
ar
X

iv
:p

hy
si

cs
/0

60
92

11
v1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 2
5

Se
p

20
06

Fast random number generation

using 128 bit multimedia extension registers on Pentium class machines

Borko D. Stošić∗

Departamento de Estat́ıstica e Informática, Universidade Federal Rural de Pernambuco,
Rua Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife-PE, Brasil

(Dated: October 17, 2018)

In this work it is shown how 128 bit SSE2 multimedia extension registers, present in Pentium IV
class 32 bit processors, may be used to generate random numbers at several times greater speed
then when regular general purpose registers are used. In particular, a 128 bit algorithm is presented
for the Marsaglia MWC1616 generator from the DIEHARD battery of random number generator
tests, and its performance is compared to that of the conventional approach.

Scientific computing has seen some impressive devel-
opment over the last couple of decades, made possible
by the exponential advent of cheap computer resources:
what was doable a decade ago only on a supercomputer,
today can be implemented on a laptop. On the other
hand, the appetites of scientists using computational
techniques have grown in parallel, so that algorithms
used nowadays often require weeks (or months) of con-
tinuous processing, same as (orders of magnitude more
modest) algorithms used a decade or two ago. While
we can certainly expect the performance of processors
to continue improving (driven by general market require-
ments), it is a fact that during a single clock tick of a (cur-
rently common) 3GHz processor, the light traverses only
10cm - roughly twice the linear dimension of the actual
processor chip (this is actually an overestimate, as elec-
trical signals propagate through matter at speeds lower
then the speed of light in vacuum of 3×108 m/s). Signif-
icant further increase in clock times is therefore closely
related to reducing the physical dimensions of the chip,
and currently, parallel computing seems to be the most
promising way out of these physical limitations.

In fact, the Intel processor manufacturer has already
adopted this strategy [1] some years ago, and most per-
sonal computers today already contain parallel process-
ing hardware capability. More precisely, starting with
Pentium II processors, SIMD (Single Instruction Mul-
tiple Data) parallel computation on eight new internal
64 bit registers (called MM0-MM7) was introduced (this
standard was named MMX, an abbreviation for Multi-
media Extension). The concept was further improved in
Pentium III processors by introducing another eight 128
bit registers (called XMM0-XMM7) with a corresponding
instruction set (the standard was named SSE - Streaming
SIMD Extensions), and in Pentium IV the SSE2 standard
was implemented with an improved instruction set. Fi-
nally, in the Pentium IV processor 3.40 GHz, supporting
Hyper- Threading Technology, SSE3 standard was intro-
duced with additional thirteen instructions. The current
SSE2/3 standard works with packed data (two double
precision, four single precision, or 16/8/4/2 integers of
8/16/32/64 bits each), where a single instruction is si-

multaneously executed on the packed variables. When
dealing with single precision floating point numbers or 32
bit integers, this architecture yields (roughly) four times
the performance of regular SISD (Single Instruction Sin-
gle Data) processing on the same processor.
It seems that the above developments have not been

widely recognized by the scientific community, while ev-
idently they may prove crucial in a number of situations
where performance is critical. One such example is the
(pseudo) random number generation, which often proves
to be the bottleneck in high performance simulations
(such as Monte Carlo, Simulated Annealing, Bootstrap,
etc.) requiring high precision, when high periodicity and
low correlation of the random number sequence is re-
quired.
In this work, a 128 bit algorithm is presented for the

Marsaglia’s MWC1616 [2] generator with a period of
roughly 259, which passes all of the tests in the stringent
DIEHARD suite of random number generator tests [2, 3].
Performance of this algorithm is then compared with the
conventional approach, both using function calls and C
language macros. First a brief overview of the MWC1616
generator is given, followed by a naive but straightfor-
ward implementation in C, then a better macro version,
and finally the 128 bit parallel algorithm. Next, the per-
formance testing results of the three algorithms are pre-
sented, obtained on a Celeron 1.6GHz processor. Finally,
the conclusions are drawn.
The MWC1616 uniform (pseudo)random number gen-

erator [2] concatenates results of two 16 bit MWC (Multi-
ple With Carry) generators [4] to produce a 32 bit result.
The two 16 bit generators have the form

xn+1 = [a xn + cn] mod 216,

yn+1 = [b yn + dn] mod 216, (1)

where a and b are multipliers (a good choice is a =
18000 and b = 30903, a table of suggested values can
be found in [2]), cn and dn are corresponding 16 bit
overflow values (carry) resulting from 16 bit multiplica-
tion at level n, and the symbol “mod” indicates mod-
ulus operation. The period of this generator is given
by

(

a× 215 − 1
) (

b× 215 − 1
)

[2], yielding over 259 ∼

http://arxiv.org/abs/physics/0609211v1

2

6 × 1017 for the choice a = 18000 and b = 30903. The
generator is easily implemented in C by using unsigned
long 32 bit integers to store xn and yn in the low words
and carry values cn and dn in the high words, using only
two statements

x=a*(x&0xFFFF)+(x>>16);

y=b*(y&0xFFFF)+(y>>16);

while the 32 bit integer to be returned (which represents
the member of the random sequence), is calculated by
concatenating the two low words with the statement

(x<<16)+(y&0xFFFF);

Finally, before running the generator one needs to ini-
tialize the two 16 bit seeds and the initial carry val-
ues, by choosing a value for 0 < x0 ≤ 2147483647
and 0 < y0 ≤ 2147483647 (2147483647 is decimal for
0x7FFFFFFF, the 16 bit seed is stored in the low word,
and initial carry value in the high word).

The most straightforward full implementation in C
programming language of the MWC1616 generator given
by equation (1), is given below

static unsigned long x=1, y=2;

void seed(unsigned long x0, unsigned long y0)

{

x=x0;

y=y0;

}

unsigned long MWC1616()

{

x=18000*(x&0xFFFF)+(x>>16);

y=30903*(y&0xFFFF)+(y>>16);

return (x<<16)+(y&0xFFFF);

}

where the initial seed values have been set to x0 = 1, y0 =
2 and c0 = d0 = 0. The seed() function should be called
on initialization, before the first call to MWC1616(), to
specify the origin of the random number sequence.

While extremely simple and efficient (in comparison
with many other random number generators), this im-
plementation suffers from the fact that each function call
is accompanied by function prologue and epilogue over-
head (sequences of assembly instructions inserted by the
compiler on the beginning and the end, respectively, of
any function call). It is rather more efficient to replace
the MWC1616() function call by a C language macro, as
follows:

#define xnew (x=(18000*(x&0xFFFF)+(x>>16)))

#define ynew (y=(30903*(y&0xFFFF)+(y>>16)))

#define MWC1616 ((xnew<<16)+(ynew&0xFFFF))

This approach dispenses with the function call overhead
(the machine language opcode is literally inserted by the
compiler at all places where the macro is called), while
implementing exactly the same sequence of operations.
The function seed() need not be replaced with a macro,
as it is called only on rare occasions (normally only upon
initialization).

In order to implement the MWC1616 generator in 128
bit arithmetic, in what follows the SSE2 Pentium IV
standard shall be used, as this is currently probably the
most widespread situation, and it seems that the SSE3
extensions found in newer processors do not provide any
additional functionality relevant for the current imple-
mentation. Unfortunately, in order to implement the
MWC1616 generator using the 128 bit XMM registers
and the SSE2 instruction set, one needs to resort to
assembly language programming. The problem is that
these are highly specialized features of the processor, in-
troduced mainly for the purpose of multimedia stream-
ing and high performance graphics processing. Conse-
quently, the high language compiler manufacturers have
not found an interest in incorporating these features in
any of the high level languages (such as C or Fortran),
with the exception of the Intel C compiler. As the current
author had no access to this particular compiler at the
time of writing this paper, inline assembly code was used
within the Microsoft Visual Studio 6.0 environment, us-
ing the cl 32 bit C/C++ compiler. In order for this envi-
ronment to recognize the SSE2 extensions together with
the XMM register set, first the Intel SSE2 processor pack
had to be installed. It should be mentioned here that the
use of the Intel C compiler essentially requires identical
effort in writing SSE2 code as assembly programming, as
the C language instructions have practically one-to-one
correspondence with their assembly language equivalents.

Although most personal computers nowadays fall into
Pentium IV class, before embarking on SSE2 assembly
programming one should check for the existence of these
features on the processor to be used. This can be accom-
plished (in assembly) by loading the eax register with
value 1, issuing a CPUID instruction, and then examin-
ing the edx register: if the bit 26 is set, the processor
supports SSE2 extensions. The following function in C
with inline assembly may be used to implement this test
(here the “//” symbol indicates a comment from the cur-
rent position to the end of the line):

int SSE2Available()

{

int available = 0;

_asm

{

mov eax, 1 //load eax register with 1

cpuid //issue CPUID

shr edx, 26 //shift right 26 places

and edx, 1 //mask out other bits

3

mov [available], edx //copy result

};

return available;

}

If the processor does not support SSE2 extensions the al-
gorithm described in the rest of this paper will not work.
It should be mentioned here that the check for support
of earlier standards SSE and MMX may be performed
by examining bits 25 and 23, respectively of edx after
CPUID instruction call, while support of the latest SSE3
standard is returned in bit 0 of the ecx register.
Let us now turn to the actual 128 bit implementa-

tion of the MWC1616 generator. First, as the current
implementation deals with fourfold parallel instructions,
one needs to initialize eight seeds (rather then only two).
Next, manipulation of registers is generally faster then
operations performed between registers and memory, so
constant arrays are first declared and initialized, to be
loaded in scratch xmm registers on startup. The fol-
lowing code snippet was used to declare and initialize
variable arrays and constants

static unsigned int

x[4]={1,1,1,1},

y[4]={2,2,2,2},

r[4],

mask[4]={0xFFFF,0xFFFF,0xFFFF,0xFFFF},

mul1[4]={18000,18000,18000,18000},

mul2[4]={30903,30903,30903,30903};

_asm

{

movdqa xmm0, x //load array x into xmm0

movdqa xmm1, y //load array y into xmm1

movdqa xmm5,mask //load mask

movdqa xmm6,mul1 //load first multiplier

movdqa xmm7,mul2 //load second multiplier

}

where the SSE2 instruction “movdqa” loads values of
variable arrays x and y into registers xmm0, xmm1,
and constant arrays mask, mul1 and mul2 into registers
xmm5, xmm6 and xmm7, respectively, for posterior use.
Note that the arrays x and y have been initialized with
same seeds for all four indices for testing purposes (to ver-
ify whether all the four adjacent 32 bit blocks yield the
same result), in a real application all four pairs should be
initialized to distinct values. More precisely, each of the
four seeds of the first four MWC 16 bit generator group
has been set to value 1 (low words of x[i], i=1,..,4), each
of the four seeds of the second generator group has been
set to value 2 (low words of y[i], i=1,..,4), and all the
initial carry values have been set to 0 (high words of x[i]
and y[i], i=1,..,4).
A single update of each of the MWC 16 bit generators

can be broken down in the following elementary steps on
a 32 bit block x:

i) extract the low word (as x&0xFFFF)

ii) multiply the result with the constant multiplier

iii) extract carry from x (as x>>16)

iv) add results of ii) and iii)

and the MWC1616 generator may be implemented with
SSE2 instructions as follows:

_asm

{

movdqa xmm2, xmm0 //make a copy of x

psrld xmm2, 10h //x>>16 in xmm2

//now find a*(x&0xFFFF)

//in current exemple, a=18000=0xmm1650:

andps xmm0, xmm5 //x&0xFFFF

movdqa xmm3,xmm0 //make a copy

pmullw xmm0, xmm6 //multiply, save low word

pmulhuw xmm3, xmm6 //multiply, save high

pslld xmm3, 10h //high result << 16

orps xmm3,xmm0 //low OR high

//a*(x&0xFFFF) now (finally) in xmm3

paddd xmm2,xmm3 //a*(x&0xFFFF)+(x>>16)

movdqa xmm0,xmm2 //copy new value to x

pslld xmm2, 10h //save x<<16 (for return)

// now second generator...

movdqa xmm4, xmm1 //make a copy of y

psrld xmm4, 10h //y>>16

//find b*(x&0xFFFF), where b=30903=0x78B7:

andps xmm1, xmm5 //y&0xFFFF

movdqa xmm3,xmm1 //make a copy

pmullw xmm1, xmm7 //multiply, save low word

pmulhuw xmm3, xmm7 //multiply, save high

pslld xmm3, 10h //high result << 16

orps xmm3,xmm1 //low OR high

//b*(x&0xFFFF) in xmm3

paddd xmm3,xmm4 //b*(y&0xFFFF)+(y>>16)

movdqa xmm1,xmm3 //copy new value to y

andps xmm3, xmm5 //and with 0FFFFh

paddd xmm2,xmm3 //(x<<16)+(y&0xFFFF)

//random number in xmm2

movdqa r,xmm2 //save result in array r

}

The principal problem that was encountered when imple-
menting these steps in parallel, on the four adjacent 32
bit blocks stored in the XMM registers, was to perform
multiplication in step ii). Namely, the SSE2 instruction
set does not contain an adequate instruction to multiply
16 bit values in the low words of the four adjacent blocks
(the high words are by definition zero, as both the current
value and the multiplier are 16 bit integers), and store the
results in the same 32 bit blocks. Instead, two distinct
multiplication instructions were used for multiplying 16
bit blocks, and then storing first the low, and then the
high 16 bit result, as exemplified by the following code
snippet:

4

andps xmm0, xmm5 //x&0xFFFF

movdqa xmm3,xmm0 //make a copy

pmullw xmm0, xmm6 //multiply, save low word

pmulhuw xmm3, xmm6 //multiply, save high

pslld xmm3, 10h //high result << 16

orps xmm3,xmm0 //low OR high

Here, the value (x&0xFFFF) in the xmm0 register is
first copied to xmm3, the two copies are then individ-
ually multiplied by the constant previously loaded into
xmm6, where first low word and then high word results
are stored. Next, the high result is shifted 16 places to
the left, and finally OR-ed with the low word result, to
yield the final product values.
The three different implementations of the MWC1616

generator, all yielding exactly the same sequences (given
the same seeds) of uniform deviates, have been tested us-
ing a Celeron 1.6GHz processor, on a Toshiba Satellite
laptop computer. The tests were performed for all three
implementations, both with and without compiler opti-
mization (flags /Od and /O2 of the cl compiler). Tim-
ing results (per uniform deviate) performed by averaging
over 1000 blocks of 1000000 deviates, are summarized in
Tab. I.

TABLE I: Execution time in nanoseconds per MCW1616
uniform deviate, averaged over 20000 blocks of 50000 devi-
ates each. Results are presented for both debugging version,
and compiler optimized code, where σD and σO represent the
corresponding standard deviation over the 20000 blocks.

Version Debug σD Optimized σO

C function 58.47 2.94 48.56 3.14
C macro 31.15 2.66 29.19 2.40
SSE2 5.72 1.01 5.34 0.92

It is seen from Tab. I that compiler optimization has
a significant impact only in the case of a straightforward
function call (in the case of SSE2 compiler optimization
affects only the outer loops, while inline assembly se-
quences are preserved). The standard deviation over the
1000 runs (of 1000000 deviates each) is presented to in-
dicate the extent to which the background activity of the
operating system affects the execution time. While rela-
tive fluctuations are largest in the SSE2 case, it should be
noted that a single cycle (or clock tick) of a 1.6GHz ma-
chine has a duration of 0.625 nanoseconds: roughly ten
cycles are used per deviate, with a standard deviation
of two cycles. The fact that twenty four SSE2 assem-
bly instructions constituting the 128 bit implementation
of the MWC1616 generator are on average executed in
only ten cycles per deviate, is the result of the fact that
four uniform deviates are calculated in parallel. More
precisely, twenty four instructions in the above code are
executed in 22.88 nanoseconds, yielding four uniform de-

viates. Therefore, an effective average of one (fourfold
SIMD) instruction per cycle is achieved even as a to-
tal of four multiplication instructions (generally requir-
ing more time then other instructions) and three addition
instructions were used, which may be attributed to the
pipelining architecture of the processor [1], representing
another aspect of the parallelism paradigm implemented
by the Pentium IV processors: instructions are processed
several at a time, similar to a factory assembly line.

In conclusion, it follows from the above that scientific
implementations of 128 bit SSE2 extensions require some
“ugly” programming practice: not only one has to re-
sort to assembly language programming, but the avail-
able instruction set is also somewhat unusual, and far
from being complete. On the other hand, the impressive
500% gain over the optimized C code (or for that matter
straight SISD assembly) may justify such coding practice
for time critical applications, in fact, in certain situations
it may make all the difference between an unfeasible and
a feasible problem (an application that would run five
months may be considered unfeasible, and the one that
would run a single month, feasible).

Finally, it should be stressed that the application to
random number generation presented in this work by no
means represents the only possible application for sci-
entific computing, many other time critical algorithms
(e.g. linear algebra matrix manipulation) may benefit
from this approach (SSE2/3 extensions are not limited
to integer arithmetic, both single and double precision
floating point algebra is supported). A C library with
the current implementation of MWC1616 uniform devi-
ates (which does not require assembly programming nor
installation of the processor pack, unless one wants to
recompile the library from source), can be obtained from
the author upon request.

∗ Electronic address: borko@ufpe.br
[1] IA-32 Intel Architecture Software Developer’s Manual,

Vols. 1,2A and 2B (2006). http://www.intel.com, last seen
in April, 2006.

[2] G. Marsaglia, The Marsaglia Random Number CDROM,
with the DIEHARD Battery of Tests of Randomness. De-
partment of Statistics, Florida State University, (1996)
http://stat.fsu.edu/∼geo/diehard.html, last seen in April,
2006.

[3] G. Marsaglia, Keynote Address: A Current View of Ran-
dom Number Generators, Proceedings, Computer Science
and Statistics: 16th Symposium on the Interface, Atlanta,
1984, Elsevier 1985.

[4] G. Marsaglia, Yet another rng. Posted to electronic bul-
letin board sci. stat. math., Aug. 1 (1994).

mailto:borko@ufpe.br
http://www.intel.com
http://stat.fsu.edu/~geo/diehard.html

