Appendix

The Proof of Proposition 1

Recall that $u(t, e)$ is strictly increasing in t but decreasing in e, Program (21) can be rewritten as

$$
\begin{aligned}
\max _{\tilde{x}, \tilde{y}, s_{x}, s_{y}} u(b+\alpha & \left.\alpha(\tilde{x}, \tilde{y})-\alpha R\left(-s_{x}, s_{y}\right), e\right) \\
& =b+\alpha R(\tilde{x}, \tilde{y})-\alpha R\left(-s_{x}, s_{y}\right)-v\left(e\left(s_{x}, s_{y}\right)\right) \\
& =b+\alpha R(x, y)-v\left(e\left(s_{x}, s_{y}\right)\right)
\end{aligned}
$$

s.t. Constraints (20-1)- (20-3).

To maximize utility, the agent will pick $\left(s_{x}, s_{y}\right)$ to minimize $v\left(e\left(s_{x}, s_{y}\right)\right)$, i.e., the agent will select a local allocative efficient input-output combination $(\tilde{x}, \tilde{y}) \in \arg \max _{(\tilde{x}, \tilde{y}) \in Z((x, y) \mid T)} R(\tilde{x}, \tilde{y})$ as the underlying production mix. This completes the proof. QED.

The Proof of Proposition 2

We prove this by contradiction. Assume $(\tilde{x}, \tilde{y}) \notin \operatorname{Eff} T$, then by definition there exists an underlying production $\operatorname{mix}\left(\tilde{x}^{\prime}, \tilde{y}^{\prime}\right)$ satisfying $\left(-\tilde{x}^{\prime}, \tilde{y}^{\prime}\right) \geq(-\tilde{x}, \tilde{y}),\left(\tilde{x}^{\prime}, \tilde{y}^{\prime}\right) \neq(\tilde{x}, \tilde{y})$ such that $\left(\tilde{x}^{\prime}, \tilde{y}^{\prime}\right) \in T$. By the definitions of profit function $R(x, y)$ and the set of underlying production mix $Z((x, y) \mid T)$, we induce that $R\left(\tilde{x}^{\prime}, \tilde{y}^{\prime}\right)>R(\tilde{x}, \tilde{y})$ and $\left(\tilde{x}^{\prime}, \tilde{y}^{\prime}\right) \in Z((x, y) \mid T)$. With the help of Proposition 1, we have a contradiction such that $(\tilde{x}, \tilde{y}) \notin L=\arg \max _{\left(x^{*}, y^{*}\right) \in Z((x, y) \mid T)} R\left(x^{*}, y^{*}\right)$ since $R\left(\tilde{x}^{\prime}, \tilde{y}^{\prime}\right)>R(\tilde{x}, \tilde{y})$ and $\left(\tilde{x}^{\prime}, \tilde{y}^{\prime}\right) \in Z((x, y) \mid T)$. This completes the proof. QED.

The Proof of Proposition 3

It is clear that $(\tilde{x}, \tilde{y})=\left(x-s_{x}, y+s_{y}\right) \in G$ holds by Proposition 1, combining $\left(s_{x}, s_{y}\right) \in$ \mathbb{R}_{+}^{m+h}, we get $(x, y)=\left(\tilde{x}+s_{x}, \tilde{y}-s_{y}\right) \in G+\mathbb{R}_{+}^{m} \times\left(-\mathbb{R}_{+}^{h}\right)$. This completes the proof. QED.

The Proof of Proposition 4

First, the agent is rational implies that the observed slack vector s is the optimal solution of the utility maximization problem (23). We discuss the four cases separately in the following.
(i) In case with $v(e(s))=g-\prod_{l=1}^{m+h} s_{l}^{\beta_{l}}$, to estimate the bargaining power of factor β_{l}, the utility maximization problem (23) can be rewritten as

$$
\min _{s \in \mathbb{R}_{+}^{m+h}} \bar{U}(s)=\alpha \sum_{d=1}^{m+h} p_{d} s_{d}+g-\prod_{d=1}^{m+h} s_{d}^{\beta_{d}}-\Psi .
$$

A necessary condition for the optimality of the observed slack vector s in the above program is the first partial derivatives with respect to $s_{l} l=1,2, \ldots, m+h$ are equal to zero, i.e.,

$$
\frac{\partial \bar{U}(s)}{\partial s_{l}}=\alpha p_{l}-\frac{\beta_{l} \prod_{d=1}^{m+h} s_{d}^{\beta_{d}}}{s_{l}}=0, l=1,2, \ldots, m+h .
$$

The above formula can be reorganized as

$$
\prod_{d=1}^{m+h} s_{d}^{\beta_{d}}=\frac{\alpha p_{l} s_{l}}{\beta_{l}}, l=1,2, \ldots, m+h .
$$

For all $l=1,2, \ldots, m+h$ and $d=1,2, \ldots, m+h$, we thus have

$$
\frac{\alpha p_{l} s_{l}}{\beta_{l}}=\frac{\alpha p_{d} s_{d}}{\beta_{d}}
$$

The above formula can be reorganized as

$$
\frac{\beta_{d}}{\beta_{l}}=\frac{\alpha p_{d} s_{d}}{\alpha p_{l} s_{l}}=\frac{p_{d} s_{d}}{p_{l} s_{l}} .
$$

Suppose $\beta_{d}=w p_{d} s_{d}$ and $\beta_{l}=w p_{l} s_{l}(w>0)$, we thus have $\sum_{d=1}^{m+h} w p_{d} s_{d}=1$ because of $\sum_{d=1}^{m+h} \beta_{d}=1$, from which we obtain

$$
\beta_{l}=w p_{l} s_{l}=\frac{w p_{l} s_{l}}{\sum_{d=1}^{m+h} w p_{d} s_{d}}=\frac{p_{l} s_{l}}{\sum_{d=1}^{m+h} p_{d} s_{d}} .
$$

To infer the lower and upper bounds of the underlying maximal effort level, the individual rationality constraint can be rewritten as

$$
\Psi-\alpha \sum_{l=1}^{m+h} p_{l} s_{l}-g+\prod_{l=1}^{m+h} s_{l}^{\beta_{l}} \geq Q
$$

By the definition of the cost of effort, we have

$$
g-\prod_{l=1}^{m+n} s_{l}^{\beta_{l}} \geq 0
$$

Combining the optimal estimates of bargaining power of factors, we thus obtain

$$
g \leq \Psi+\prod_{l=1}^{m+h} s_{l}^{\frac{p_{l} s_{l}}{\Sigma_{d=1}^{m+h} p_{d} s_{d}}}-\alpha \sum_{l=1}^{m+h} p_{l} s_{l}-Q=g^{u b},
$$

$$
g \geq \prod_{l=1}^{m+h} s_{l}^{\frac{p_{l} s_{l}}{\sum_{d=1}^{m+h} p_{d} s_{d}}}=g^{l b}
$$

Subsequently, the inference about the cost of effort is

$$
v(e(s))=g-\prod_{l=1}^{m+h} s_{l}^{\frac{p_{l} s_{l}}{\sum_{d=1}^{m+h} p_{d} s_{d}}}, g \in\left[\prod_{l=1}^{m+h} s_{l}^{\frac{p_{l} s_{l}}{\sum_{d=1}^{m+h} p_{d} s_{d}}}, \Psi+\prod_{l=1}^{m+h} s_{l}^{\frac{p_{l} s_{l}}{\sum_{d=1}^{m+h} p_{d} s_{d}}}-\alpha \sum_{l=1}^{m+h} p_{l} s_{l}-Q\right]
$$

This completes the first part of the proposition.
(ii) In case with $v(e(s))=g-\min \left\{\beta_{1} s_{1}, \beta_{2} s_{2}, \ldots, \beta_{m+h} s_{m+h}\right\}$, to estimate the relative importance of factor β_{l}, the utility maximization problem (23) can be rewritten as

$$
\min _{s \in \mathbb{R}_{+}^{m+h}} \bar{U}(s)=\alpha \sum_{d=1}^{m+h} p_{d} s_{d}+g-\min \left\{\beta_{1} s_{1}, \beta_{2} s_{2}, \ldots, \beta_{m+h} s_{m+h}\right\}-\Psi
$$

A necessary condition for the optimality of the observed slack vector s in the above program is $\beta_{1} s_{1}=\beta_{2} s_{2}=\cdots=\beta_{m+h} s_{m+h}$, we record this result as a corollary.

Corollary 1. In case with $v(e(s))=g-\min \left\{\beta_{1} s_{1}, \beta_{2} s_{2}, \ldots, \beta_{m+h} s_{m+h}\right\}$, the optimal estimates of relative importance of the factors $\beta_{l}, l=1,2, \ldots, m+h$ satisfy $\beta_{1} s_{1}=\beta_{2} s_{2}=\cdots=\beta_{m+h} s_{m+h}$.

For ease of exposition, let $\tau=\beta_{1} s_{1}=\beta_{2} s_{2}=\cdots=\beta_{m+h} s_{m+h}$, the optimal value of Program (23) is

$$
\alpha \sum_{d=1}^{m+h} p_{d} s_{d}+g-\tau-\Psi
$$

Suppose $\beta_{1} s_{1}=\beta_{2} s_{2}=\cdots=\beta_{m+h} s_{m+h}$ does not always hold, there exists at least one input or output (denoted by l) satisfying $\beta_{l} s_{l}<\tau$ since $\sum_{d=1}^{m+h} \beta_{d}=1$. Then the corresponding value of Program (23) is

$$
\alpha \sum_{d=1}^{m+h} p_{d} s_{d}+g-\min _{l \in\left\{l \mid \beta_{l} s_{l}<\tau\right\}} \beta_{l} s_{l}-\Psi
$$

Note that

$$
\alpha \sum_{d=1}^{m+h} p_{d} s_{d}+g-\min _{l \in\left\{l \mid \beta_{l} s_{l}<\tau\right\}} \beta_{l} s_{l}-\Psi>\alpha \sum_{d=1}^{m+h} p_{d} s_{d}+g-\tau-\Psi,
$$

which implies any deviation from $\beta_{1} s_{1}=\beta_{2} s_{2}=\cdots=\beta_{m+h} s_{m+h}$ leads to the increase of the value of Program (23). To minimize the value of Program (23), therefore, $\beta_{1} s_{1}=\beta_{2} s_{2}=\cdots=\beta_{m+h} s_{m+h}$ is optimal. This completes the proof of Corollary 1.

With the help of Corollary 1, let us combine $\tau=\beta_{1} s_{1}=\beta_{2} s_{2}=\cdots=\beta_{m+h} s_{m+h}$ and
$\sum_{d=1}^{m+h} \beta_{d}=1$, we get $\sum_{d=1}^{m+h} \frac{\tau}{s_{d}}=1$, i.e.,

$$
\tau=\frac{1}{\sum_{d=1}^{m+h} \frac{1}{s_{d}}}=\beta_{l} s_{l}
$$

from which we obtain

$$
\beta_{l}=\frac{1}{s_{l}\left(\sum_{d=1}^{m+h} \frac{1}{s_{d}}\right)}, l=1,2, \ldots, m+h
$$

To infer the lower and upper bounds of the underlying maximal effort level, the individual rationality constraint can be rewritten as

$$
\Psi-\alpha \sum_{l=1}^{m+h} p_{l} s_{l}-g+\min \left\{\beta_{1} s_{1}, \beta_{2} s_{2}, \ldots, \beta_{m+h} s_{m+h}\right\} \geq Q
$$

By the definition of the cost of effort, we have

$$
g-\min \left\{\beta_{1} s_{1}, \beta_{2} s_{2}, \ldots, \beta_{m+h} s_{m+h}\right\} \geq 0
$$

Combining the optimal estimates of relative importance of factors, we thus obtain

$$
\begin{gathered}
g \leq \Psi+\frac{1}{\sum_{l=1}^{m+h} \frac{1}{s_{l}}}-\alpha \sum_{l=1}^{m+h} p_{l} s_{l}-Q=g^{u b} \\
g \geq \frac{1}{\sum_{l=1}^{m+h} \frac{1}{s_{l}}}=g^{l b}
\end{gathered}
$$

Subsequently, the inference about the cost of effort is

$$
v(e(s))=g-\frac{1}{\sum_{d=1}^{m+h} \frac{1}{s_{d}}}, g \in\left[\frac{1}{\sum_{l=1}^{m+h} \frac{1}{s_{l}}}, \Psi+\frac{1}{\sum_{l=1}^{m+h} \frac{1}{s_{l}}}-\alpha \sum_{l=1}^{m+h} p_{l} s_{l}-Q\right]
$$

This completes the second part of the proposition.
(iii) In case with $v(e(s))=\left(g-\prod_{l=1}^{m+h} s_{l}^{\beta_{l}}\right)^{2}$, to estimate the bargaining power of factor β_{l}, the utility maximization problem (23) can be rewritten as

$$
\min _{s \in \mathbb{R}_{+}^{m+h}} \bar{U}(s)=\alpha \sum_{d=1}^{m+h} p_{d} s_{d}+\left(g-\prod_{d=1}^{m+h} s_{d}^{\beta_{d}}\right)^{2}-\Psi
$$

A necessary condition for the optimality of the observed slack vector s in the above program is the first partial derivatives with respect to $s_{l}, l=1,2, \ldots, m+h$ are equal to zero, i.e.,

$$
\frac{\partial \bar{U}(s)}{\partial s_{l}}=\alpha p_{l}+2\left(g-\prod_{d=1}^{m+h} s_{d}^{\beta_{d}}\right)\left(-\frac{\beta_{l} \prod_{d=1}^{m+h} s_{d}^{\beta_{d}}}{s_{l}}\right)=0, l=1,2, \ldots, m+h .
$$

The above formula can be reorganized as

$$
2\left(g-\prod_{d=1}^{m+h} s_{d}^{\beta_{d}}\right) \prod_{d=1}^{m+h} s_{d}^{\beta_{d}}=\frac{\alpha p_{l} s_{l}}{\beta_{l}}, l=1,2, \ldots, m+h .
$$

For all $l=1,2, \ldots, m+h$ and $d=1,2, \ldots, m+h$, we thus have

$$
\frac{\alpha p_{l} s_{l}}{\beta_{l}}=\frac{\alpha p_{d} s_{d}}{\beta_{d}} .
$$

The above formula can be reorganized as

$$
\frac{\beta_{d}}{\beta_{l}}=\frac{\alpha p_{d} s_{d}}{\alpha p_{l} s_{l}}=\frac{p_{d} s_{d}}{p_{l} s_{l}} .
$$

Suppose $\beta_{d}=\gamma p_{d} s_{d}$ and $\beta_{l}=\gamma p_{l} s_{l}(\gamma>0)$, we thus have $\sum_{d=1}^{m+h} \gamma p_{d} s_{d}=1$ because of $\sum_{d=1}^{m+h} \beta_{d}=1$, from which we obtain

$$
\beta_{l}=\gamma p_{l} s_{l}=\frac{\gamma p_{l} s_{l}}{\sum_{d=1}^{m+h} \gamma p_{d} s_{d}}=\frac{p_{l} s_{l}}{\sum_{d=1}^{m+h} p_{d} s_{d}} .
$$

To infer the lower and upper bounds of the underlying maximal effort level, the individual rationality constraint can be rewritten as

$$
\Psi-\alpha \sum_{l=1}^{m+h} p_{l} s_{l}-\left(g-\prod_{l=1}^{m+h} s_{l}^{\beta_{l}}\right)^{2} \geq Q .
$$

By the definition of the cost of effort, we have

$$
\left(g-\prod_{l=1}^{m+h} s_{l}^{\beta_{l}}\right)^{2} \geq 0 .
$$

Combining the optimal estimates of bargaining power of factors, we thus obtain

$$
\begin{gathered}
g \leq \sqrt{\Psi-\alpha \sum_{l=1}^{m+h} p_{l} s_{l}-Q}+\prod_{l=1}^{m+h} s_{l}^{\frac{p_{l} s_{l}}{\sum_{d=1}^{m+h} p_{d} s_{d}}}=g^{u b}, \\
g \geq \prod_{l=1}^{m+h} s_{l}^{\frac{p_{d} s_{l}}{\sum_{d=1}^{m+h} p_{d} s_{d}}}=g^{l b} .
\end{gathered}
$$

Subsequently, the inference about the cost of effort is

$$
v(e(s))=\left(g-\prod_{l=1}^{m+h} s_{l}^{\frac{p_{l} s_{l}}{\sum_{d=1}^{m+1} p_{d} s_{d}}}\right)^{2}, g \in\left[\prod_{l=1}^{m+h} s_{l}^{\frac{p_{l} s_{l}}{\Sigma_{d=1}^{m+h} p_{d} s_{d}}}, \sqrt{\Psi-\alpha \sum_{l=1}^{m+h} p_{l} s_{l}-Q}+\prod_{l=1}^{m+h} s_{l}^{\frac{p_{l} s_{l}}{\sum_{d=1}^{m+h} p_{d} s_{d}}}\right] .
$$

This completes the third part of the proposition.
(iv) In case with $v(e(s))=\left(g-\min \left\{\beta_{1} s_{1}, \beta_{2} s_{2}, \ldots, \beta_{m+h} s_{m+h}\right\}\right)^{2}$, the utility maximization problem (23) can be rewritten as

$$
\min _{s \in \mathbb{R}_{+}^{m+h}} \bar{U}(s)=\alpha \sum_{d=1}^{m+h} p_{d} s_{d}+\left(g-\min \left\{\beta_{1} s_{1}, \beta_{2} s_{2}, \ldots, \beta_{m+h} s_{m+h}\right\}\right)^{2}-\Psi .
$$

Similar to the proof of part (ii) of the proposition above, a necessary condition for the optimality of the observed slack vector s in the above program is $\beta_{1} s_{1}=\beta_{2} s_{2}=\cdots=\beta_{m+h} s_{m+h}$, from which we have

$$
\beta_{l}=\frac{1}{s_{l}\left(\sum_{d=1}^{m+h} \frac{1}{s_{d}}\right)}, l=1,2, \ldots, m+h .
$$

To infer the lower and upper bounds of the underlying maximal effort level, the individual rationality constraint can be rewritten as

$$
\Psi-\alpha \sum_{l=1}^{m+h} p_{l} s_{l}-\left(g-\min \left\{\beta_{1} s_{1}, \beta_{2} s_{2}, \ldots, \beta_{m+h} s_{m+h}\right\}\right)^{2} \geq Q .
$$

By the definition of the cost of effort, we have

$$
\left(g-\min \left\{\beta_{1} s_{1}, \beta_{2} s_{2}, \ldots, \beta_{m+h} s_{m+h}\right\}\right)^{2} \geq 0 \geq 0 .
$$

Combining the optimal estimates of relative importance of factors, we thus obtain

$$
\begin{gathered}
g \leq \sqrt{\Psi-\alpha \sum_{l=1}^{m+h} p_{l} s_{l}-Q}+\frac{1}{\sum_{l=1}^{m+h} \frac{1}{s_{l}}}=g^{u b}, \\
g \geq \frac{1}{\sum_{l=1}^{m+h} \frac{1}{s_{l}}}=g^{l b} .
\end{gathered}
$$

Subsequently, the inference about the cost of effort is

$$
(e(s))=\left(g-\frac{1}{\sum_{l=1}^{m+h} \frac{1}{s_{l}}}\right)^{2}, g \in\left[\frac{1}{\sum_{l=1}^{m+h} \frac{1}{s_{l}}}, \sqrt{\Psi-\alpha \sum_{l=1}^{m+h} p_{l} s_{l}-Q}+\frac{1}{\sum_{l=1}^{m+h} \frac{1}{s_{l}}}\right] .
$$

This completes the final part of the proposition. QED.

The Nonparametric Frontier Technology

In line with the production theory, the nonparametric frontier technology T satisfies the following
standard axioms (Banker et al., 1984; Podinovski et al., 2018; Kerstens et al., 2019).
Axiom 1. Inclusion of Observations. $\left(x_{j}, y_{j}\right) \in T$ for any $j, j=1,2, \ldots, n$.
Axiom 2. Convexity. T is convex.
Axiom 3. Free Disposability. If $(x, y) \in T$, then for any $x^{\prime} \geq x, 0 \leq y^{\prime} \leq y,\left(x^{\prime}, y^{\prime}\right) \in T$.
Axiom 4. Minimum Extrapolation. T is the smallest set.
With the help of the classical axioms above, an algebraic representation of convex nonparametric frontier technology under variable return to scale can be expressed as

$$
T=\left\{(x, y) \in \mathbb{R}_{+}^{m+h} \mid \exists \lambda_{j} \in \mathbb{R}_{0}: x \geq \sum_{j=1}^{n} \lambda_{j} x_{j}, y \leq \sum_{j=1}^{n} \lambda_{j} y_{j}, \sum_{j=1}^{n} \lambda_{j}=1\right\}
$$

