an algorithm to compute the ex-
pected waiting times of both low-priority and high-priority customers, which requires
only the truncation of sums that converge quickly in our experiments. These insights
are used to demonstrate how the accumulation rate and delay level should be chosen by
health care practitioners to optimize common key performance indicators (KPIs). In
particular, we demonstrate that for certain nontrivial KPIs, an accumulating priority
queue with a delay of zero is always preferable. Finally, we present a detailed investi-
gation of the quality of an exponential approximation to the high-priority waiting time
distribution, which we use to optimize the choice of queueing parameters with respect
to both classes’ waiting time distributions.

1. Introduction

Accumulating priority queues (APQs) are a class of queueing disciplines in which waiting
customers accrue credit over time at class-dependent rates. By convention, the highest pri-
ority customers belong to class-1, and they accumulate credit at the highest rate. At service
completion instants, the customer present with the greatest amount of accumulated credit
is the next one selected for service. These are especially useful in highly congested sys-
tems when even a moderate proportion of the arrival load is due to high-priority customers,
since with high probability there will be least one high-priority customer in system and thus
low-priority customers can have extremely long wait times under a strict priority regime.

APQs are well-understood theoretically, beginning with the derivation of the M/G/1
waiting times for all classes in Stanford et al. (2014). Further extensions include preemptive
service (Fajardo and Drekic 2017), nonlinear priority accumulation (Li et al. 2017), hard
upper limits on waiting time (Cildoz et al. 2019), and applications to COVID-19 policies
(Oz et al. 2020). Most relevant to the present work is Mojalal et al. (2019), in which for
the first time, not all classes accumulate priority credit starting from their arrival instant.
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Instead, while the higher of two classes starts to accrue credit immediately, customers from
the lower of the two classes only do so after a fixed period of initial delay. For this reason,
Mojalal et al. named this the delayed accumulating priority queue.

Both the original APQ models and the delayed APQ variant were developed in response
to a perceived need stemming from the health care setting. Many health care systems are
measured against a set of key performance indicators (KPIs), and it is quite common for these
KPIs to comprise a delay target, representing a time by which treatment should commence,
and a compliance probability, which specifies the minimal acceptable fraction of customers
to be seen by this time. Clearly, APQs provide more flexibility than, for instance, classical
non-preemptive priority queues (NPQs), in terms of fine-tuning a queueing system to better
comply with a given set of KPIs. This extra flexibility is provided by the accumulation rates
we are free to choose. The delayed APQ model goes one step further, in terms of its choice
of initial delay period during which low-priority customers do not accumulate priority.

Mojalal et al. (2019) relate the low-priority waiting time distribution in the delayed
APQ to that of the low-priority waiting time distribution in a related NPQ. In particular,
they establish that, up to the end of the delay period, there is no difference in the actual
waiting times incurred in these queues. Additionally, they provide a generic formula for the
low-priority waiting time distribution in terms of the number of customers found in system.
However, the formula is not easily implemented to compute the necessary terms, and does not
provide any information about the waiting time of high-priority customers. While an arriving
high-priority customer will necessarily wait for all other high-priority customers they find in
system upon arrival, the same thing cannot be said about the low-priority customers they
find. Indeed, the longer the arriving high-priority customer waits, the greater the amount of
accrued credit they earn, leading to a greater likelihood that their credits will exceed some or
all of the low-priority customers they find in the system. Consequently, existing techniques
cannot be used to compute the waiting time distribution of high-priority customers.

Turning to the problem this poses for the analysis of the delayed APQ, it means we have
an incomplete set of tools to determine the best delayed APQ to meet the KPIs of some two-
class health care systems that might employ such a strategy. For each delay period, subject
to computation of the low-priority waiting time, we can determine the optimal accumulation
rate to comply with the KPI for the low-priority patient class. However, we have no such
tool to do so for the high-priority class. Other than simulating such systems, which defeats
the purpose of developing an analytical tool in the first place, we have, at present, no means
to assess compliance of a high-priority KPI of the delay-limit-and-compliance-level sort.

This paper is intended to address both of these existing limitations. We provide the
exact expected waiting time for both the low-priority and high-priority classes, as well as a
computational algorithm to evaluate these by truncating an infinite sum. We are able to do
so because the delayed APQ is a work-conserving queueing system, and as such the expected
delays incurred in it must obey the M/G/1 conservation law for waiting times (see Kleinrock
1965). This development means that we have a more complete package available to analyse
KPIs for a two-class delayed APQ. The consequence of this for delay-limit-and-compliance-
level KPIs is that we are able to quantify the impact on the expected waiting time of the
high-priority class of various combinations of parameter values (initial delay and priority
accumulation rates). Thus, we have two pieces of information to optimize over with these
two free parameters, and so for every set of KPI values it is possible to define an optimal
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choice of parameter values (which we find to be unique in our experiments).
While the exactness of the high-priority expected waiting time is desirable for optimiz-

ing queueing parameters relative to health care KPIs, it is still unable to capture the tail
behaviour of the waiting time, which may change the optimal choice of queueing parameters.
Consequently, we also propose a zero-inflated exponential approximation of the high-priority
waiting time, whose efficacy we demonstrate using both exact APQ waiting time CDFs and
simulated delayed APQ waiting time CDFs. This provides all the information needed to fully
optimize the queueing parameters for health care KPIs, subject to approximation error.

The rest of the paper is arranged as follows. Section 2 defines notation and reviews the
current theoretical results relating to the delayed APQ. Section 3 contains our new analytical
expressions for the class-1 expected waiting time in the delayed APQ along with a detailed
analysis of the delay level’s impact on this. We apply this analysis to health care KPIs in
Section 4. In Section 5, we define an exponential approximation for the high-priority waiting
time distribution, and evaluate its quality through numerical experiments and simulation.
We also present further optimization for health care KPIs using this approximation. We
conclude the paper in Section 6 with our observations and future theoretical directions. All
code is available at https://github.com/blairbilodeau/delayed-apq-avg-wait.

2. Notation and preliminaries

Consider two classes of customers, labelled class-1 and class-2, where by convention class-1
has more urgency to be seen than class-2. Suppose they experience exponential inter-arrival
times with rates λ1, λ2 ∈ (0,∞), so that overall customers arrive to the system at rate
λ = λ1 + λ2. Let S denote the common service time of any customer and 1/µ = ES. As
usual, define the corresponding occupancy rates ρ1 = λ1/µ and ρ2 = λ2/µ, and for stability
assume that ρ = λ/µ < 1. Since the relevant results depend only on the ratio of the class-2
accumulation rate to that of class-1, let class-1 customers accumulate priority at rate one
credit per time unit and class-2 customers accumulate at rate b ∈ [0, 1]. Furthermore, in the
delayed APQ, there is some d ≥ 0 such that all class-2 customers only begin accumulating
after they have been in system for d units of time. The queueing discipline is such that
at every service completion, the customer with the highest accumulated priority enters into
service immediately, with no preemption, and consequently the server is only idle when the
system is empty.

Denote the waiting time random variable of a customer by W , with a superscript to
specify the queueing discipline and subscript to specify the priority class when required. For
example, WDAPQ

1 is the waiting time of a class-1 customer in a delayed APQ, while WFCFS

is the waiting time of a customer in a first-come-first-serve (FCFS) queue. For any random
variable X that has distribution function F , denote the Laplace-Stieltjes transform (LST) of
F by F̃ (s) = E e−sX . We also introduce the notation F̃ (s; d) = E

[
e−sX1{X > d}

]
. Let the

CDF of the service time be F S(x) = P[S ≤ x] and have LST F̃ S . The same superscript and
subscript notation is used to denote the distribution function of a waiting time; for example,
FDAPQ

1 (x) = P [WDAPQ

1 ≤ x] and F̃
DAPQ

1 (s) = E exp {−sWDAPQ

1 }. Unless otherwise stated, we
suppress the dependence of all random variables on d and b to simplify the notation.

We will make frequent use of the notion of an accreditation interval, first introduced in
Stanford et al. (2014). For completeness, we restate the key concepts here. At any time t,
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let τt denote the time of the most recent service commencement. Further, let V (τt) denote
the amount of priority accumulated at time τt by the customer who commenced service at
time τt. Define M2(t) to be the maximum amount of priority a class-2 customer could have
accumulated by time t, given only the previous times at which a service commenced. More
precisely, M2(t) = 0 when the queue is empty, and otherwise it is defined recursively by

M2(t) = min{M2(τt), V (τt)}+ b(t− τt).

Note that the definition of M2(t) depends on b but not d.
A class-1 customer becomes accredited once their accumulated priority at time t is

strictly larger than M2(t). Accreditation can never be undone, since the class-1 accumulated
priority grows linearly with slope 1 while M2(t) grows at most linearly with slope b ≤ 1. A
class-2 customer is always unaccredited by definition. Crucially, an unaccredited customer
will not be served until there are no accredited customers remaining in system. Further,
each unaccredited customer entering into service generates an accreditation interval, which
consists of their service time plus the service times of all accredited customers served before
the next unaccredited service. We denote the CDF of the random variable corresponding
to the length of an accreditation interval by η and the LST by η̃, with a superscript for
the queueing discipline. Lemma 4.2 of Stanford et al. (2014) shows that, under Poisson
arrivals, customers in the APQ become accredited according to a Poisson process at rate
λA1 = λ1(1 − b), which we refer to as the accreditation rate. For notational simplicity, we
define ρA1 = λA1 /µ.

Relative to a specific tagged customer, let Nt denote the number of customers ahead
of them in system (including the one in service) t units of time after their arrival, and
πi = P[N0 = i] denote the stationary distribution of the number of customers found in
system upon arrival. Let R denote the residual service time of the customer currently in
service upon arrival of the tagged customer, and denote its CDF by FR with LST F̃R. For
the random variable corresponding to the length of a residual accreditation interval, which
is composed of R plus the service times of all accredited customers served before the next
unaccredited service, we denote the CDF by ηR and the LST by η̃R. For any j ∈ N, define
the conditional CDF FR|j(t) = P[R ≤ t | Nd = j] and the conditional LST F̃R|j. Finally,
conditional on Nd = j, denote the conditional CDF of the residual accreditation interval
length by ηR|j, and denote the corresponding conditional LST by η̃R|j. Observe that the
number in system and the residual service time are independent of the queueing discipline,
depending only on the arrival rates and service distribution, while the residual accreditation
interval depends on the queueing discipline, which will be denoted by a superscript as usual.

We are now able to restate the following main results from Mojalal et al. (2019) that
will be used in the remainder of the paper. While the results are stated out of order from
the original paper, we feel this is more natural for observing how the M/M/1 delayed APQ
is a special case of the M/G/1 delayed APQ where the residual accreditation interval has
the same distribution as a standard accreditation interval.

Corollary 3.1 of Mojalal et al. (2019) (M/G/1 class-2 Equivalence)

F̃
DAPQ

2 (s)− F̃DAPQ

2 (s; d) = F̃
NPQ

2 (s)− F̃ NPQ

2 (s; d).
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Corollary 3.2 of Mojalal et al. (2019) (M/G/1 class-2 LST)

F̃
DAPQ

2 (s; d) =
∞∑
i=1

πi

∞∑
j=1

P [Nd = j,Nt > 0 ∀ t ∈ [0, d)|N0 = i] e−sdη̃DAPQ

R|j (s) (η̃DAPQ(s))j−1 ,

where
η̃DAPQ(s) = F̃ S

(
s+ λA1 (1− η̃DAPQ(s))

)
,

and
η̃DAPQ

R|j (s) = F̃R|j
(
s+ λA1 (1− η̃DAPQ(s))

)
.

Theorem 3.2 of Mojalal et al. (2019) (M/M/1 class-2 LST)

F̃
DAPQ

2 (s; d) =
∞∑
i=1

πi

∞∑
j=1

P [Nd = j,Nt > 0 ∀ t ∈ [0, d)|N0 = i] e−sd (η̃DAPQ(s))j ,

where

η̃DAPQ(s) =
s+ µ+ λA1 −

√
(s+ µ+ λA1 )2 − 4µλA1
2λA1

.

3. Impact of delay level on expected waiting times

In this section, we provide analytical expressions that can be evaluated by truncating an
infinite sum to find both low and high-priority expected waiting times in the delayed APQ.
These expressions allow us to visualize the impact of the delay level on the high-priority
expected waiting time, providing a deeper understanding of the dynamics of the delayed
APQ. Then, in Section 4, we use our computation algorithm for the analytical expected
waiting time expressions to choose the optimal parametrizations for the delayed APQ under
various conditions.

3.1. Computation of waiting times

The primary takeaway of the following results is that we have analytical statements that
can be implemented as an algorithm requiring only the truncation of infinite sums that
converge quickly in our experiments. This allows for rapid testing of various parameters to
tune the accumulation and delay rates to meet any KPIs of interest to practitioners. We
present the results for both exponential and deterministic queueing disciplines, and while
the derivation will follow the same strategy, the specific expression will change significantly
for an alternative service distribution.

The first result that we use to obtain our results is the application of Corollary 3.2
from Mojalal et al. (2019) to the NPQ, corresponding to b = 0. This lemma shows that,
in addition to the previously known fact that the NPQ and delayed APQ waiting times
agree when within the delay period, their divergence following the end of the delay period is
completely characterized by their different accreditation rates. Thus, in order to quantify the
expected waiting time, we simply need to compute the expected increase from the differing
accreditation rate and combine it with known expected waiting times for the NPQ.

5



Lemma 1.

F̃
NPQ

2 (s; d) =
∞∑
i=1

πi

∞∑
j=1

P [Nd = j,Nt > 0 ∀ t ∈ [0, d)|N0 = i] e−sdη̃NPQ

R|j (s) (η̃NPQ(s))j−1 ,

where
η̃NPQ(s) = F̃ S (s+ λ1(1− η̃NPQ(s))) ,

and
η̃NPQ

R|j (s) = F̃R|j (s+ λ1(1− η̃NPQ(s))) .

Additionally, the key fact that allows us to obtain the class-1 expected waiting time is
that for work-conserving queues, the expected waiting time between classes can be related
to the FCFS waiting time by their respective occupancy rates.

Theorem 1 of Kleinrock (1965) (Work-Conserving Conservation Law) For any queue
with K classes, each with a Poisson arrival rate of λk and common service distribution S,
and a single-server non-preemptive queueing discipline,

ρ

1− ρ
λES2

2
=

K∑
k=1

ρk EWk.

Observe that the delayed APQ (which includes the APQ and NPQ as special cases)
satisfies the conditions of this theorem; that is, all of these queues are work-conserving.
Thus, we can apply these results to obtain analytical expressions for the average waiting time
of both class-1 and class-2 customers in the M/M/1 and M/D/1 delayed APQs. The main
technique is to differentiate the LST expressions for the waiting time, leading to expectations,
and then compute only the difference between these terms for the delayed APQ and the NPQ.
The cancellation within this difference allows for the computation of the expected waiting
time rather than only the expected waiting time conditional on whether it falls before or
after the delay period. The terms are then simplified to provide an explicit implementation;
full derivations are provided in Appendix A.

Theorem 1 (M/M/1 Expected Waiting Time Computation).

E [WDAPQ

2 ] =
ρ

µ(1− ρ1)(1− ρ)
− ρ1b

µ(1− ρA1 )(1− ρ1)
×[

(1− ρ)
∞∑
k=0

e−νd(νd)k

k!

(
k∑
`=1

`x
(k)
`

)
+ ρe−νd+rνd

(
1

1− ρ
+ rνd

)]
,

where q = µ
µ+λ1

, p = λ1
µ+λ1

, r = p+ qρ2, and ν = µ+ λ1; the x
(k)
` ’s are defined recursively as

x
(1)
1 = r − p, x

(2)
1 = qrp, x

(2)
2 = r2 − p2,

and for k ≥ 3,

x
(k)
1 = qx

(k−1)
2 , x

(k−1)
k = ρrk−1,

x
(k)
` = px

(k−1)
`−1 + qx

(k−1)
`+1 for ` ∈ {2, . . . , k − 1},

x
(k)
k = rk − pk.
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Furthermore,

E [WDAPQ

1 ] =
1

ρ1

(
ρ2

µ(1− ρ)
− ρ2 E [WDAPQ

2 ]

)
.

Next, we consider the M/D/1 case. The additional difficulty comes from the fact that
service is no longer memoryless, which leads to a more complex expression. However, once
the residual service times are handled using results from Adan and Haviv (2009), the result
follows from the same method as for the M/M/1. Note that we have the same limitation
as in Mojalal et al. (2019), where the delay level must be an integer multiple of the mean
service length.

Theorem 2 (M/D/1 Expected Waiting Time Computation). If d = 0,

E [WDAPQ

2 ] =
ρ1bρ

2µ(1− ρA1 )(1− ρ1)(1− ρ)
.

Otherwise, when d = `/µ for ` ∈ N,

E [WDAPQ

2 ] =
ρ

2µ(1− ρ)(1− ρ1)
− ρ1be

−λ1d

µ(1− ρA1 )(1− ρ1)
×

∞∑
j=1

{
j+`∑
k=2

j+`−k∑
a=0

(−1)a(λ1d)j+`−k

da(j + `− k − a)! a!

k−1∑
n=0

πk−nρ
n
1

n!µ

[
j − 1

n+ a+ 1
− 1

n+ a+ 2

]
+

∑̀
k=2

∑̀
m=k

(m− 1)m−k

(m− k)!

(
k − 1

m− 1

) j+`−m∑
a=0

(−1)a(λ1d− ρ1(m− 1))j+`

(d− (m− 1)/µ)m+a(j + `−m− a)! a!
×

k−1∑
n=0

πk−nλ
n−k
1

n!

[
j − 1

n+ a+ 1
+

1

n+ a+ 2

]}
,

where πi is given by

πi = (1− ρ)

{
eiρ + (−1)i

i−1∑
k=1

(−1)k
ekρ(kρ)i−k

(i− k)!

[
i− k(1− ρ)

kρ

]}
.

Also,

E [WDAPQ

1 ] =
1

ρ1

(
ρ2

2µ(1− ρ)
− ρ2 E [WDAPQ

2 ]

)
.

Remark 1. The formula for πi is difficult to implement efficiently for large i, but can be
approximated by πi+1/πi = σ̃, where σ̃ solves eρσ = σeρ (c.f. Appendix C of Tijms (1994)). /

The utility in computing this result for the M/D/1 is that it allows the effect of the ser-
vice time variation on high-priority waiting times to be isolated. We may then approximate
the average waiting time for a service distribution with the same mean but smaller variance
than exponential service by simple interpolation between the M/D/1 and the M/M/1.
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3.2. Visualization of delay level impact

Using a truncation of the infinite sums from Theorems 1 and 2 (which is exact in the infinite
sum limit), we are now able to visualize the effect of introducing a delay on the high-priority
waiting time. The truncation is performed such that the individual contribution of the terms
has become smaller than 10−5. The computations were performed in the R programming
language on a 2017 Macbook Pro with 16GB of RAM, and all took (sometimes significantly)
less than 5 minutes of run time. We did not conduct an extensive study of computational
complexity, and instead only wish to highlight that the computation timescale is minutes
rather than days, and that arbitrarily better accuracy can be achieved by sacrificing run
time in favour of computing more terms in the sum.

Recall that the accumulation parameter b and delay parameter d generalize both the
FCFS and NPQ regimes. Specifically, the APQ with b = 1 corresponds to FCFS, the APQ
with b = 0 or the delayed APQ with d =∞ correspond to the NPQ, and the delayed APQ
with d = 0 corresponds to the APQ. Consequently, increasing the delay level will yield a
waiting time between that of the APQ and that of the NPQ, where the former has the shortest
class-2 waiting times and the latter has the shortest class-1 waiting times. To demonstrate
this interpolation, we present the results for how changing the accumulation rate and delay
period affects the expected waiting time for both class-1 and class-2 customers.

Fig. 1 shows the effect of varying accumulation rate within [0, 1] on the class-1 (left
panel) and class-2 (right panel) expected waiting times for M/M/1. We discuss the effect on
class-1, since the class-2 values are just a vertical reflection and scaling by occupancy due to
the M/G/1 conservation law. Observe that, by definition, the NPQ expected waiting time
is unaffected by accumulation rate. However, for each delay level, the curve begins equal to
NPQ at b = 0, and then increases sub-linearly as b tends to 1. This confirms that allowing
class-2 customers to accumulate credit more rapidly penalizes class-1 customers, but reveals
that this is marginally less impactful as the limit of b = 1 is approached. Furthermore, as
d gets smaller, the curves shift up vertically, approaching the APQ, which corresponds to
d = 0. The continuous effect of this change is explored in Fig. 3.

The same patterns apply for the M/D/1 case in Fig. 2, although all the waiting times
are lower as there is no longer variation in the service times. It is of interest that the effect
seems to be roughly halving the wait, which is exactly the impact on the expected waiting
time in a FCFS queue when moving from M/M/1 to M/D/1.

Next, we are interested in the effect of changing d over different values of b in Fig. 3,
where again the left panel pertains to class-1 and the right panel pertains to class-2. The
FCFS case (corresponding to b = 1 and d = 0) will provide expected waiting times that act
as an upper bound for the class-1 expected waiting time. Then, starting from d = 0 (the
APQ expected waiting time), each b curve decreases smoothly towards the NPQ expected
waiting time, which corresponds to b = 0. While we observe that the marginal impact of
increasing d always becomes smaller as d becomes very large, the initial changes are much
more pronounced (steeper slope) for small values of b. The same patterns hold, with the
same scaling of about 1/2, for the M/D/1 case in Fig. 4. Again, as mentioned for Theorem 2,
we can only compute this at integer multiples of the mean service length (one, in this case).
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Figure 1: The effect of accumulation rate b on expected waiting time for the M/M/1 delayed
APQ when ρ = 0.8.

4. Optimizing parameters for health care KPIs

In this section, we use our algorithm for the high-priority expected waiting time to analyze
the optimal choice of parameters in a delayed APQ to meet certain health care KPIs. In
particular, we are interested in the same KPIs studied in Sharif (2016), Li et al. (2019),
and Mojalal et al. (2019). Using the Canadian Triage and Acuity Scale (CTAS), these
papers define the low- and high-priority customers within an emergency department after
excluding the patients who must always be seen immediately and those who have very minor
ailments (and make up a negligible proportion of emergency department patients). Then,
the prescribed KPIs by Bullard et al. (2017), which are unchanged from Bullard et al.
(2008), are for CTAS-3 (class-1) patients to wait less than 30 minutes, 90% of the time,
and for CTAS-4 (class-2) patients to wait less than 60 minutes, 85% of the time. Note that
these KPIs correspond to sample proportions since in practice they are evaluated using only
observed data, but we study them in the infinite data limit, which corresponds to the actual
probabilities under the stationary queueing system.

Throughout this section, we will use WDAPQ(d,b) and FDAPQ(d,b) to explicitly denote de-
pendence on the queueing parameters of both the waiting time and corresponding CDF.
Mojalal et al. (2019) incorporate the CTAS KPI by optimizing over the accumulation rate
given the desired delay level. That is, given a delay level d, a waiting time target w, and a
compliance probability p, they solve for

b∗(d) = min
{
b : b ∈ [0, 1], F

DAPQ(d,b)
2 (w) ≥ p

}
. (1)

The KPI example they explicitly use is w = 4 and p = 0.8, which in the context of a mean
service length being 15 minutes (Dreyer et al. 2009) corresponds to the smallest accumulation
rate for a given delay level such that at least 80% of CTAS-4 patients wait less than one
hour. However, this approach requires one to fix the delay level, and it is unclear what the
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Figure 2: The effect of accumulation rate b on expected waiting time for the M/D/1 delayed
APQ when ρ = 0.8.

optimal way to do so is. Fortunately, the additional information of the class-1 expected
waiting time allows us to extend this analysis by optimizing for both d and b together.

Our optimization objective, given λ1, λ2 ∈ (0, 1) (taking µ = 1 for simplicity, and
supposing λ1 + λ2 < 1 to ensure the queue is stable), is to choose d and b that minimize the
class-1 expected waiting time subject to the class-2 constraint of a waiting time target and
compliance probability. Specifically, we aim to find

(d∗, b∗) = arg min{EWDAPQ(d,b)
1 : d ∈ [0,∞], b ∈ [0, 1], F

DAPQ(d,b)
2 (w) ≥ p}. (2)

To do so, we first identify which pairs (λ1, λ2) have a nontrivial solution to Eq. (2).
In Figure 9 of Mojalal et al. (2019), the authors observe that the range of d values with
b∗(d) < 1 is quite small for their KPI at various occupancy levels. In Fig. 5, we complete
this observation by identifying all values of λ1 and λ2 where the optimal pair (d∗, b∗) exists
and does not correspond to d∗ = ∞ or b∗ = 0 for various KPI parameters. We refer to
this set of values for (λ1, λ2) as the feasible region. This simplifies the problem by reducing
the number of optimizations we need to perform, and demonstrates the restrictive nature
of the CTAS KPIs, since most real emergency departments operate at high total levels of
occupancy.

To find the feasible region, we use two observations. First, recall that the NPQ regime
leads to the lowest class-1 waiting times, so if the constraint FDAPQ

2 (w) ≥ p can be achieved
by the NPQ then there is no further optimization to be done. Second, the FCFS regime
uniformly results in the lowest class-2 waiting times, so if the constraint FDAPQ

2 (w) ≥ p cannot
be achieved by the FCFS then the occupancy is simply too high for the KPI to be met. To
visualize this, in Fig. 5 we plot the lower boundary of when the NPQ is strong enough and
the upper boundary of when the FCFS is too weak to achieve the KPI for class-2 customers
for both one hour (left panel) and half hour (right panel) waiting time targets with various
compliance probabilities. The interpretation of these plots is that for each KPI probability
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Figure 3: The effect of delay length d on expected waiting time for the M/M/1 delayed APQ
when ρ = 0.8.

level, the (λ1, λ2) pairs to the left of the feasible region have sufficiently small occupancy
such that the KPI can be achieved by class-2 customers even under the penalizing NPQ,
while to the right of the feasible region it is impossible to meet the KPI. Thus, the (λ1, λ2)
pairs that require further optimization are only those that fall within this feasible region.

Now, for each (λ1, λ2) pair within the feasible region, there are multiple (d, b) pairs that
can be chosen to ensure that class-2 customers meet the required KPI. To find (d∗, b∗) from

these, we observe that for each fixed d value, EWDAPQ(d,b)
1 is monotonically increasing with

b. This observation follows by decomposing expected waiting time into the expected number
of customers that will be served ahead of a tagged customer multiplied by the expected
service length of each of these customers. Since b does not affect the number of class-1
customers served ahead of a tagged class-1 customer, and an increase in b increases the
amount of priority each class-2 customer has (and hence the number that will be served
first), this relationship holds for any arrival and service distributions. The implication of
this observation is that (d∗, b∗) = (d∗, b∗(d∗)), and hence Eq. (2) can be reduced to two easier,
univariate optimizations.

Next, suppose (d, b) is such that F
DAPQ(d,b)
2 (w) > p. Then one can always either increase

d or decrease b in order to simultaneously decrease EWDAPQ(d,b)
1 and F

DAPQ(d,b)
2 (w). Thus, the

constraint will always be active; that is, F
DAPQ(d∗,b∗)
2 (w) = p. Combined with the argument

of the previous paragraph, we have reduced the problem to finding the optimal d out of
those for which F

DAPQ(d,b∗(d))
2 (w) = p. To determine which d value is optimal to choose,

we turn to our contribution of the expected class-1 waiting time, performing a univariate
optimization over these d values to determine which d minimizes EWDAPQ(d,b∗(d))

1 . Note

that there is no guarantee EWDAPQ(d,b∗(d))
1 is convex as a function of d. However, since

(λ1, λ2) is in the feasible region, there is a maximal value of d for which it is possible to

achieve F
DAPQ(d,b∗(d))
2 (w) ≥ p, and hence we can perform a global univariate optimization.
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Figure 4: The effect of delay length d on expected waiting time for the M/D/1 delayed APQ
when ρ = 0.8.

We formalize the actual computation steps for this procedure in Algorithm 1.
To illustrate our approach, we use Figs. 6 and 7, which focus on the middle triangle

of the left panel of Fig. 5, corresponding to the KPI of P(WDAPQ

2 < 4) ≥ 0.85. In both
figures, each of the three panels correspond to different (λ1, λ2) pairs that lie in the triangle,
with the x-axis enumerating the values of d for which b∗(d) < 1 (that is, d ∈ [0, dmax] as
defined in Algorithm 1). In Fig. 6, the y-axis plots b∗(d), while in Fig. 7, the y-axis plots

EWDAPQ(d,b∗(d))
1 . Concretely, Step 3 of Algorithm 1 corresponds to finding the d that is the

arg min of the y-axis in Fig. 7.
What we find in each of the panels is quite surprising, since as d increases, b∗(d) increases

so much that the net effect is to increase the class-1 expected waiting time. This suggests
that for the purpose of meeting class-2 KPIs while optimizing class-1 expected waiting time,
one should not prefer a delayed APQ over a standard APQ. Furthermore, moving left to
right through the panels reveals that the detrimental effect of increasing the delay level on
the class-1 expected waiting time becomes more severe as λ2 controls a high proportion of
occupancy. Finally, we note that while these figures only address specific KPI examples
and the M/M/1 case, further numerical investigation showed the same conclusions hold for
M/D/1 and other KPI levels.

5. Exponential approximations of class-1 waiting times

Beyond computing expected waiting times for class-1 customers, it is of great interest to
characterize the entire waiting time distribution. Currently, the theoretical tools available
are insufficient for capturing the recursive dependence structure inherent to the delayed
APQ, which differs from the APQ primarily by having class-1 customers experience differ-
ent accreditation rates depending on the status of the queue, which breaks the necessary
independence assumptions used in the analysis of the latter. Instead, we turn to finding
an analytic approximation of the class-1 waiting time, which is a well-studied strategy for
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Figure 5: Upper and lower boundaries for (λ1, λ2) pairs that meet KPI probability for class-2
waiting time under one hour and half hour and require optimization of d.

earlier versions of queues, but was previously inapplicable without the summary statistic
computation we provide in this work. In particular, we employ a zero-inflated exponential
approximation, and measure its quality via both exact numerical validation and simulation
procedures. We note that the purpose of this work is to identify computational procedures
for summary statistics of the delayed APQ that do not require simulation, however, we still
feel it is a reasonable tool to use for validation and justification purposes. We focus on an
exponential approximation in the M/M/1 case for simplicity, although based on the related
work, it is plausible that the approximation would also be suitable in the M/G/1 case.

The driving motivation towards using an exponential approximation is that the class-1
waiting time in both the APQ and the delayed APQ interpolates between the FCFS (longest
waiting times) and the NPQ (shortest waiting times). At both of these end points, for an
M/M/1 queue, class-1 waiting times are distributed according to a zero-inflated exponential.
We denote such a random variable by Z ∼ Z-Exp(ρ, α), which for ρ, α > 0 has CDF defined
for t ≥ 0 by

P(Z ≤ t) = 1− ρe−αt. (3)

It is easy to see from Eq. (3) that P(Z = 0) = 1 − ρ. Fortunately, we know that
ρ = λ/µ, so there is only one parameter to optimize. Then, by integrating P(Z > t), we
obtain α = ρ/EZ. In other words, if we want Z = W1, we can define the zero-inflated
exponential approximation with only the occupancy ratio ρ and the expected waiting time
EW1. Fortunately, this is exactly what we have available to characterize WDAPQ

1 .
Approximating queueing dynamics using exponential models has a long history in the

literature. Most relevant to this work is Abate and Whitt (1995), who also approximate
waiting times with a zero-inflated exponential in the M/G/1 queue. See the references
therein for other historical uses of various exponential approximations. Despite this lengthy
literature, to the best of our knowledge, exponential approximations of queues have only ever
been used to deal with intractability due to the service and arrival distributions. Instead,
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Algorithm 1: Optimization to find (d∗, b∗)

Inputs:
• (λ1, λ2) in the feasible region for KPI determined by w and p;
• a function argmin : (f, (a, b)) ∈ (R→ R)× R2 → R that returns an x ∈ [a, b]
achieving the global minimum of f(x) on the interval [a, b];
• a function root : (f, (a, b)) ∈ (R→ R)× R2 → R that returns an x ∈ [a, b] with
f(x) = 0 on the interval [a, b] whenever one exists.
Result: Optimal queueing parameters (d∗, b∗) that solve Eq. (2).
\* Find the largest d value such that the KPI can be achieved by some b < 1 *\
\* In practice, dmax < 5, so one need not start with MAX_FLOAT for the range *\
1. Find dmax = root(d 7→ F

DAPQ(d,b=1)
2 (w)− p, (0, MAX_FLOAT)).

\* Define the function to obtain b∗(d) *\
2. Define [0, dmax] 3 d 7→ b∗(d) = root(b 7→ F

DAPQ(d,b)
2 (w)− p, (0, 1)).

\* Perform the optimization to solve for d∗ using the b∗(d) function *\
3. Find d∗ = argmin(d 7→ EWDAPQ(d,b∗(d))

1 , (0, dmax)).
Return: (d∗, b∗(d∗))

we propose an approximation to overcome intractability due to the queueing discipline.

5.1. Analytical approximation error for APQ (d = 0)

To justify our use of an exponential approximation, we first compare its accuracy in the
simpler APQ, where we also have access to the exact waiting time CDF in order to compare.
In Fig. 8, we plot the exact CDFs against the approximate CDFs for various levels of ρ.
In Fig. 9, we present this same information in another way, plotting the absolute difference
between the exact CDFs and the approximate CDFs.

The approximation seems to work well when b is large, λ1 > λ2, or b is very small. For
extreme b (near 0 or 1), the queueing discipline is close to what one would observe in the
NPQ and FCFS cases, respectively, for which the approximation is exact. When λ1 > λ2,
the lower priority class is not as impactful on the service dynamics as the higher priority
class, and as λ2 → 0 the approximation once more tends towards the exact solution. We also
consider the same analysis from a different perspective in Fig. 9, comparing the absolute
difference between the true and approximate waiting time CDFs. Here we see nontrivial
error for small t (corresponding to 1-5 average service lengths), although when ρ is large (as
we expect in a health care setting), this error caps out around 5%, and similarly the error
appears to be smaller when λ1 > λ2.

5.2. Simulated approximation error for d > 0

We now perform a similar analysis of the zero-inflated exponential approximation from the
last section, but for the actual queueing discipline of interest (delayed APQ). Since the true
class-1 waiting time CDF is unknown (hence the approximation), we instead compare to the
CDF computed via simulation. We avoid using these simulations elsewhere in the paper, as
the main focus is on analytical expressions for the quantities of interest, but feel that in this
section they are a warranted tool for justification.
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Figure 6: Optimal b∗(d) for delay level d at various occupancy levels for the KPI P(WDAPQ
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Figure 7: EWDAPQ(d,b∗(d))
1 as a function of d for the KPI P(WDAPQ

2 < 4) ≥ 0.85.

The simulations are run using a simple Python script to brute force reproduce a delayed
APQ via discrete-event simulation (i.e., every “customer” is generated and explicitly moves
through the queue). Each set of parameters was simulated for n = 4000 customers following
a burn-in period of 1500 customers, from which empirical CDFs were computed, and then
these empirical CDFs were averaged over 50 runs. The averaged, empirical CDFs were
compared to the known CDFs for FCFS, APQ, and delayed APQ class-2 as validation, and
found numerically indistinguishable (see Fig. 10).

We now reproduce Fig. 9 for the simulated delayed APQ to evaluate the zero-inflated
exponential approximation in this setting. Fig. 11 demonstrates that the accuracy is mostly
unchanged from the APQ setting (d = 0), with the exception that the curves are less smooth
due to the stochasticity of the simulations.

5.3. Optimizing parameters using approximate CDFs

In this section, we mirror the optimization procedure carried out in Section 4, but using the
entire (approximate) high-priority waiting time CDF rather than only the expected value.
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In Fig. 12, we plot the feasibility region for (λ1, λ2) pairs that require tuning of d to satisfy
a high-priority KPI constraint, in contrast with the low-priority constraint considered in
Fig. 5. This feasible region is exact, since we do not require an exponential approximation
to compute the FCFS and NPQ CDF of high-priority customers. Note that for certain high-
priority KPIs, the feasible region takes a diamond shape rather than a simple triangle shape.
This is because we are considering essentially the same targets and compliance probabilities
as for class-2, but these are naturally easier to achieve for class-1, and thus a larger feasible
region becomes visible.

The roles of the FCFS and the NPQ are reversed in Fig. 12 from Fig. 5. In particular,
the NPQ is more favourable to class-1 than the FCFS, and consequently the lower boundary
corresponds to when the KPI can be met even in the FCFS while the upper boundary
corresponds to when the KPI cannot be met even in the NPQ. By inspection, one can see
that the overlap between the regions requiring optimization of d for the advocated KPIs of
P(WDAPQ

2 < 4) ≥ 0.85 and P(WDAPQ

1 < 2) ≥ 0.9 is nearly negligible; it makes up a sliver of a
triangle for λ1 between 0 and 0.1 and λ2 between 0.55 and 0.65. Nonetheless, this specific
KPI pair is only a suggestion from a certain context, so we proceed with exploring optimal
(d, b∗(d)) pairs using the class-1 feasible regions.

We now extend Fig. 7 using our approximation of the class-1 waiting time CDF. To do
so, we plot the expected class-2 waiting times for b∗(d) chosen to optimize this expectation
subject to still meeting the class-1 constraint. More specifically, we use

b∗(d) = max
{
b : b ∈ [0, 1], F

DAPQ(d,b)
1 (w) ≥ p

}
, (4)

in conjunction with our zero-inflated exponential approximation to FDAPQ

1 .
In Fig. 13, we see the expected pattern that b∗(d) is monotonic in d. As a consequence of

our exponential approximation, the KPI at target w and compliance probability p is achieved
if and only if∗

EWDAPQ

1 ≤ wρ

log(ρ/(1− p))
. (5)

Thus, since b∗(d) is the largest b that achieves the KPI for a fixed d, the class-1 expected
waiting time under (d, b∗(d)) is always the constant value equal to the RHS of Eq. (5). If
it were not, there would be some slack in the KPI (i.e., EWDAPQ

1 would be strictly smaller
than the RHS), and thus b∗(d) could be taken larger while still achieving the KPI, which
contradicts b∗(d) being the maximum such value. By the conservation law, this also keeps
the class-2 expected waiting time constant, which we observe in Fig. 14.

To investigate whether the fact that (d, b∗(d)) keeps EWDAPQ

1 constant is only an artefact
of our exponential approximation, we also computed full class-2 waiting time CDFs for
(d, b∗(d)) pairs. The CDFs were all numerically indistinguishable (up to 7 decimal places)
within the same (λ1, λ2) pair, which suggests that optimizing to obtain b∗(d) not only results
in constant expected waiting time, but also constant higher-order moments of the class-2
waiting time. Thus, we arrive at the same conclusion as we did for class-2 KPIs. Specifically,
when optimizing the queueing parameters to minimize class-2 expected waiting time subject
to meeting the class-1 KPI, there is no benefit to having access to the delayed APQ beyond

∗This follows from rearranging Eq. (3) with α = ρ/EWDAPQ
1 .
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the APQ. However, we do note that since the class-2 waiting time is essentially constant as
a function of d, selecting a delayed APQ over an APQ may have practical differences that
make it preferable.

6. Conclusions

This paper builds on previous results for class-2 waiting times by providing an analytical
expression for the class-1 expected waiting time in the M/G/1 delayed APQ. We provide an
algorithm that can be implemented for the M/M/1 and M/D/1 queueing disciplines, and
numerically demonstrate the effect of changing the accumulation rate and the delay period.
We then apply our computation algorithm for the expected waiting time to the health care
setting; specifically, waiting times for patients in Canadian emergency departments. Previous
analysis of KPI compliance for class-2 customers is extended by also optimizing over the
expected waiting time for class-1 customers. We conclude that outside of the regions where
the NPQ suffices or the FCFS fails, the optimal queueing discipline is always the APQ, or
equivalently a delayed APQ with d = 0. Using a zero-inflated Exponential approximation,
we also investigate optimizing KPI parameters for a class-1 constraint. We observe that this
approximation seems reasonably accurate, and that the same trend holds where the optimal
queueing discipline is always the APQ rather than the delayed APQ.

Major open problems include extending our analysis of expected waiting times to other
service distributions of interest and identifying an exact analytical expression for the class-1
waiting time. Additionally, since this may be intractable beyond simple service distributions,
it is of interest to extend our zero-inflated exponential approximations to other situations to
facilitate the use of delayed APQs in real-world settings.
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A. Proofs from Section 3.1
Proof of Theorem 1. By Corollary 3.1 of Mojalal et al. (2019),

EWDAPQ

2 = E [WDAPQ

2 1{WDAPQ

2 ≤ d}] + E [WDAPQ

2 1{WDAPQ

2 > d}]
= E [WNPQ

2 1{WNPQ

2 ≤ d}] + E [WDAPQ

2 1{WDAPQ

2 > d}] .

Then, using the definition of LST and Theorem 3.2 of Mojalal et al. (2019),

E [WDAPQ

2 1{WDAPQ

2 > d}]

= − d

ds
F̃

DAPQ

2 (s; d)

∣∣∣∣∣
s=0

=
∞∑
i=1

πi

∞∑
j=1

P [Nd = j,Nt > 0 ∀ t ∈ [0, d)|N0 = i]

(
d− j d

ds
η̃DAPQ(s)

∣∣∣∣
s=0

)
,

where the last line follows from η̃DAPQ(0) = 1.
Now, similarly,

EWNPQ

2 = E [WNPQ

2 1{WNPQ

2 ≤ d}] + E [WNPQ

2 1{WNPQ

2 > d}] ,

and by Lemma 1,

E [WNPQ

2 1{WNPQ

2 > d}] =
∞∑
i=1

πi

∞∑
j=1

P [Nd = j,Nt > 0 ∀ t ∈ [0, d)|N0 = i]

(
d− j d

ds
η̃NPQ(s)

∣∣∣∣
s=0

)
.

Consequently,

E [WNPQ

2 −WDAPQ

2 ]

=
∞∑
i=1

πi

∞∑
j=1

P [Nd = j,Nt > 0 ∀ t ∈ [0, d)|N0 = i] j

(
d

ds
η̃DAPQ(s)

∣∣∣∣
s=0

− d

ds
η̃NPQ(s)

∣∣∣∣
s=0

)

=
ρ1b

µ(1− ρA1 )(1− ρ1)

∞∑
i=1

πi

∞∑
j=1

j P [Nd = j,Nt > 0 ∀ t ∈ [0, d)|N0 = i] ,

where the last line follows from differentiating the explicit forms of η̃DAPQ and η̃NPQ.
We use a continuous time Markov chain to handle this conditional probability, which is

characterized by the transition matrix

P =


1 0 0 0 · · ·
q 0 p 0 · · ·
0 q 0 p · · ·
0 0 q 0 · · ·
...

...
...

...
. . .


such that for q = µ

µ+λ1
, p = λ1

µ+λ1
, and ν = µ+ λ1 we obtain

P [Nd = j,Nt > 0; 0 ≤ t ≤ d | N0 = i] =
∞∑
k=0

P k
ij

e−νd(νd)k

k!
.
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We are only interested in i and j such that the system is busy, so we define P+ to be
the P matrix with its first row and first column removed. Observe that P k

+ = (P k)+. Now,
define the following row and column vectors:

π+ = (1− ρ)
[
ρ, ρ2, ρ3, . . .

]
, J+ =


1
2
3
...

 ,
where π+ is defined in view of the stationary distribution of the M/M/1 being πi = (1−ρ)ρi.

Then,

E [WNPQ

2 −WDAPQ

2 ] =
ρ1b

µ(1− ρA1 )(1− ρ1)

∞∑
k=0

e−νd(νd)k

k!
π+P

k
+J+.

First, observe that

π+P+ = (1− ρ)
[
qρ2, pρ+ qρ3, pρ2 + qρ4, pρ3 + qρ5, . . .

]
.

That is, for all but the first term,

(π+P+)` = (1− ρ)ρ`−1r; ` ≥ 2,

for r = p+ qρ2. Repeatedly carrying out this the process and applying induction, we obtain

(π+P
k
+)` = (1− ρ)ρ`−krk; ` ≥ k + 1.

Thus, letting x
(k)
` = (π+P

k
+)`/(1− ρ) for `, k ∈ N, we can write

π+P
k
+J+ = (1− ρ)

k∑
`=1

`x
(k)
` + (1− ρ)

∞∑
`=k+1

`ρ`−krk. (6)

Focusing on the second term,

(1− ρ)
∞∑

`=k+1

`ρ`−krk = (1− ρ)rk
∞∑
s=1

(s+ k)ρs

= (1− ρ)rk
[

ρ

(1− ρ)2
+

kρ

1− ρ

]
= ρrk

[
1

1− ρ
+ k

]
.

(7)
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Combining Eqs. (6) and (7) gives

∞∑
k=0

e−νd(νd)k

k!
π+P

k
+J+

= (1− ρ)
∞∑
k=0

(
k∑
`=1

`x
(k)
`

e−νd(νd)k

k!

)
+
∞∑
k=0

(
ρrk
[

1

1− ρ
+ k

]
e−νd(νd)k

k!

)

= (1− ρ)
∞∑
k=0

(
k∑
`=1

`x
(k)
`

e−νd(νd)k

k!

)
+
ρe−νd+rνd

1− ρ

∞∑
k=0

(
e−rνd(rνd)k

k!

)
+ ρe−νd+rνd

∞∑
k=0

k

(
e−rνd(rνd)k

k!

)

= (1− ρ)
∞∑
k=0

e−νd(νd)k

k!

(
k∑
`=1

`x
(k)
`

)
+ ρe−νd+rνd

(
1

1− ρ
+ rνd

)
,

where the last line follows from the fact that e−rνd(rνd)k

k!
is a Poisson(rνd) probability mass

function. Then, it remains to observe that the x
(k)
` ’s indeed satisfy the recursive formula and

that from Kleinrock (1976),

EWNPQ

2 =
ρ

µ(1− ρ1)(1− ρ)
.

Finally, apply the conservation law to get the class-1 expected waiting time.

Proof of Theorem 2. Using the same logic as the proof of Theorem 1 applied to Corollary 3.2
of Mojalal et al. (2019),

E [WNPQ

2 −WDAPQ

2 ]

=
∞∑
i=1

πi

∞∑
j=1

P [Nd = j,Nt > 0 ∀ t ∈ [0, d)|N0 = i]

×
[

d

ds
η̃DAPQ

R|j (s)

∣∣∣∣
s=0

− d

ds
η̃NPQ

R|j (s)

∣∣∣∣
s=0

+ (j − 1)

(
d

ds
η̃DAPQ(s)

∣∣∣∣
s=0

− d

ds
η̃NPQ(s)

∣∣∣∣
s=0

)]
.

(8)
Recall that the LST of deterministic service is F̃ (s) = e−s/µ. Thus,

η̃DAPQ(s) = exp
{
−[s+ λA1 (1− η̃DAPQ(s))]/µ

}
,

so

− d

ds
η̃DAPQ(s)

∣∣∣∣
s=0

= exp
{
−[λA1 (1− η̃DAPQ(0))]/µ

} 1

µ

[
1− λA1

d

ds
η̃DAPQ(s)

∣∣∣∣
s=0

]
,

− d

ds
η̃DAPQ(s)

∣∣∣∣
s=0

=
1

µ(1− ρA1 )
.

Similarly,

− d

ds
η̃NPQ(s)

∣∣∣∣
s=0

=
1

µ(1− ρ1)
.
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Then, we have the following intermediary terms to assist in computing the residual
accreditation interval. Recall that d ∈ N. Let NR− be the number of customers in system
immediately before the first service completion after arrival. For k ∈ N and r > 0, define

pr(k) = P (NR− = k,N0 > 0|R = r) =
k−1∑
n=0

πk−ne
−λ1r (λ1r)

n

n!
.

Also, for i ∈ N and r > 0, define

qr(i) = P (i arrivals in (R, d)|R = r) = e−λ1(d−r)
(λ1(d− r))i

i!
.

Finally, for k ≤ m ≤ `, j ∈ Z+, and r > 0, define

Bk,r(m, j) = P
(
NR+(m−1)/µ = 0, Nt > 0 ∀ t ∈ [0,R+ (m− 1)/µ), Nd = j|NR− = k,R = r

)
=

[
e−ρ1(m−1)

(ρ1(m− 1))m−k

(m− k)!

(
k − 1

m− 1

)
e−ρ1(`−(m−1))eλ1r

]
×

[
(ρ1(`− (m− 1))− λ1r)j+`−m

(j + `−m)!

]

= e−λ1(d−r)
(ρ1(m− 1))m−k

(m− k)!

(
k − 1

m− 1

)
(ρ1(`− (m− 1))− λ1r)j+`−m

(j + `−m)!
.

Then, we define

Bk,r(j) = P
(
∃m ∈ [d] s.t. NR+(m−1)/µ = 0, Nd = j,N0 > 0|NR− = k,R = r

)
=

d∑
m=k

Bk,r(m, j).

Recall that since the service length is always 1/µ, the unconditional residual service
time is R ∼ Unif(0, 1/µ). For each j ∈ N, let Rj = R1{Nd = j,Nt > 0 ∀ t ∈ [0, d)}, with
CDF FRj and LST F̃Rj . Consider the case where d > 0. Letting f(x) denote d

dx
F (x) for

any F ,

fRj(r) =
∑̀
k=2

pr(k) [qr(j + `− k)−Bk,r(j)] +

j+`∑
k=`+1

pr(k)qr(j + `− k)

=

j+`∑
k=2

pr(k)qr(j + `− k)−
∑̀
k=2

pr(k)Bk,r(j).

Next,

F̃R|j(s) =

∫ 1/µ

0

e−srfR|j(r)dr =

∫ 1/µ

0

e−sr
fRj(r)

P(Nd = j,Nt > 0 ∀ t ∈ [0, d))
dr,

so

− d

ds
F̃R|j(s)

∣∣∣∣
s=0

=
1

P(Nd = j,Nt > 0 ∀ t ∈ [0, d))

∫ 1/µ

0

rfRj(r)dr.
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Thus,

− d

ds
η̃DAPQ

R|j (s)

∣∣∣∣
s=0

=

[
− d

ds
F̃R|j(s+ λA1 (1− η̃DAPQ(s)))

∣∣∣∣
s=0

]
1

µ

[
1− λA1

d

ds
η̃DAPQ(s)

∣∣∣∣
s=0

]
=

[
1

P(Nd = j,Nt > 0 ∀ t ∈ [0, d))

∫ 1/µ

0

rfRj(r)dr

]
1

µ

[
1 +

ρA1
1− ρA1

]
.

Similarly,

− d

ds
η̃NPQ

R|j (s)

∣∣∣∣
s=0

=

[
1

P(Nd = j,Nt > 0 ∀ t ∈ [0, d))

∫ 1/µ

0

rfRj(r)dr

]
1

µ

[
1 +

ρ1
1− ρ1

]
That is,

d

ds
η̃DAPQ

R|j (s)

∣∣∣∣
s=0

− d

ds
η̃NPQ

R|j (s)

∣∣∣∣
s=0

=
1

µ

[
ρ1

1− ρ1
− ρA1

1− ρA1

][
1

P(Nd = j,Nt > 0 ∀ t ∈ [0, d))

∫ 1/µ

0

rfRj(r)dr

]

=

[
ρ1b

µ(1− ρA1 )(1− ρ1)

][
1

P(Nd = j,Nt > 0 ∀ t ∈ [0, d))

∫ 1/µ

0

rfRj(r)dr

]
.

Thus, plugging this into Eq. (8) gives

E [WNPQ

2 −WDAPQ

2 ]

=

[
ρ1b

µ(1− ρA1 )(1− ρ1)

] ∞∑
i=1

πi

∞∑
j=1

P [Nd = j,Nt > 0 ∀ t ∈ [0, d)|N0 = i]

×

[
1

P(Nd = j,Nt > 0 ∀ t ∈ [0, d))

∫ 1/µ

0

rfRj(r)dr + (j − 1)

]

=

[
ρ1b

µ(1− ρA1 )(1− ρ1)

] ∞∑
j=1

P [Nd = j,Nt > 0 ∀ t ∈ [0, d)]

×

[
1

P(Nd = j,Nt > 0 ∀ t ∈ [0, d))

∫ 1/µ

0

rfRj(r)dr + (j − 1)

]

=

[
ρ1b

µ(1− ρA1 )(1− ρ1)

] ∞∑
j=1

∫ 1/µ

0

rfRj(r)dr +

[
ρ1b

µ(1− ρA1 )(1− ρ1)

] ∞∑
j=1

(j − 1)

∫ 1/µ

0

fRj(r)dr.

It remains to compute these integrals. To do so, observe the following lemma:

Lemma 2. ∫ b

0

xn(c− x)mdx = bn+1

m∑
a=0

1

n+ a+ 1

(
m

a

)
cm−a(−b)a.
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Proof of Lemma 2.∫ b

0

xn(c− x)mdx =

∫ b

0

xn
m∑
a=0

(
m

a

)
cm−a(−x)adx

=
m∑
a=0

(−1)a
(
m

a

)
cm−a

∫ b

0

xn+adx

=
m∑
a=0

(−1)a
(
m

a

)
cm−a

bn+a+1

n+ a+ 1

= bn+1

m∑
a=0

1

n+ a+ 1

(
m

a

)
cm−a(−b)a.

Then,∫ 1/µ

0

j+`∑
k=2

pr(k)qr(j + `− k)dr

=

j+`∑
k=2

e−λ1d

(j + `− k)!

k−1∑
n=0

πk−n
n!

λj+`−k+n1

∫ 1/µ

0

rn(d− r)j+`−kdr

=

j+`∑
k=2

e−λ1d

(j + `− k)!

k−1∑
n=0

πk−n
n!

λj+`−k+n1 (1/µ)n+1

j+`−k∑
a=0

1

n+ a+ 1

(
j + `− k

a

)
dj+`−k−a(−1)a

= e−λ1d
j+`∑
k=2

j+`−k∑
a=0

(−1)adj+`−k−a

(j + `− k − a)! a!

k−1∑
n=0

πk−nλ
j+`+n−k
1

µn+1(n+ a+ 1)n!
.
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Next,∫ 1/µ

0

∑̀
k=2

pr(k)Bk,r(j)dr

=
∑̀
k=2

k−1∑
n=0

πk−n

×
∫ 1/µ

0

e−λ1r
(λ1r)

n

n!

∑̀
m=k

e−λ1(d−r)
(ρ1(m− 1))m−k

(m− k)!

(
k − 1

m− 1

)
(ρ1(`− (m− 1))− λ1r)j+`−m

(j + `−m)!
dr

=
∑̀
k=2

e−λ1d
∑̀
m=k

(m− 1)m−k

(m− k)! (j + `−m)!

(
k − 1

m− 1

) k−1∑
n=0

πk−nλ
j+`+n−k
1

n!

×
∫ 1/µ

0

rn(d− (m− 1)/µ− r)j+`−mdr

= e−λ1d
∑̀
k=2

∑̀
m=k

(m− 1)m−k

(m− k)!

(
k − 1

m− 1

) k−1∑
n=0

πk−nλ
j+`+n−k
1

n!

×
j+`−m∑
a=0

(−1)a(`+ 1−m)j+`−m−a

µj+`−m−a(n+ a+ 1)(j + `−m− a)! a!

= e−λ1d
∑̀
k=2

∑̀
m=k

(m− 1)m−k

(m− k)!

(
k − 1

m− 1

) j+`−m∑
a=0

(−1)a(`+ 1−m)j+`−m−a

µj+`−m−a(j + `−m− a)! a!

k−1∑
n=0

πk−nλ
j+`+n−k
1

(n+ a+ 1)n!
.

Thus,∫ 1/µ

0

fRj(r)dr

= e−λ1d
j+`∑
k=2

j+`−k∑
a=0

(−1)adj+`−k−a

(j + `− k − a)! a!

k−1∑
n=0

πk−nλ
j+`+n−k
1

µn+1(n+ a+ 1)n!

−

[
e−λ1d

∑̀
k=2

∑̀
m=k

(m− 1)m−k

(m− k)!

(
k − 1

m− 1

)

×
j+`−m∑
a=0

(−1)a(`+ 1−m)j+`−m−a

µj+`−m−a(j + `−m− a)! a!

k−1∑
n=0

πk−nλ
j+`+n−k
1

(n+ a+ 1)n!

]
.
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The exact same calculations with an additional r inside the integral gives∫ 1/µ

0

rfRj(r)dr

= e−λ1d
j+`∑
k=2

j+`−k∑
a=0

(−1)adj+`−k−a

(j + `− k − a)! a!

k−1∑
n=0

πk−nλ
j+`+n−k
1

µn+1(n+ a+ 2)n!

−

[
e−λ1d

∑̀
k=2

∑̀
m=k

(m− 1)m−k

(m− k)!

(
k − 1

m− 1

)

×
j+`−m∑
a=0

(−1)a(`+ 1−m)j+`−m−a

µj+`−m−a(j + `−m− a)! a!

k−1∑
n=0

πk−nλ
j+`+n−k
1

(n+ a+ 2)n!

]
.

Plugging these last two results in along with the M/D/1 average waiting time from
Kleinrock (1976) gives the first statement of the theorem.

Finally, consider the case where d = 0. First, observe that

E [WNPQ

2 −WDAPQ

2 ]

=
∞∑
i=1

πi

∞∑
j=1

P [Nd = j,Nt > 0 ∀ t ∈ [0, d)|N0 = i]

×
[

d

ds
η̃DAPQ

R|j (s)

∣∣∣∣
s=0

− d

ds
η̃NPQ

R|j (s)

∣∣∣∣
s=0

+ (j − 1)

(
d

ds
η̃DAPQ(s)

∣∣∣∣
s=0

− d

ds
η̃NPQ(s)

∣∣∣∣
s=0

)]
=
∞∑
j=1

πj

[(
λ1b

(1− λA1 )(1− λ1)

)(
1

πj

∫ 1

0

rfRj(r)dr

)
+ (j − 1)

(
λ1b

(1− λA1 )(1− λ1)

)]

=

(
λ1b

(1− λA1 )(1− λ1)

)[ ∞∑
j=1

∫ 1

0

rfRj(r)dr +
∞∑
j=1

(j − 1)πj

]
.

Next, we have the following result from Adan and Haviv (2009):∫ 1

0

rfRj(r)dr =
1− ρ
λ

∞∑
k=j+1

πk.

Thus, using the average queue length for an M/D/1 queue,

E [WNPQ

2 −WDAPQ

2 ] =

(
λ1b

(1− λA1 )(1− λ1)

)[
1− ρ
λ

∞∑
j=1

∞∑
k=j+1

πk +
ρ2

2(1− ρ)

]

=

(
λ1b

(1− λA1 )(1− λ1)

)[
1− ρ
λ

∞∑
j=1

P(N0 > j) +
ρ2

2(1− ρ)

]

=

(
λ1b

(1− λA1 )(1− λ1)

)[
1− ρ
λ

(EN0 − ρ) +
ρ2

2(1− ρ)

]
=

λ1b

(1− λA1 )(1− λ1)
ρ

2(1− ρ)
.
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Figure 8: Exact ( ) v.s. exponential approximations ( ) of high-priority waiting time
CDFs. Outer lines ( ) correspond to NPQ (b = 0) and FCFS (b = 1).
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Figure 9: Absolute difference between exact and exponential approximations of high-priority
waiting time CDFs.
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Figure 10: Exact ( ) v.s. simulated ( ) waiting time CDFs. For class-1, the leftmost
curve is NPQ (b = 0), while for class-2, the leftmost curve is FCFS (b = 1).
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Figure 11: Absolute difference between simulated and exponential approximations of high-
priority waiting time CDFs.
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Figure 12: Upper and lower boundaries for (λ1, λ2) pairs that meet KPI probability for
class-1 waiting time under one hour and half hour and require optimization of d.
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Figure 13: Optimal b∗(d) for delay level d at various occupancy levels for the KPI P(WDAPQ

1 <
2) ≥ 0.9.
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Figure 14: EWDAPQ

2 for (d, b∗(d)) pairs associated with various occupancy levels for the KPI
P(WDAPQ

1 < 2) ≥ 0.9.
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