
Appendix 

The Proof of Proposition 1 

Recall that 𝑢(𝑡, 𝑒) is strictly increasing in 𝑡 but decreasing in 𝑒, Program (21) can be rewritten 

as  

 max
𝑥,𝑦̃,𝑠𝑥,𝑠𝑦

𝑢(𝑏 + 𝛼𝑅(𝑥̃, 𝑦̃) − 𝛼𝑅(−𝑠𝑥, 𝑠𝑦), 𝑒)

= 𝑏 + 𝛼𝑅(𝑥̃, 𝑦̃) − 𝛼𝑅(−𝑠𝑥 , 𝑠𝑦) − 𝑣 (𝑒(𝑠𝑥, 𝑠𝑦))

= 𝑏 + 𝛼𝑅(𝑥, 𝑦) − 𝑣 (𝑒(𝑠𝑥 , 𝑠𝑦)) 

 

𝑠. 𝑡. Constraints (20-1)- (20-3).  

To maximize utility, the agent will pick (𝑠𝑥, 𝑠𝑦) to minimize 𝑣 (𝑒(𝑠𝑥, 𝑠𝑦)), i.e., the agent will 

select a local allocative efficient input-output combination (𝑥̃, 𝑦̃) ∈ arg max
(𝑥,𝑦̃)∈𝑍((𝑥, 𝑦)|𝑇)

𝑅(𝑥̃, 𝑦̃) as the 

underlying production mix. This completes the proof. QED. 

 

The Proof of Proposition 2 

We prove this by contradiction. Assume (𝑥̃, 𝑦̃) ∉ Eff 𝑇 , then by definition there exists an 

underlying production mix (𝑥̃′, 𝑦̃′)  satisfying (−𝑥̃′, 𝑦̃′) ≥ (−𝑥̃, 𝑦̃), (𝑥̃′, 𝑦̃′) ≠ (𝑥̃, 𝑦̃)  such that 

(𝑥̃′, 𝑦̃′) ∈ 𝑇. By the definitions of profit function 𝑅(𝑥, 𝑦) and the set of underlying production mix 

𝑍((𝑥, 𝑦)|𝑇) , we induce that 𝑅(𝑥̃′, 𝑦̃′) > 𝑅(𝑥̃, 𝑦̃)  and (𝑥̃′, 𝑦̃′) ∈ 𝑍((𝑥, 𝑦)|𝑇) . With the help of 

Proposition 1, we have a contradiction such that (𝑥̃, 𝑦̃) ∉ 𝐿 = arg max
(𝑥∗,𝑦∗)∈𝑍((𝑥, 𝑦)|𝑇)

𝑅(𝑥∗, 𝑦∗) since 

𝑅(𝑥̃′, 𝑦̃′) > 𝑅(𝑥̃, 𝑦̃) and (𝑥̃′, 𝑦̃′) ∈ 𝑍((𝑥, 𝑦)|𝑇). This completes the proof. QED. 

 

The Proof of Proposition 3 

It is clear that (𝑥̃, 𝑦̃) = (𝑥 − 𝑠𝑥 , 𝑦 + 𝑠𝑦) ∈ 𝐺  holds by Proposition 1, combining (𝑠𝑥, 𝑠𝑦) ∈

ℝ+
𝑚+ℎ  , we get (𝑥, 𝑦) = (𝑥̃ + 𝑠𝑥 , 𝑦̃ − 𝑠𝑦) ∈ 𝐺 + ℝ+

𝑚 × (−ℝ+
ℎ). This completes the proof. QED. 

 

The Proof of Proposition 4 

First, the agent is rational implies that the observed slack vector 𝑠 is the optimal solution of the 

utility maximization problem (23). We discuss the four cases separately in the following. 



(i) In case with 𝑣(𝑒(𝑠)) = 𝑔 − ∏ 𝑠𝑙
𝛽𝑙𝑚+ℎ

𝑙=1 , to estimate the bargaining power of factor 𝛽𝑙, the utility 

maximization problem (23) can be rewritten as  

min
𝑠∈ℝ+

𝑚+ℎ
𝑈(𝑠) = 𝛼 ∑ 𝑝𝑑𝑠𝑑

𝑚+ℎ

𝑑=1

+ 𝑔 − ∏ 𝑠𝑑
𝛽𝑑

𝑚+ℎ

𝑑=1

− Ψ. 

A necessary condition for the optimality of the observed slack vector 𝑠 in the above program is 

the first partial derivatives with respect to 𝑠𝑙 , 𝑙 = 1,2, … ,𝑚 + ℎ are equal to zero, i.e.,  

𝜕𝑈(𝑠)

𝜕𝑠𝑙
= 𝛼𝑝𝑙 −

𝛽𝑙 ∏ 𝑠𝑑
𝛽𝑑𝑚+ℎ

𝑑=1

𝑠𝑙
= 0, 𝑙 = 1,2, … ,𝑚 + ℎ. 

The above formula can be reorganized as  

∏ 𝑠𝑑
𝛽𝑑

𝑚+ℎ

𝑑=1

=
𝛼𝑝𝑙𝑠𝑙

𝛽𝑙
, 𝑙 = 1,2, … ,𝑚 + ℎ. 

For all 𝑙 = 1,2, … ,𝑚 + ℎ and 𝑑 = 1,2, … ,𝑚 + ℎ, we thus have  

𝛼𝑝𝑙𝑠𝑙

𝛽𝑙
=

𝛼𝑝𝑑𝑠𝑑

𝛽𝑑
. 

The above formula can be reorganized as 

𝛽𝑑

𝛽𝑙
=

𝛼𝑝𝑑𝑠𝑑

𝛼𝑝𝑙𝑠𝑙
=

𝑝𝑑𝑠𝑑

𝑝𝑙𝑠𝑙
. 

Suppose 𝛽𝑑 = 𝑤𝑝𝑑𝑠𝑑  and 𝛽𝑙 = 𝑤𝑝𝑙𝑠𝑙  (𝑤 > 0 ), we thus have ∑ 𝑤𝑝𝑑𝑠𝑑
𝑚+ℎ
𝑑=1 = 1  because of 

∑ 𝛽𝑑
𝑚+ℎ
𝑑=1 = 1, from which we obtain 

𝛽𝑙 = 𝑤𝑝𝑙𝑠𝑙 =
𝑤𝑝𝑙𝑠𝑙

∑ 𝑤𝑝𝑑𝑠𝑑
𝑚+ℎ
𝑑=1

=
𝑝𝑙𝑠𝑙

∑ 𝑝𝑑𝑠𝑑
𝑚+ℎ
𝑑=1

. 

To infer the lower and upper bounds of the underlying maximal effort level, the individual 

rationality constraint can be rewritten as  

Ψ − 𝛼 ∑ 𝑝𝑙𝑠𝑙

𝑚+ℎ

𝑙=1

− 𝑔 + ∏ 𝑠𝑙
𝛽𝑙

𝑚+ℎ

𝑙=1

≥ 𝑄, 

By the definition of the cost of effort, we have  

𝑔 − ∏ 𝑠𝑙
𝛽𝑙

𝑚+ℎ

𝑙=1

≥ 0. 

Combining the optimal estimates of bargaining power of factors, we thus obtain  

𝑔 ≤ Ψ + ∏ 𝑠
𝑙

𝑝𝑙𝑠𝑙

∑ 𝑝𝑑𝑠𝑑
𝑚+ℎ
𝑑=1

𝑚+ℎ

𝑙=1

− 𝛼 ∑ 𝑝𝑙𝑠𝑙

𝑚+ℎ

𝑙=1

− 𝑄 = 𝑔𝑢𝑏 , 



𝑔 ≥ ∏ 𝑠
𝑙

𝑝𝑙𝑠𝑙

∑ 𝑝𝑑𝑠𝑑
𝑚+ℎ
𝑑=1

𝑚+ℎ

𝑙=1

= 𝑔𝑙𝑏 . 

Subsequently, the inference about the cost of effort is  

𝑣(𝑒(𝑠)) = 𝑔 − ∏ 𝑠
𝑙

𝑝𝑙𝑠𝑙

∑ 𝑝𝑑𝑠𝑑
𝑚+ℎ
𝑑=1

𝑚+ℎ

𝑙=1

, 𝑔 ∈ [∏ 𝑠
𝑙

𝑝𝑙𝑠𝑙

∑ 𝑝𝑑𝑠𝑑
𝑚+ℎ
𝑑=1

𝑚+ℎ

𝑙=1

, Ψ + ∏ 𝑠
𝑙

𝑝𝑙𝑠𝑙

∑ 𝑝𝑑𝑠𝑑
𝑚+ℎ
𝑑=1

𝑚+ℎ

𝑙=1

− 𝛼 ∑ 𝑝𝑙𝑠𝑙

𝑚+ℎ

𝑙=1

− 𝑄]. 

This completes the first part of the proposition. 

(ii) In case with 𝑣(𝑒(𝑠)) = 𝑔 − min{𝛽1𝑠1, 𝛽2𝑠2, … , 𝛽𝑚+ℎ𝑠𝑚+ℎ}, to estimate the relative importance of 

factor 𝛽𝑙, the utility maximization problem (23) can be rewritten as  

min
𝑠∈ℝ+

𝑚+ℎ
𝑈(𝑠) = 𝛼 ∑ 𝑝𝑑𝑠𝑑

𝑚+ℎ

𝑑=1

+ 𝑔 − min{𝛽1𝑠1, 𝛽2𝑠2, … , 𝛽𝑚+ℎ𝑠𝑚+ℎ} − Ψ. 

A necessary condition for the optimality of the observed slack vector 𝑠 in the above program is 

𝛽1𝑠1 = 𝛽2𝑠2 = ⋯ = 𝛽𝑚+ℎ𝑠𝑚+ℎ , we record this result as a corollary.  

Corollary 1. In case with 𝑣(𝑒(𝑠)) = 𝑔 − min{𝛽1𝑠1, 𝛽2𝑠2, … , 𝛽𝑚+ℎ𝑠𝑚+ℎ} , the optimal estimates of 

relative importance of the factors 𝛽𝑙 , 𝑙 = 1,2, … ,𝑚 + ℎ satisfy 𝛽1𝑠1 = 𝛽2𝑠2 = ⋯ = 𝛽𝑚+ℎ𝑠𝑚+ℎ . 

For ease of exposition, let 𝜏 = 𝛽1𝑠1 = 𝛽2𝑠2 = ⋯ = 𝛽𝑚+ℎ𝑠𝑚+ℎ , the optimal value of Program 

(23) is 

𝛼 ∑ 𝑝𝑑𝑠𝑑

𝑚+ℎ

𝑑=1

+ 𝑔 − 𝜏 − Ψ. 

Suppose 𝛽1𝑠1 = 𝛽2𝑠2 = ⋯ = 𝛽𝑚+ℎ𝑠𝑚+ℎ  does not always hold, there exists at least one input or 

output (denoted by 𝑙 ) satisfying 𝛽𝑙𝑠𝑙 < 𝜏  since ∑ 𝛽𝑑
𝑚+ℎ
𝑑=1 = 1 . Then the corresponding value of 

Program (23) is  

𝛼 ∑ 𝑝𝑑𝑠𝑑

𝑚+ℎ

𝑑=1

+ 𝑔 − min
𝑙∈{𝑙|𝛽𝑙𝑠𝑙 < 𝜏}

𝛽𝑙𝑠𝑙 − Ψ. 

Note that  

𝛼 ∑ 𝑝𝑑𝑠𝑑

𝑚+ℎ

𝑑=1

+ 𝑔 − min
𝑙∈{𝑙|𝛽𝑙𝑠𝑙 < 𝜏}

𝛽𝑙𝑠𝑙 − Ψ > 𝛼 ∑ 𝑝𝑑𝑠𝑑

𝑚+ℎ

𝑑=1

+ 𝑔 − 𝜏 − Ψ, 

which implies any deviation from 𝛽1𝑠1 = 𝛽2𝑠2 = ⋯ = 𝛽𝑚+ℎ𝑠𝑚+ℎ  leads to the increase of the value 

of Program (23). To minimize the value of Program (23), therefore, 𝛽1𝑠1 = 𝛽2𝑠2 = ⋯ = 𝛽𝑚+ℎ𝑠𝑚+ℎ  

is optimal. This completes the proof of Corollary 1. 

With the help of Corollary 1, let us combine 𝜏 = 𝛽1𝑠1 = 𝛽2𝑠2 = ⋯ = 𝛽𝑚+ℎ𝑠𝑚+ℎ  and 



∑ 𝛽𝑑
𝑚+ℎ
𝑑=1 = 1, we get ∑

𝜏

𝑠𝑑

𝑚+ℎ
𝑑=1 = 1, i.e.,  

𝜏 =
1

∑
1
𝑠𝑑

𝑚+ℎ
𝑑=1

= 𝛽𝑙𝑠𝑙 , 

from which we obtain  

𝛽𝑙 =
1

𝑠𝑙 (∑
1
𝑠𝑑

𝑚+ℎ
𝑑=1 )

, 𝑙 = 1,2, … ,𝑚 + ℎ. 

To infer the lower and upper bounds of the underlying maximal effort level, the individual 

rationality constraint can be rewritten as  

Ψ − 𝛼 ∑ 𝑝𝑙𝑠𝑙

𝑚+ℎ

𝑙=1

− 𝑔 + min{𝛽1𝑠1, 𝛽2𝑠2, … , 𝛽𝑚+ℎ𝑠𝑚+ℎ} ≥ 𝑄. 

By the definition of the cost of effort, we have  

𝑔 − min{𝛽1𝑠1, 𝛽2𝑠2 , … , 𝛽𝑚+ℎ𝑠𝑚+ℎ} ≥ 0. 

Combining the optimal estimates of relative importance of factors, we thus obtain  

𝑔 ≤ Ψ +
1

∑
1
𝑠𝑙

𝑚+ℎ
𝑙=1

− 𝛼 ∑ 𝑝𝑙𝑠𝑙

𝑚+ℎ

𝑙=1

− 𝑄 = 𝑔𝑢𝑏 , 

𝑔 ≥
1

∑
1
𝑠𝑙

𝑚+ℎ
𝑙=1

= 𝑔𝑙𝑏 . 

Subsequently, the inference about the cost of effort is  

𝑣(𝑒(𝑠)) = 𝑔 −
1

∑
1
𝑠𝑑

𝑚+ℎ
𝑑=1

, 𝑔 ∈ [
1

∑
1
𝑠𝑙

𝑚+ℎ
𝑙=1

, Ψ +
1

∑
1
𝑠𝑙

𝑚+ℎ
𝑙=1

− 𝛼 ∑ 𝑝𝑙𝑠𝑙

𝑚+ℎ

𝑙=1

− 𝑄]. 

This completes the second part of the proposition. 

(iii) In case with 𝑣(𝑒(𝑠)) = (𝑔 − ∏ 𝑠𝑙
𝛽𝑙𝑚+ℎ

𝑙=1 )
2

 , to estimate the bargaining power of factor 𝛽𝑙 , the 

utility maximization problem (23) can be rewritten as  

min
𝑠∈ℝ+

𝑚+ℎ
𝑈(𝑠) = 𝛼 ∑ 𝑝𝑑𝑠𝑑

𝑚+ℎ

𝑑=1

+ (𝑔 − ∏ 𝑠𝑑
𝛽𝑑

𝑚+ℎ

𝑑=1

)

2

− Ψ. 

A necessary condition for the optimality of the observed slack vector 𝑠 in the above program is 

the first partial derivatives with respect to 𝑠𝑙 , 𝑙 = 1,2, … ,𝑚 + ℎ are equal to zero, i.e.,  



𝜕𝑈(𝑠)

𝜕𝑠𝑙
= 𝛼𝑝𝑙 + 2(𝑔 − ∏ 𝑠𝑑

𝛽𝑑

𝑚+ℎ

𝑑=1

)(−
𝛽𝑙 ∏ 𝑠𝑑

𝛽𝑑𝑚+ℎ
𝑑=1

𝑠𝑙
) = 0, 𝑙 = 1,2, … ,𝑚 + ℎ. 

The above formula can be reorganized as  

2(𝑔 − ∏ 𝑠𝑑
𝛽𝑑

𝑚+ℎ

𝑑=1

) ∏ 𝑠𝑑
𝛽𝑑

𝑚+ℎ

𝑑=1

=
𝛼𝑝𝑙𝑠𝑙

𝛽𝑙
, 𝑙 = 1,2, … ,𝑚 + ℎ. 

For all 𝑙 = 1,2, … ,𝑚 + ℎ and 𝑑 = 1,2, … ,𝑚 + ℎ, we thus have  

𝛼𝑝𝑙𝑠𝑙

𝛽𝑙
=

𝛼𝑝𝑑𝑠𝑑

𝛽𝑑
. 

The above formula can be reorganized as 

𝛽𝑑

𝛽𝑙
=

𝛼𝑝𝑑𝑠𝑑

𝛼𝑝𝑙𝑠𝑙
=

𝑝𝑑𝑠𝑑

𝑝𝑙𝑠𝑙
. 

Suppose 𝛽𝑑 = 𝛾𝑝𝑑𝑠𝑑  and 𝛽𝑙 = 𝛾𝑝𝑙𝑠𝑙  (𝛾 > 0 ), we thus have ∑ 𝛾𝑝𝑑𝑠𝑑
𝑚+ℎ
𝑑=1 = 1  because of 

∑ 𝛽𝑑
𝑚+ℎ
𝑑=1 = 1, from which we obtain 

𝛽𝑙 = 𝛾𝑝𝑙𝑠𝑙 =
𝛾𝑝𝑙𝑠𝑙

∑ 𝛾𝑝𝑑𝑠𝑑
𝑚+ℎ
𝑑=1

=
𝑝𝑙𝑠𝑙

∑ 𝑝𝑑𝑠𝑑
𝑚+ℎ
𝑑=1

. 

To infer the lower and upper bounds of the underlying maximal effort level, the individual 

rationality constraint can be rewritten as  

Ψ − 𝛼 ∑ 𝑝𝑙𝑠𝑙

𝑚+ℎ

𝑙=1

− (𝑔 − ∏ 𝑠𝑙
𝛽𝑙

𝑚+ℎ

𝑙=1

)

2

≥ 𝑄. 

By the definition of the cost of effort, we have  

(𝑔 − ∏ 𝑠𝑙
𝛽𝑙

𝑚+ℎ

𝑙=1

)

2

≥ 0. 

Combining the optimal estimates of bargaining power of factors, we thus obtain  

𝑔 ≤ √Ψ − 𝛼 ∑ 𝑝𝑙𝑠𝑙

𝑚+ℎ

𝑙=1

− 𝑄 + ∏ 𝑠
𝑙

𝑝𝑙𝑠𝑙

∑ 𝑝𝑑𝑠𝑑
𝑚+ℎ
𝑑=1

𝑚+ℎ

𝑙=1

= 𝑔𝑢𝑏 , 

𝑔 ≥ ∏ 𝑠
𝑙

𝑝𝑙𝑠𝑙

∑ 𝑝𝑑𝑠𝑑
𝑚+ℎ
𝑑=1

𝑚+ℎ

𝑙=1

= 𝑔𝑙𝑏 . 

Subsequently, the inference about the cost of effort is  

𝑣(𝑒(𝑠)) = (𝑔 − ∏ 𝑠
𝑙

𝑝𝑙𝑠𝑙

∑ 𝑝𝑑𝑠𝑑
𝑚+ℎ
𝑑=1

𝑚+ℎ

𝑙=1

)

2

, 𝑔 ∈

[
 
 
 

∏ 𝑠
𝑙

𝑝𝑙𝑠𝑙

∑ 𝑝𝑑𝑠𝑑
𝑚+ℎ
𝑑=1

𝑚+ℎ

𝑙=1

, √Ψ − 𝛼 ∑ 𝑝𝑙𝑠𝑙

𝑚+ℎ

𝑙=1

− 𝑄 + ∏ 𝑠
𝑙

𝑝𝑙𝑠𝑙

∑ 𝑝𝑑𝑠𝑑
𝑚+ℎ
𝑑=1

𝑚+ℎ

𝑙=1
]
 
 
 

. 



This completes the third part of the proposition.  

(iv) In case with 𝑣(𝑒(𝑠)) = (𝑔 − min{𝛽1𝑠1, 𝛽2𝑠2, … , 𝛽𝑚+ℎ𝑠𝑚+ℎ})2, the utility maximization problem 

(23) can be rewritten as  

min
𝑠∈ℝ+

𝑚+ℎ
𝑈(𝑠) = 𝛼 ∑ 𝑝𝑑𝑠𝑑

𝑚+ℎ

𝑑=1

+ (𝑔 − min{𝛽1𝑠1, 𝛽2𝑠2 , … , 𝛽𝑚+ℎ𝑠𝑚+ℎ})2 − Ψ. 

Similar to the proof of part (ii) of the proposition above, a necessary condition for the optimality 

of the observed slack vector 𝑠 in the above program is 𝛽1𝑠1 = 𝛽2𝑠2 = ⋯ = 𝛽𝑚+ℎ𝑠𝑚+ℎ , from which 

we have  

𝛽𝑙 =
1

𝑠𝑙 (∑
1
𝑠𝑑

𝑚+ℎ
𝑑=1 )

, 𝑙 = 1,2, … ,𝑚 + ℎ. 

To infer the lower and upper bounds of the underlying maximal effort level, the individual 

rationality constraint can be rewritten as  

Ψ − 𝛼 ∑ 𝑝𝑙𝑠𝑙

𝑚+ℎ

𝑙=1

− (𝑔 − min{𝛽1𝑠1, 𝛽2𝑠2, … , 𝛽𝑚+ℎ𝑠𝑚+ℎ})2 ≥ 𝑄. 

By the definition of the cost of effort, we have  

(𝑔 − min{𝛽1𝑠1, 𝛽2𝑠2, … , 𝛽𝑚+ℎ𝑠𝑚+ℎ})2 ≥ 0 ≥ 0. 

Combining the optimal estimates of relative importance of factors, we thus obtain  

𝑔 ≤ √Ψ − 𝛼 ∑ 𝑝𝑙𝑠𝑙

𝑚+ℎ

𝑙=1

− 𝑄 +
1

∑
1
𝑠𝑙

𝑚+ℎ
𝑙=1

= 𝑔𝑢𝑏 , 

𝑔 ≥
1

∑
1
𝑠𝑙

𝑚+ℎ
𝑙=1

= 𝑔𝑙𝑏 . 

Subsequently, the inference about the cost of effort is  

(𝑒(𝑠)) = (𝑔 −
1

∑
1
𝑠𝑙

𝑚+ℎ
𝑙=1

)

2

, 𝑔 ∈

[
 
 
 

1

∑
1
𝑠𝑙

𝑚+ℎ
𝑙=1

, √Ψ − 𝛼 ∑ 𝑝𝑙𝑠𝑙

𝑚+ℎ

𝑙=1

− 𝑄 +
1

∑
1
𝑠𝑙

𝑚+ℎ
𝑙=1

]
 
 
 

. 

This completes the final part of the proposition. QED.  

 

The Nonparametric Frontier Technology 

In line with the production theory, the nonparametric frontier technology 𝑇 satisfies the following 



standard axioms (Banker et al., 1984; Podinovski et al., 2018; Kerstens et al., 2019). 

Axiom 1. Inclusion of Observations. (𝑥𝑗, 𝑦𝑗) ∈ 𝑇 for any 𝑗, 𝑗 = 1,2, … , 𝑛. 

Axiom 2. Convexity. 𝑇 is convex.  

Axiom 3. Free Disposability. If (𝑥, 𝑦) ∈ 𝑇, then for any 𝑥′ ≥ 𝑥, 0 ≤ 𝑦′ ≤ 𝑦, (𝑥′ , 𝑦′) ∈ 𝑇. 

Axiom 4. Minimum Extrapolation. 𝑇 is the smallest set. 

With the help of the classical axioms above, an algebraic representation of convex nonparametric 

frontier technology under variable return to scale can be expressed as 

𝑇 = {(𝑥, 𝑦) ∈ ℝ+
𝑚+ℎ|∃𝜆𝑗 ∈ ℝ0: 𝑥 ≥ ∑ 𝜆𝑗𝑥𝑗

𝑛
𝑗=1 , 𝑦 ≤ ∑ 𝜆𝑗𝑦𝑗

𝑛
𝑗=1 , ∑ 𝜆𝑗

𝑛
𝑗=1 = 1}  

 

 


