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ABSTRACT

The property of synergy and its detection are discussed. A response surface is said to

possess synergy if it is monotone in each argument and its level curves are convex. Detecting

this property is particularly useful in the study of combination drug therapies where the

goal is enhanced response or diminished side effect. One way to detect synergy is to fit a

surface with linear level curves under the assumption of asynergy and observe the residuals.

We explore an algorithm to accomplish this asynergistic regression via a reduction in dimen-

sionality and connections to semiparametric monotonic linear index models. We see that the

asynergistic model is a confounded version of the monotonic linear index model where the
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linear level curves are not restricted to be parallel.

1. INTRODUCTION

For simplicity, we restrict the discussion of synergy to the case of two agents, and to

motivate the discussion we will refer to the agents as drug treatments. For example, consider

two human immunodeficiency virus (HIV) treatments: the Nucleoside Reverse Transcriptase

Inhibitor (NRTI) Emtricitabine (FTC) and the Protease Inhibitor (PI) Atazanavir (ATV).

Suppose 300 mg of FTC has the same expected level of increase in the CD4+ cell count as

200 mg of ATV. For some fixed λ ∈ (0, 1), the two drugs are synergistic at the combined

dose of 300λ mg of FTC and 200(1− λ) mg of ATV if the expected response is greater than

that of the pure doses. The response at the combined dose is called asynergistic if it is the

same as the pure dose, and antagonistic if it is less than the pure dose.

Now to generalize and define these scenarios more rigorously, let f(x1, x2) be the expected

dose response to administering amount x1 of Drug 1 and x2 of Drug 2. We assume that the

response surface is monotone increasing in each argument, and in particular the marginal

response curves, f1(x1) = f(x1, 0) and f2(x2) = f(0, x2), are monotone increasing in their

respective arguments and onto the same range.

Suppose the expected dose response at a particular dose combination (x∗1, x
∗
2) is y∗, i.e.

f(x∗1, x
∗
2) = y∗. Note that f−1

1 (y∗) is the amount of a pure dose of Drug 1 required to

attain the response y∗, and likewise for f−1
2 (y∗) with Drug 2. That is y∗ = f(f−1

1 (y∗), 0) =

f(x∗1, x
∗
2) = f(0, f−1

2 (y∗)).

Definition 1. We say f is asynergistic, sometimes called additive, dose-additive, zero-

interactive, or noninteractive at the dose combination (x∗1, x
∗
2) if

x∗1
f−1

1 (y∗)
+

x∗2
f−1

2 (y∗)
= 1 (1)

If the “=” in (1) is replaced by “<,” f is said to be synergistic at (x∗1, x
∗
2). Alternatively, if

we have “>” instead of “=,” f is said to be antagonistic at (x∗1, x
∗
2).

The left side of (1) is known as Berenbaum’s Interaction Index (Feng & Kelly, 2004) and

the equality is an expression of the collinearity of (f−1
1 (y∗), 0), (x∗1, x

∗
2), and (0, f−1

2 (y∗)).
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The line through (f−1
1 (y∗), 0) and (0, f−1

2 (y∗)) is called the y∗-theoretical line of asynergy

(Laska et al., 1994). Asynergy occurs if (x∗1, x
∗
2) is on its y∗-theoretical line of asynergy.

Synergy occurs if (x∗1, x
∗
2) is below its y∗-theoretical line of asynergy. Antagonism occurs if

(x∗1, x
∗
2) is above its y∗-theoretical line of asynergy. Figure 1 illustrates the three scenarios.

The plots include a stylized view of the marginal response curves folded down onto the plane

of dose combinations. Each plot represents a different y∗ value and associated y∗-theoretical

line of asynergy.

The methods proposed in this paper primarily deal with assessing the presence of synergy

in a global sense. For a given domain, D, on which f is defined, we will consider f to be

asynergistic on D if (1) holds for all dose combinations (x∗1, x
∗
2). In our context D will

generally be the first quadrant, or some subset. Global synergy and antagonism are defined

analogously. In the global context, the three definitions can be classified in terms of the

level curves of the response surface. An asynergistic response surface has linear level curves,

a synergistic surface has convex level curves, and an antagonistic surface has concave level

curves as depicted in Figure 2.

Note that the level curves of an asynergistic surface are not restricted to be parallel,

therefore asynergistic surfaces are not limited to planes or even monotone transformations

of planes. Asynergistic surfaces are also not necessarily additive in the sense of Hastie &

Tibshirani (1986) (f(x1, x2) = f1(x1) + f2(x2)). As an example, consider the asynergistic

surface f(x1, x2) = x1 + (x2
1 + 4x2)

1/2, which produced the linear contours in Figure 2. This

surface is asynergistic with a concave marginal curve in x2 and linear marginal curve in x1.

In fact, any surface of the form fa,b(x1, x2) = x1 +((x1 +a)2 +bx2)
1/2, a, b ≥ 0 is asynergistic.

Given a sample {(xi1, xi2, yi) : i = 1, . . . , n} from the model yi = f(xi1, xi2) + εi, our

goal is to assess whether f is asynergistic, synergistic, or antagonistic. In Section 2 we will

review existing methods to handle this problem. In Section 3 we will propose our asynergistic

regression procedure. In the appendix we discuss consistency.

2. REVIEW OF EXISTING METHODS

There are three general classes of approaches to the synergy detection problem and we
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will label them with the terminology of Feng & Kelly (2004). The Response Surface Method

(RSM) is a classical regression approach along with a synergy assessment procedure. Within

the RSM there are parametric and nonparametric approaches in the literature. The Marginal

Dose-Response Curve Method (MDRCM) estimates the marginal response curve via data

from pure doses of each drug. The most recent contribution to the literature has been

regarding the Model-Free Test (MFT) (Feng & Kelly, 2004), which we briefly review.

2.1. MODEL-FREE TEST

Laska et al. (1989) introduced the Model-Free Test for synergy which has recently been

examined in higher dimensional context by Feng & Kelly (2004). Fix some combination

(x∗1, x
∗
2) and consider for r > 0, the line through (x∗1, x

∗
2) with slope −r: (x2 −x∗2) = −r(x1 −

x∗1). Note that x∗1 + x∗2/r and rx∗1 + x∗2 are the respective x1 and x2 intercepts. The MFT

procedure uses the following fact (Laska et al., 1994; Plummer et al., 1992).

Theorem 2. If there exists an r > 0 such that f(x∗1, x
∗
2) > f1(x

∗
1 + x∗2/r) and f(x∗1, x

∗
2) >

f2(rx
∗
1 + x∗2), then f is synergistic at (x∗1, x

∗
2).

The Model-Free Test begins with an approximation, −r, such that we believe f1(x
∗
1 +

x∗2/r) ≈ f2(rx
∗
1 + x∗2). (When we have equality in preceding, −r is the slope of the so-called

y∗∗-theoretical line of asynergy through (x∗1, x
∗
2), with y∗∗ the expected response at each of

the pure doses.) The result is a hypothesis test based on Theorem 2 of the form:

H0 : f(x∗1, x
∗
2) ≤ f(x∗1 + x∗2/r, 0) or f(x∗1, x

∗
2) ≤ f(0, rx∗1 + x∗2) (no synergy) (2)

versus

H1 : f(x∗1, x
∗
2) > f(x∗1 + x∗2/r, 0) and f(x∗1, x

∗
2) > f(0, rx∗1 + x∗2) (synergy). (3)

Laska & Meisner (1989) adapt the test for multiple dose combinations along the same diag-

onal of slope −r through the design space.

2.2. MARGINAL DOSE-RESPONSE CURVE METHOD

Another approach is to estimate the marginal response curves using data from studies of
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responses of pure doses of each drug. These monotone curves are used to generate hypothesis

tests for synergy.

Greco et al. (1995) provide a thorough review of the prominent methods developed

through 1995. The authors discuss several parametric models for estimating the marginal

response curves including the logistic model (Carter et al., 1985) and median effect/sigmoid

model (Chou & Talalay, 1983). Kelly & Rice (1990) suggest a hybrid smoothing spline and

least squares as a nonparametric alternative. The estimated marginal response curves are

generally utilized in one of two ways.

In the first method, one builds a response surface as an extension of the marginal response

curve estimates under the assumption of asynergy. That is, a surface with linear level curves

is constructed possessing the estimated marginal curves. Kelly & Rice (1990) introduced a

searching algorithm for finding these level curves. Once the asynergistic surface is established,

an experiment is conducted on combined doses and the observations are compared to the

constructed asynergistic surface.

The second methods fits the data to a model with a suitable “synergy parameter,” uti-

lizing the marginal curve estimates. The hypothesis test is then based on the estimation of

the synergy parameter. Greco et al. (1995) suggest a parametric model for this approach.

2.3. RESPONSE SURFACE METHOD

Finally, the RSM fits the data to a surface all at once, giving no special treatment to

the marginal dose-response curves. An assessment is then made as to whether this surface

deviates significantly from an asynergistic one.

A slight variation from this general theme, Tibshirani (1990) suggested fitting a bivariate

smoother, a gaussian kernel smoother say, and straightening its level curves by a “local

principal component line fitting” process. The straightening is accomplished by local (with

respect to the observed responses) averaging of dose combinations near the same level curve.

Fitting such an asynergistic surface is the focus of the methods we propose. Our methods

however, will attempt to fit such a surface directly, that is without first fitting a general

surface.
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3. MAXIMIZING ASYNERGISTIC RANK CORRELATION:

THE ASYNERGYMAX ALGORITHM

A special case of an asynergistic surface is one with parallel linear level curves. Han

(1987), without reference to synergy, introduced a “semiparametric monotonic linear index

model” of the form Yi = D ◦ F (x′
iβ0, εi). Here Yi is an observed response, D is a monotone

increasing function, F is strictly increasing in both arguments, xi is a known p-vector, β0

is an unknown p-vector of interest, and εi is random error independent of xi. Han also

introduced a maximum rank correlation (MRC) estimator

argmax
β∈B

1

n(n− 1)

∑

i6=j

{Yi > Yj}{x
′
iβ > x′

jβ} (4)

where {·} represents the indicator function and B is an appropriate subset of Rp, the unit

ball say. The necessity of restricting Rp becomes apparent in light of the fact that scalar

multiples of a particular β yield the same rank correlation. The power of estimators of this

type is that they exploit monotonicity without making assumptions about the particular

form of D or F . Assumptions regarding the error distribution are minimal as well. Sherman

(1993) showed (4) is n1/2-consistent and asymptotically normal.

Cavanagh & Sherman (1998) proposed a class of consistent and asymptotically normal

estimators of the form

β̂n = argmax
β∈B

n∑

i=1

M(Yi)Rn(x′
iβ) (5)

where Rn is the rank function Rn(ai) =
∑n

j=1{aj ≤ ai}, for (a1, . . . , an) ∈ Rn, and M is

either deterministic or Rn. When M is Rn, the quantity being maximized in (5) is a linear

function of Spearman’s rank correlation coefficient. When M = Rn we will refer to (5) as

the Spearmax estimate of β0.

One way to approach the generalized asynergistic regression problem is to maximize

Spearman’s rank correlation over all asynergistic functions. This amounts to finding the

asynergistically consistent ordering of the points in the design space which maximizes its rank

correlation with the observations. An asynergistically consistent ordering is one associated

with a viable asynergistic surface.
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Suppose we have an n × 2 design X = (X1,X2) with associated responses Y. Let Ω

be the space of all asynergistic functions on our design space. For each f ∈ Ω, the linear

contour through (xi1, xi2) has intercepts (x̃fi1, 0) and (0, x̃fi2). The vector X̃f1 determines

an ordering of the dose combinations. We seek

X̃∗1 = argmax
eXf1:f∈Ω

Rn(X̃f1)Rn(Y) (6)

Once X̃∗1 is found, the problem is reduced to simple monotone smoothing accomplished

with Ramsay’s monotone smoother (Ramsay, 1998) or a constrained B-spline smoother for

example. We will describe an algorithm which approximates X̃∗1, but first it is instructive

to discuss known bounds on the target rank correlation.

Recall that the space of asynergistic functions are all functions with linear contours

with negative slope. The space of functions with parallel and linear contours with nega-

tive slope is clearly contained in Ω. We have the lower bound maxβ∈B Rn(Xβ)Rn(Y) ≤

maxf∈Ω Rn(X̃f1)Rn(Y), where B traces out the first quadrant part of the unit circle (which

produces negatively sloped parallel contours).

We invoke the matrix partial ordering: (x1, y1) . (x2, y2) if and only if x1 ≤ x2 and

y1 ≤ y2. Clearly any asynergistically consistent ordering must obey the matrix partial

ordering. Therefore, consider sorting the design with respect to the partial ordering, breaking

ties with the responses, Y. This ordering is not necessarily asynergistically consistent, but

it provides a nontrivial upper bound on the desired rank correlation.

We describe a subroutine which incrementally improves the rank correlation associated

with some asynergistically consistent ordering. Take some collection of points which are

adjacent in terms of a given asynergistically consistent ordering and place them in the “active

bin.” Now maximize the total rank correlation over asynergistic functions with parallel

contours through the points in the active bin holding the other contours “as fixed as possible.”

In practice this is done by conducting a grid search through possible contour slopes. For

each slope in the grid, if the active contours cross any inactive contours, the slope of the

violated inactive contours are also updated. This allows the bin selection to be “fuzzy”
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in the sense that points in adjacent bins can be included in the active bin. The resulting

rank correlation after all the contours are uncrossed is compared with the previous best

asynergistically consistent rank correlation. If the rank correlation is improved the new

contours are kept, otherwise we revert to previous contours.

For example, consider a random sample of size 20 as pictured in Figure 3 with the contours

resulting from the Spearmax estimate. Rank correlation is 0.8561. The points in the active

pool are indicated with “x” instead of “◦”. In this case the senventh through tenth points

are in the active bin. In Figure 3 we attempt to update the slope through the active pool,

but the contours now cross. In Figure 3 we update the inactive contours and compute the

rank correlation. If this new rank correlation is greater than 0.8561, we keep the updated

contours. If there is no improvement in the rank correlation we revert to the contours in

Figure 3. In either case, we then proceed to the next slope value in our grid search. Once

all the slope values have been checked, we proceed to the next bin.

In pseudo code, the Asynergymax subroutine begins with current estimates of the inter-

cepts X̃ such that (x̃i1, 0), (xi1, xi2), and (0, x̃i2) are collinear for all i and none of these lines

cross. We also have an active bin associated with some adjacent collection of intercepts with

indices a = (a1, a2, . . . , ak). U is a list of unit vectors, ui, which represent a suitably fine grid

of directions in R2. Let X̃a denote the matrix of the a1, a2, . . . , ak rows of X̃, and likewise

for X. The subroutine proceeds:

1. Initialize new intercepts X̃(1) := X̃.

2. For each ui in U compute new intercepts X̃
(1)
a1 = Xa(ui1/ui2, 1)′, and X̃

(1)
a2 = Xa(1, ui2/ui1)

′

associated with lines through the points (xj1, xj2), j ∈ a, all having normal vector ui.

(a) For all j not in a, if Rn(x̃
(1)
j1 ) 6= Rn(x̃

(1)
j2 ), give (xj1, xj2) new intercepts as well:

x̃
(1)
j1 = x′

j(ui1/ui2, 1), and x̃
(1)
j2 = x′

j(1, ui2/ui1) until Rn(X̃
(1)
1 ) = Rn(X̃

(1)
2 ) (ensuring

no lines cross).

(b) Compute the (unscaled) rank correlation associated with new intercepts and

record as ri = Rn(Y)′Rn(X̃
(1)).
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(c) Reset intercepts X̃(1) = X̃ and repeat until all grid values have been evalutated.

3. Finally update the intercepts by those associated with greatest rank correlation. That

is, once again compute the intercepts for ui where ri is the maximal component of the

list r.

4. Set X̃ := X̃(1), the intercepts which maximize rank correlation with respect to the

current active bin and proceed to next active bin.

We get good results by allowing the bin sizes to follow the geometric progression (n,

n/2, n/4, n/8, . . . , 1), but again, these bin sizes are allowed to expand as necessary with

the “uncrossing” step. The first iteration, with one bin of size n, is simply the Spearmax

estimate. The next iteration takes the first n/2 points in the first bin and the rest in the

second bin, and so on. Each iteration divides the previous bins in half until there is only one

point in each of n bins.

Note the apparently higher variability in the lower left. The estimates in the lower left

and upper right are susceptible to this defect given the experiment’s square sampling design.

There are fewer observations on which to base the estimate of the slope through points in

these regions. One could fix a larger bin size over regions of this type to reduce this type of

estimation variance. For example, if the bin size in the lower left was not allowed to be less

than 4, the first four contours would necessarily have the same slope.

4. SIMULATIONS AND A TEST OF GLOBAL SYNERGY

In this experiment we used a random design with 50 dose combinations with each dose

sampled independently from the Unif(0,1) distribution. We approximated the power of the

test using 1000 trials with the synergistic surfaces fδ(x1, x2) = x1 + (x2
1 + 4x2)

1/2 + x1x2δ, δ

ranging from 0 (asynergy) to 8 (strong synergy). Two procedures were used. First, Asyner-

gymax was applied to estimate the contours, then a constrained B-spline smoother monotone

smoothed the responses. Second, Spearmax was applied followed by the constrained B-spline

smoother.
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Global synergy was assessed using the asynergistic fit from the algorithms by examining

a residual plot of, {yi − f̂(x1i, x2i)}, versus {tan−1(x2i/x1i)}. This can be viewed as a global

version of the MFT performed on all of the interior observations at once.

Figure 4 illustrates these plots from simulations using various δ values. This plot detects

patterns in the residuals with respect to location relative to the axes. In the presence of

global synergy, the asynergistic fit will overestimate the response for doses near each margin

and underestimate response from doses in the interior of the grid. Therefore if we fit a

quadratic to these residuals using an ordinary least squares regression, we would expect to

see a negative quadratic term, θ say, in the presence of synergy. Alternatively, if the true

model is asynergistic, the quadratic term should be near zero. If the truth is antagonism,

we expect a positive quadratic term. This suggests a one-sided hypothesis test for synergy

of the form: H0 : θ = 0 (asynergistic) versus H1 : θ < 0 (synergy), where θ is the estimated

quadratic term from the fit of the residuals. A t-test was applied to this estimate with

significance level α = 0.1. To approximate the power of this test, we ran the algorithm 1000

times for each δ.

As a comparison, we also estimated the power of the test when the true asynergistic

contours are known and when the true marginal dose-response curves (MDRCs) are known.

When the true contours are known, we still apply a monotone smoother to the responses

based on this known ordering. When the MDRCs are known, we base our test on the

residuals from the surface f0, i.e. when δ = 0. Figure 5 and Table 1 depict the results.

Figure 5 adjusts the approximated power curves so the intercepts (the significance level)

agree for each curve. For this family of synergistic surfaces and this test for synergy, both

procedures perform well and are as good as knowing the true contours.

In this experiment the power curve is drastically improved when we know the true

MDRCs. This is due to the fact that responses from high concentrations of both drugs

are compared to responses from extreme pure doses which we do not observe. Given the

information on D = [0, 1] × [0, 1], we cannot estimate responses from a pure dose of either

drug greater than 1. When δ is large, responses from these pure doses greater than 1 are
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small relative to responses from dose combination where both concentrations are near 1. The

residuals based on the MDRCs are therefore large from doses on the upper right triangle

which results in greater convexity in the residual plot and more synergy conclusions.

The experiment was repeated with one adjustment. Instead of taking dose combinations,

(x1i, x2i), uniform on the unit square, we take (x1i, x2i) uniform on a triangular region,

D = {(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ x1}.

The results of the simulation are depicted in Figure 6 and adjusted so that significance levels

agree in Table 1. Again we see that both procedures detect synergy well. In this case the

procedures perform as well as knowing either the true contours or the true MDRCs.

Since the Spearmax class of surfaces (parallel linear contours) is contained in the Asyner-

gymax class (linear contours), the Asynergymax procedure must match or exceed Spearmax

in terms of mean squared error (MSE). When the alternative is true and contours are con-

vex, both procedures produce biased estimates of the quadratic term of the fit through the

residual plot. In the “square design” experiment, the bias from the Spearmax procedure

tends to favor a synergy conclusion more so than the Asynergymax. The opposite was true

in the “triangular design” experiment. When the null hypothesis is true and the contours

are in fact linear, this bias will go away asymptotically using the Asynergymax procedure,

but in general it will remain using the Spearmax procedure. Therefore, one advantage of

using Asynergymax is that false positive tests for synergy (Type I errors) could be reduced

if the Spearmax bias favors a synergy conclusion.

Another observation is that our random design experiments offer little information re-

garding contours through the upper-right-hand or lower-left-hand corner of the unit square.

There are relatively fewer observations near these contours, and therefore greater variance in

estimating the slope, say, of these contours. The “triangular design” reduces this variances

by eliminating one of these extreme regions. Sampling from a triangular region is also more

realistic, since in practice a large dose of multiple agents would most likely be avoided.

One obvious drawback of a global approach to synergy detection is that the true level of

synergistic effect is not necessarily consistent throughout the region of interest. For example,
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for the curves used in our experiments the contours are most convex in the lower left region

of the design. In the upper right region, the contours are nearly linear. This was another

motivation for sampling from the triangular region, where the true contours were most convex

and nonparallel.

Another issue to consider is whether the contours are parallel or “splayed” (nonparal-

lel). In particular, if the underlying surface is synergistic but the contours are parallel, the

advantage of Asynergymax over Spearmax is lost. For example, a surface with concentric

parallel contours such as the cone 2 − (x1 − 1)2 − (x2 − 1)2 would yield similar results from

both procedures since there is no splaying effect.

As discussed in the MFT literature (Laska & Meisner 1989), we can detect synergy well

even when the slope of the y∗∗-theoretical line of asynergy is not accurately estimated. In

fact optimal power is not guaranteed to accompany the true slope of this line. Similarly,

the Spearmax procedure can yield good power with our proposed global test even though

Asynergymax is better at estimating the slopes of the y∗∗-theoretical lines of asynergy.

5. APPENDIX

We can adapt the methods of proving Spearmax consistency as developed by Han (1987),

and Cavanagh & Sherman (1998) to the purpose of proving consistency of the Asynergymax

procedure. First we we describe how asynergistic functions on Rp
+ can be identified with p

monotone increasing functions.

Let f be an asynergistic function on Rp
+. Any asynergistic model of the form

Yi = f(xi) + εi, (7)

where εi are i.i.d. error terms, can be written in terms of p monotone increasing functions

on R+. Given a set of p − 1 monotone increasing functions αi : R+ → R+, onto R+, let
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ψ(x;α1, . . . , αp−1) be the number x such that x is on the hyperplane through the points

(x, 0, . . . , 0),

(0, α1(x), 0, . . . , 0),
...

(0, . . . , 0, αp−2(x), 0), and

(0, . . . , 0, αp−1(x)).

(8)

Then for the appropriate monotone increasing functions, F, α01, . . . , α0(p−1), the model (7)

can be written Yi = F (ψ(xi;α01, . . . , α0(p−1))) + εi. Each level set of the underlying asyner-

gistic f is a hyperplane through the points

(x, 0, . . . , 0),

(0, α01(x), 0, . . . , 0),
...

(0, . . . , 0, α0p−2(x), 0), and

(0, . . . , 0, α0p−1(x)),

for some x ∈ R+. Note that given the asynergistic function f and its first marginal dose-

response curve f1(x) = f(x, 0, . . . , 0), we can write

ψ(x;α01, . . . , α0(p−1)) = f−1
1 (f(x)).

That is, ψ maps points in Rp
+ to the first axis along the level sets of f . Under the assump-

tion αi is onto R+ for all i, one can always determine ψ(x;α1, . . . , αp−1) numerically via a

searching algorithm: increase x until the hyperplane defined by (8) contains x. An analytic

formulation of ψ given the αi is also possible if one can solve the equation of the hyperplane

through the points (8) and x for x.

For any asynergistic function, f , there exists such a unique set of monotone functions

F, α01, . . . , α0(p−1). In fact, we can write the functions explicitly in terms of f and marginal

dose-response curves, fi, as

α0i(x) = f−1
i+1 ◦ f(x, 0, . . . , 0) = f−1

i+1 ◦ f1(x)
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and F (x) = f1(x).

The α0i functions are compositions of monotone functions by definition of asynergy, and

therefore monotone themselves as is F . However, it is important to observe that distinct

asynergistic functions may have the same α01, . . . , α0(p−1) (with a different F ).

For the consistency argument, we are forced to restrict the class of allowable αi via a

finite basis. Fix some collection of d monotone increasing basis functions νi : R+ → R+, i =

1, . . . , d. Consider the class of monotone increasing functions

{α : R+ → R+ : α = β1ν1 + · · · + βdνd, β ∈ Rd
+}. (9)

Now for β = (β11, . . . , β1d, . . . , β(p−1)1, . . . , β(p−1)d)
′ ∈ R

d(p−1)
+ we write

ψ(x; β) = ψ(x;α1, . . . , αp−1)

where αi = βi1ν1 + · · ·+ βidνd.

Let B be some compact subset of R
d(p−1)
+ . We assume observations {(xi,Yi) : xi ∈

Rp, Yi ∈ R, i = 1, . . . , n} are generated from the model

Yi = F (ψ(xi; β0)) + εi, β0 ∈ B

for some unknown monotone F .

We prove Asynergymax is consistent for estimating β0 in a manner analogous to Cavanagh

& Sherman’s (1998) proof that Spearmax is consistent. As in the Spearmax setting we are

not particularly concerned with the exact form of the monotone F , but we wish to exploit

its monotonicity as a function of its level sets to estimate the “form” of those level sets.

Let M : R → R+ be a deterministic increasing function. Define

Gn(β) =
1

n(n− 1)

n∑

i=1

M(Yi)Rn(ψ(xi; β))

or equivalently

Gn(β) =
1

n(n− 1)

∑

i6=j

M(Yi){ψ(xi; β) > ψ(xj; β)}
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and βn = argmax
β∈B

Gn(β). As in Cavanagh & Sherman (1998), we first prove consistency of

βn, then replace the function M with the Rn(·) function and show the argument remains

valid. Essentially, everywhere the literature refers to x′β, we replace it with ψ(x; β) and

demonstrate that the proof still holds.

We will require the following assumptions:

(A0) E[M(Y )|x] depends on x only through ψ(x; β0).

(A1) E[M(Y )|x] is monotone increasing function of ψ(x; β0).

(A2) The support of x is not contained in a linear subspace of Rp.

(A3) x has a positive Lebesgue denstiy on Rp
+.

(A4) B is a compact subset of R
d(p−1)
+ .

(A5) E[M(Y )]2 <∞.

(A6) M : R → R+ and M is increasing.

Assumptions (A0)-(A4) are required to ensure identifiability. Assumption (A5) allows us to

invoke a zero-mean U-process result of Sherman (1994). The assumption that M is positive

valued (A6) is not included in the analogous Spearmax proof, but it shortens our proof and

is still broad enough to encompass the Rn(·) rank function which is bounded below by 1.

Let G(β) = EM(Y1){ψ(x1; β) > ψ(x2; β)} = EGn(β).

Lemma 3. G(β) is uniquely maximized at β0.

Proof. Using assumption (A0), we let H(ψ(x; β0)) = E[M(Y)|x]. We have

G(β) =
1

2

(
EM(Y1){ψ(x1; β) > ψ(x2; β)}

+ EM(Y2){ψ(x1; β) < ψ(x2; β)}
)

=
1

2
E

(
H(ψ(x1; β0)){ψ(x1; β) > ψ(x2; β)}

+H(ψ(x2; β0)){ψ(x1; β) < ψ(x2; β)}
)

(10)
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H must be a monotone increasing function of ψ(x; β0) by (A1). Therefore, if β = β0,

(A2) ensures the indicators in the above almost surely “choose” the larger of H(ψ(x1; β0))

andH(ψ(x2; β0)). As a result,

G(β0) =
1

2
E max

(
H(ψ(x1; β0)),H(ψ(x2; β0))

)
.

and for any β ∈ B, G(β) ≤ G(β0).

Now we show β0 uniquely maximizes G(β). Suppose for some β ∈ B

G(β) = G(β0) =
1

2
E max

(
H(ψ(x1; β0)),H(ψ(x2; β0))

)
. (11)

We claim there exists sets A1, A2 ⊂ Rp
+ such that x1 ∈ A1 and x2 ∈ A2 implies

ψ(x1; β0) > ψ(x2; β0), but ψ(x1; β) < ψ(x2; β).

We show such sets exist in the case p = 2. The higher dimensional argument is analogous.

If β0 6= β, there must be a level set associated with β0 which intersects with a level set

associated with β. When p = 2, these level sets are lines which intersect at a point. Let

α0 be the monotone function associated with the parameter β0 and let α be the monotone

function associated with β.

We refer to the notation in Figure 7 where we labeled one of the wedges adjacent to the

intersection of the level sets A1 and another A2. Now for x1 ∈ A1 and x2 ∈ A2, by the

monotonicity of α0 and α we have

ψ(x1; β0) > x > ψ(x2; β0) and ψ(x1; β) < y < ψ(x2; β)

as desired.

Now we invoke the assumption that M is positive valued and x has a positive Lebesgue

16



density on Rp
+. We have

G(β0) −G(β) =EM(Y1){ψ(x1; β0) > ψ(x2; β0)}

− EM(Y1){ψ(x1; β) > ψ(x2; β)}

≥E
(
M(Y1)

(
{ψ(x1; β0) > ψ(x2; β0)}

− {ψ(x1; β) > ψ(x2; β)}
)
{x1 ∈ A1}{x2 ∈ A2}

)

=E
(
M(Y1){x1 ∈ A1}

)
P(x2 ∈ A2)

=E
(
M(Y1){x1 ∈ A1}

)
P(x2 ∈ A2)

>0.

Therefore β0 is a unique maximizer of G.

The consistency arguments of Sherman (1994) and Cavanagh & Sherman (1998) now

follow with minor modifications.
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6. TABLES AND FIGURES

Table 1: Approximate power using Spearmax and Asynergymax

Square Design Triangular Design

δ Spearmax Asynergymax Spearmax Asynergymax

0 0.107 0.092 0.088 0.102

2 0.212 0.191 0.196 0.207

4 0.362 0.354 0.376 0.391

6 0.547 0.540 0.569 0.593

8 0.721 0.691 0.727 0.735
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Figure 1: Local asynergy, synergy, and antagonism.
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Figure 2: Global asynergy, synergy, and antagonism surfaces and contours.
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Figure 3: The Asynergymax subroutine.
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Figure 4: Residuals plotted against tan−1(x2/x1).
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Figure 5: Approximate power curves using Spearmax and Asynergymax (square design

space).
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Figure 6: Approximate power curves using Spearmax and Asynergymax (triangular design

space).
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Figure 7: Intersecting contours.
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