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Abstract 
 

A number of parametric and non-parametric linear trend tests for time series are evaluated 

in terms of test size and power, using also resampling techniques to form the empirical 

distribution of the test statistics under the null hypothesis of no linear trend. For resampling, 

both bootstrap and surrogate data are considered. Monte Carlo simulations were done for 

several types of residuals (uncorrelated and correlated with normal and non-normal 

distributions) and a range of small magnitudes of the trend coefficient. In particular for  

AR(1) and ARMA(1,1) residual processes, we investigate the discrimination of strong 

autocorrelation from linear trend with respect to the sample size. The correct test size is 

obtained for larger data sizes as autocorrelation increases and only when a randomization test 

that accounts for autocorrelation is used. The overall results show that the type I and II errors 

of the trend tests are reduced with the use of resampled data. Following the guidelines 

suggested by the simulation results, we could find significant linear trend in the data of land 

air temperature and sea surface temperature. 
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1 Introduction 
 

The investigation of long-term trends in times series is an important issue in many 

applications. Long-term trends can be considered as stochastic trends attributed to power law 

autocorrelation decay, referred to as long term persistence ( see e.g. Rybski et al, 2006), or as 

deterministic trends, which will be the focus of this work. The formal statistical approach for 

the latter is a test for the presence of a linear trend in the time series. Such tests have been 

used in many areas of climatology, such as global warming (Woodward and Gray, 1993; 

Cohn and Lins, 2005), in meteorology, such as rainfall (Bonaccorso et al, 2005) and 

temperature (Xu et al, 2002; Feidas et al, 2004), and in hydrology, such as stream flow 

(Wang et al, 2005; Yue et al 2002). 

The standard decomposition of a time series , tY 1, ,t n= … , under the assumption of a 

linear trend reads  

tt EbtaY ++= ,     (1) 

where  is a constant,  represents the magnitude of the trend and  is the residual. The 

null hypothesis for the trend test is

a b tE

0H : 0b = . Rejection of  establishes the presence of 

linear trend in the time series, provided that the model for the residuals is valid. 

0H

Many trend tests assume independent residuals, such as the rank-based non-parametric 

Mann-Kendall (MK) test (Mann, 1945; Kendall, 1975) and the parametric regression-based 

test (Woodward et al, 1993). For the latter, the statistic is simply the estimated trend 

coefficient  standardized with its standard error. When the residuals are short-term 

correlated, simple corrections in the estimation of the standard error of  are suggested 

making use of the autocovariance (Grenander, 1954) and the spectrum of   (Bloomfield 

b̂

b̂

tE
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and Nychka, 1992). More involved schemes adjusting the solution for the trend coefficient in 

the presence of autocorrelation in the time series have been proposed in (Sun and Pantula, 

1999; Roy et al, 2004). 

Strong positive autocorrelation in the time series may form monotonic trend and give rise 

for false rejection for the trend test. This has been shown with Monte Carlo simulations and 

different estimators for the linear trend (Woodward and Gray, 1993; Sun and Pantula, 1999; 

Roy et al, 2004; Kim et al, 2003). On the other hand, a deterministic trend may alert the 

sample autocorrelation used in the statistic of the trend test (Fried and Imhoff, 2003). 

Besides the correlation in the residuals, the distribution of the residuals, as well as the 

sample size, affect heavily the outcome of the test, depending also on the magnitude of the 

trend. In this work, we address all these factors for four standard tests. Moreover, we 

introduce randomization and bootstrap versions of the tests in an attempt to improve the 

performance of the tests. Particular emphasis is given on the limits of sample size that 

maintain small type I and II errors. The investigation is done using Monte Carlo simulations 

at different settings of time series length, magnitude of trend coefficient, as well as 

distribution and linear structure of the residual process. We considered also a real application 

and applied the tests to a time series of an index that combines land air temperature anomalies 

(Jones, 1994a) and sea surface temperature anomalies (Parker et al, 1995) on a 5o x 5o grid 

box basis, developed by the Climatic Research Unit (CRU) of University of East Anglia 

(http://www.cru.uea.ac.uk/).  

The trend tests are presented in Section 2 and the simulation setup and results in Section 3. 

In Section 4, the application is presented and in Section 5 the conclusions are drawn.  

2 Statistical testing of linear trend 
 
   In general, it is difficult to detect the small linear trend with eyeball judgment, and there is 

need for an accurate and sensitive trend test in order to assess the significance of such weak 
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linear trends that are often investigated in small time series, as for example in meteorology 

(Feidas et al, 2004). In the following, we briefly present four standard linear trend tests, three 

parametric and one non-parametric test. 

2.1 Parametric trend tests 
 
   Under the assumption of independent and normally distributed residuals  with zero mean 

and variance

tE

2σ , 2(0, )tE σΝ∼ , from the regression of   on time t, the least square 

estimator  is obtained as  

tY

b̂

 =b̂
∑

∑

=

=

−

−

n

t

n

t
t

tt

Ytt

1

2

1

)(

)(
,                                      (2) 

where t  is the mean time.  

   The estimated standard error of  is given by  b̂

         

1/ 2 1/ 2
2 2

1 1
1 2

2

1

ˆ ˆˆ ˆ( ) 12 ( )
ˆˆ ( )

( 2) ( 1)( 2) ( )

= =

=

⎡ ⎤ ⎡
− − − −⎢ ⎥ ⎢

⎢ ⎥ ⎢= =
− −⎢ ⎥ ⎢− −⎢ ⎥ ⎢⎣ ⎦ ⎣

∑ ∑

∑

n n

t t
t t

n

t

Y a bt Y a bt
s b

n n nn t t

⎤
⎥
⎥
⎥
⎥⎦

,                      (3) 

where ˆâ Y bt= −  and Y  is the mean of the time series. Then the test statistic referred to as 

C1 is 
1

ˆ
ˆˆ ( )

bt
s b

=  and follows the Student distribution with n-2 degrees of freedom 

(Woodward and Gray, 1993). 2~ nt t −

   When the residuals  are correlated, the estimated standard error of  is given by tE b̂

       
1/ 2

1

2 02 2
2 1

12 24ˆˆ ( ) ( )( )
( 1) ( 1)

−

−
= =

⎧ ⎫⎡ ⎤⎪ ⎪= + − −⎨ ⎬⎢ ⎥− −⎪ ⎪⎣ ⎦⎩ ⎭
∑∑

n s

s t
s t

s b t t s t
n n n n

γ γ ,               (4) 

where kγ  denotes the k-th order autocovariance of  (Grenander, 1954). Replacing in (4) tE

kγ  with the respective estimate 
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1

1 ˆ ˆˆ
n k

k t
t

k tE E
n

γ
−

+
=

= ∑ ,                                (5) 

where  can be estimated by , except at tE ˆˆ ˆt tE Y a bt= − − 0k =  where we use 0ˆ /n n 2γ −  to 

estimate 0γ , the estimated standard error of , , is derived. This is used to form the test 

statistic 

b̂ 2
ˆˆ ( )s b

2

ˆ
ˆˆ ( )

bt
s b

=  referred to as C2 and it holds as before 2~ nt t − .   

   In a different approach, the standard error of  is estimated from the power spectrum 

(Bloomfield and Nychka, 1992)  

b̂

       ,                              (6) 
1/ 20.5

3
0

ˆˆ ( ) 2 ( ) ( )s b W f S f df
⎡ ⎤

= ⎢
⎣ ⎦
∫ ⎥

where 
2

2

1
( )

n
ift

t
t

W f m e π−

=

= ∑  with 
2

1
( )

t n

t

t tm
t t

=

−
=

−∑
  and  denotes the sample spectrum of 

 given as 

)( fS

tE

 
1

0
1

1 ˆ ˆ( ) 2 cos( )
2

−

=

⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑
n

j k
k

S f f kγ γ
π j   where  2 , 0,..., 2j

j nf j
n
π

= = . 

The test with statistic 2
3

ˆ
~ˆˆ ( ) n

bt
s b −= t  is denoted as C3. 

2.2 Non-Parametric trend tests 

   Two non-parametric rank-based statistical tests, namely the Mann-Kendall (MK) test, also 

called Kendall’s tau test due to Mann (1945) and Kendall (1975), and the Spearman’s rho test 

(Lehmann, 1975; Sneyers, 1990) are used for detecting trend in time series data. Yue et al 

(2002) showed that these two tests have almost the same power to identify trends in time 

series data. In our study, we use the rank-based non-parametric Mann-Kendall (MK) test, 
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which seems to have been used more often in applications, such as stream flow (Yue et al, 

2002; Yue and Pilon, 2004, Wang et al, 2005). 

The null hypothesis for the MK test is that the time series , tY 1, 2,...,t n= , is independent 

and identically distributed. The statistic S of Kendall’s tau is 

   ,               (7) 
1

1 1
sgn( )

n n

j i
i j i

S Y
−

= = +

=∑ ∑ Y−

where 

1, 0
sgn( ) 0, 0

1, 0

if
if
if

θ
θ θ

θ

>⎧
⎪= =⎨
⎪− <⎩

. 

Mann (1945) and Kendall (1975) documented that when  the statistic S is approximately 

normally distributed with the mean and the variance as follows: 

8n ≥

 

                                       
1

( ) 0

( 1)(2 5) ( 1)(2 5)
( ) ,

18

n

m
m

S

n n n t m m m
Var S =

Ε =

− + − − +
=

∑  

where  is the number of ties of extent m. mt

 
 2.3 Randomization and bootstrap tests 
 

   The tests described above have all well defined asymptotic null distribution, i.e. distribution 

of the test statistic under . However, departures from the nominal null distribution may 

occur, e.g. due to small sample size. Resampling techniques have been used to form the null 

distribution. Here we consider randomization and bootstrap tests.  

0H

A randomization test generates a randomly chosen subset of all possible permutations of 

the original sample consistent to (Fortin et al, 2002). The randomization tests used in this 0H
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study are adjusted to the correlation structure of the time series and the distribution of 

residuals . tE

   When the residuals are white noise, 2(0, )tE WN σ∼ , the randomized or so-called surrogate 

data are generated by shuffling the  time series. In case where  stem from a stochastic 

linear process, different surrogate data generating algorithms are called depending on whether 

the process is normal or not. When it is normal, the surrogate time series are generated by 

phase randomization making use of the Fourier transform and are referred to as FT surrogate 

data (Theiler et al, 1992). An FT surrogate time series is a normal time series with the same 

linear structure as , but contains no trend. In case  comes from a non-normal stochastic 

linear process, the more general algorithms of Improved Amplitude Adjusted Fourier 

Transform, IAAFT (Schreiber and Schmitz, 1996) and Statically Transformed Autoregressive 

Process, STAP (Kugiumtzis, 2002) are called. The IAAFT algorithm makes also use of the 

Fourier transform but in an iterative scheme that terminates when sufficient convergence of 

both power spectrum and marginal distribution is reached. The STAP algorithm generates the 

surrogate time series as statically transformed realizations of a normal (autoregressive) 

process so that both the original marginal distribution and linear structure are preserved. 

These algorithms were introduced to test nonlinear departures from the null hypothesis of 

linear stochastic process, but they can as well be used to test departures involving linear 

trend. The test using STAP surrogate data is more conservative than when using IAAFT 

surrogates and its power decreases faster with the decrease of the time series length 

(Kugiumtzis 2002). We employ the randomization test with both surrogate data types and 

compare their size and power on small sample sizes, typically encountered in trend 

investigation. 

tY tE

tY tE
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In addition to randomization tests we include bootstrap tests, adapted for each model 

assumption for  (Hinkley, 1988; Efron and Tibshirani, 1993). For white noise residuals, 

the standard bootstrap resampling is applied. When  is a realization of a linear stochastic 

process, there are a number of bootstrap approaches, such as the block, sieve, wild and local 

bootstraps, but we follow here the most standard “naïve” bootstrap approach, fitting an 

autoregressive model and drawing from the model residuals to generate the bootstrap time 

series (Buhlmann, 2002;  Politis 2003). 

tE

tE

3 Monte Carlo Simulations 

3.1 Simulation setup 
 
   We generate Monte Carlo realizations for different stochastic processes with and without 

linear trend according to the model in (1). The length of the time series  varies as 2  for 

 and the trend magnitude is monitored varying the linear trend coefficient as 

, where the no-trend scenario is for 

n k

4,5,6,7k =

0.01(0.002)0.01b = − 0b = . For white noise residuals , 

the normal, uniform and exponential distributions are considered. For correlated residuals , 

we consider the first order autoregressive process AR(1), 

tE

tE

ttt aEE += −1ϕ , and the mixed 

process of first order autoregressive part and first order moving average part 

ARMA(1,1) , where  follows normal, uniform and exponential 

distribution. In order to examine how the correlation in the residuals affects the detection of 

linear trend, we vary also the parameter φ (equal to one lag autocorrelation of residuals) as 

and . The combination of all the values of n, b, and φ (including zero) and the 

distribution types of input noise, gives a total of 4x11x7x3=924 cases. For ARMA, the 

study is not exhaustive and is restricted to selected values of φ and θ. 

1 1t t tE φE θa− −= − + ta ta

0.95, 0.8± ± 0.4±
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   For each case, 1000 Monte Carlo realizations are generated and for each realization 199 

surrogate and bootstrap data are generated by the appropriate algorithm. For the correlated 

residuals, both IAAFT and STAP surrogate data are generated along with the bootstrap data. 

The four tests are applied on each time series and the test decision is made on the basis of the 

analytic null distribution of the test statistic q. In addition, the null distribution is formed from 

the values of q computed on the resampled data, denoted as , and the rejection of 

 is deduced when  computed on the original time series is not within the null 

distribution. In previous works on surrogate data, the rejection of  is often determined 

from the significance S (provided that

1 1,...,q q 99

0H 0q

0H

1,..., Mq q , on the M surrogate data, are fairly normally 

distributed) denoted as  

        
0

,
q

q q
S

s
−

=          (8) 

where q  is the average  and  the standard deviation (SD) of  (Kugiumtzis, 2000). 

Rank ordering has also been used, where for our case,  is rejected, say,  at significance 

level 

qs Mqq ,...,1

0H

0.01α =  when  is first or last in the ordered concatenated list  and at 0q 0 1 199, ,...,q q q

0.05α =  when is at places 1 to 5 or 196 to 200. 0q

3.2 Simulation results 
 
   All linear trend tests are performed using the test statistics C1, C2, C3 and MK and the test 

decision is made using the asymptotic approach and the randomization and bootstrap 

approach. The probability of rejecting H0 is estimated by the relative frequency of rejections 

in the ensemble of 1000 time series. 

The significance S in (8) gives better resolution in the p-value than the rank ordering. 

However, normality tests on the statistics from a sample of 199 surrogates showed departures 
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from normality. Therefore, the surrogate and bootstrap test results below are for rank 

ordering. 

One would expect that all the tests perform well in the case of independent residuals. 

However, even when the residual series is normal white noise, the asymptotic test shows 

larger size when using C2 and small power when using C3, given with highlighted values in 

Table 1. For C2 this is a significant drawback that persists for other distributions of Et (e.g. 

uniform noise in Table 1) and questions the detection of trend with this method (e.g. note the 

higher probability of rejection for b=±0.002 as compared to C1 and MK). The shortcomings 

of C2 and C3 are recovered with the use of the randomization approach. Indeed 

randomization tests attain always the correct size of the test and the same level of power as 

the asymptotic approach. The results on non-zero trend coefficients suggest that C1 and MK, 

constructed under the assumption of independent residuals, have somehow larger power than 

the C2 and C3 statistics for any white noise distribution. The distribution of Et seems to affect 

the significance of the linear trend, e.g. the power of all tests is increased when the 

distribution changes from normal to uniform (see Table 1). The results of the bootstrap tests 

are the same as for the respective randomization tests. 

(Here should be placed Table 1) 

 

For correlated residuals, the degree of correlation, monitored in the simulations with the 

coefficient φ of the AR(1) model for Et, in combination with the time series length have 

major effect on the size and power of all tests. On the other hand, the distribution of Et 

(actually we determine the distribution of the input noise at of AR(1) in the simulations) does 

not seem to have significant effect on the test accuracy.  

   The simulations showed that when consecutive residuals are anti-correlated (φ negative in 

AR(1)) the null distribution of the t statistic of C2 tends to be wider than the respective 

nominal distribution, whereas for C1, C3 and MK tests it is narrower, as shown in Fig. 1. For 
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example, in the absence of trend and for 128n = , the estimated variance of the C2 statistic 

when 0.8ϕ = −  is 1.74 and when 0.2ϕ = −  is 2.8, which are both far from the nominal unit 

variance. For the other tests, the estimated variance is much smaller than the nominal unit 

variance. This is observed for all three types of noise. 

(Here should be placed Figure 1) 
 
     Thus the asymptotic approach tends to give larger test size for C2 test and smaller power 

for the other statistics. This is shown in Fig. 2a and 2d for AR(1) residuals with 0.8ϕ = −  

and 0.4ϕ = − , respectively, where the data size is n=128 and at follows normal distribution. 

The power of all tests increases with the decrease of anticorrelation (φ closer to zero) and the 

increase of the magnitude of b, similarly for upward and downward trend. C2 has the largest 

power but spuriously given the large test size for b=0, and that is because  is a poorly 

behaved estimator (Woodward et al, 1993). The other three test statistics perform similarly 

having insignificant power for small b  (see Fig. 2a). The respective randomization tests 

using FT surrogates give better results: they eliminate the type I error of the asymptotic tests 

for C2, with a loss of power (see Fig. 2b and 2e). The randomization tests using C2 and C3 

tend to have more symmetric increase of power than C1 and MK (for positive and negative 

) . When bootstrap data are used, the power of all tests is further improved and all four tests 

perform similarly, as shown in Fig. 2c and 2f.  

2
ˆˆ ( )s b

b

(Here should be placed Figure 2) 

 

Similar results are obtained when  is an AR(1) process with uniform or exponential 

input white noise. The test results for the two noise distributions are shown in Fig. 3, for 

tE

0.4ϕ = − . Note that C2 and C3 attain larger power when resampling techniques are used, 

especially when the input noise is uniform. 
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(Here should be placed Figure 3) 
    
   STAP gives similar results to IAAFT for the randomization test in these non-normal AR(1) 

processes. Both randomization and bootstrap tests eliminate type I error for all statistics, but 

bootstrap tests obtain somehow larger power than the randomization tests.   

   The actual null distribution of the test statistics deviates from the nominal null distribution 

also when ϕ  in AR(1) residuals is positive but in a different way and at a larger degree 

(compare Fig. 4 to Fig. 1). For example, for 0b = , normal white noise and ,  as 128n = ϕ  

coefficient increases from 0.2 to 0.8, the variance jumps from 1.49 to 9.44  for C1, from 3.15 

to 4.4 for C2, from 0.29 to 0.68  for C3 from 4.37 to 7.67 for MK test. This explains the very 

large test size we found when using C1, C2 and MK with the asymptotic approach. All test 

statistics, except for C3, have much wider empirical distribution as shown in Fig. 4 for 

normal and uniform noise. 

(Here should be placed Figure 4) 

 
   The Monte Carlo simulations showed that the empirical test size gets larger for the 

asymptotic tests as ϕ  in AR(1) residuals increases away from 0.4. The same problem was 

found also for the tests using resampling techniques but at a lesser amount. Among all test 

statistics, only C3 performs properly for large positive autocorrelation. In Fig. 5a, the test 

results using C3 are shown for 0.8=ϕ , 128n =  and the uniform input noise. There is still a 

small type I error, especially for IAAFT and STAP randomization tests. On the other hand, 

the bootstrap test eliminates the type I error at the cost of smaller power compared to IAAFT 

and STAP. For exponential input noise all tests do not have any significant power (see Fig. 

5b) and the same holds for normal input noise (not shown here). 

(Here should be placed Figure 5) 
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   The power increases fast for larger data sets, as shown in Fig. 6 for C3, bootstrap approach 

and , i.e. double than the sample size in Fig. 5. For strong positive correlations as for 256=n

8.0=ϕ  used in Fig. 5 and Fig. 6, the increase of the power with the sample size is lower for 

normal and exponential input white noise. 

(Here should be placed Figure 6) 
  
The test results when the residuals are from an ARMA(1,1) turn out to be similar to 

the results shown above for AR(1) residuals, at least for the corresponding values of φ 

that we tested for. For examples, as shown in Fig. 7a the performance of the bootstrap 

tests with C2 and C3 for ARMA(1,1) residuals with ,  and normal input 

noise are substantially the same as the respective results for AR(1) shown in Fig.2c, 

whereas C1 and MK show less power for ARMA(1,1). This difference with C1 and MK 

gets larger when the randomization test is used instead (compare Fig. 7b with Fig. 2b). 

For all statistics the test for the same ARMA residual process improves both in terms of 

significance and power when the input noise is uniform, as we observed for the AR 

process (see Fig. 7c). Other values of φ and θ  gave results similar to the corresponding 

AR(1) residual process. For example the results for  show the same test 

performance for C2, C3 and difference for C1,MK for the ARMA and AR case as 

discussed earlier for  (compare Fig. 7d to Fig. 2f). For positive values of φ in 

the ARMA(1,1) residual process, the power of the test (bootstrap and randomization) 

decreases in the same way as for the AR(1) residual process.   

0.8φ=− 0.8θ=

0.4φ=−

0.8φ=−

   

(Here should be placed Figure 7) 

 
      It is of practical interest to investigate the dependence of sample size on the strength of 

positive autocorrelation (positive ϕ ) under the condition of maintaining the correct test size. 
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For this, we made Monte Carlo simulations for AR(1) residual processes with 

99.0,97.0,95.0)05.0(4.0=ϕ  and we found the smallest  that preserves the actual size of the 

test within the limit of 0.06 for . The results for C3, bootstrap approach and the three 

distributions of input white noise are shown in Fig. 8. It is clear that the demand on more data 

points increases faster as 

n

05.0=a

ϕ  approaches 1, i.e. the random walk scenario that regards fully 

stochastic trend. It turns out that for uniform input white noise the correct application of the 

test (using C3 and bootstrap approach) does not require as long time series as for normal and 

exponential white noise. 

(Here should be placed Figure 8) 

 
   According to the simulation results, C3 with the use of bootstrap test is the most suitable 

trend test to identify the presence of small linear trend in time series data under varying 

conditions of autocorrelation and amplitude distribution of the time series. 

 
4 Application  
 

    

    We applied the asymptotic and resampling tests to time series of an index that combines 

land air temperature anomalies (Jones, 1994a) and sea surface temperature anomalies (Parker 

et al, 1995) on a 5o x 5o grid box basis, developed by the Climatic Research Unit (CRU) of 

University of East Anglia (http://www.cru.uea.ac.uk/).. We consider the time series for each 

month from January to December in the period from 1856 to 2005 ( , the whole 

sample), referred to as period 1, and from 1961 to 2005 (

150n =

45n = ), referred to as period 2. In 

addition, the records of the mean annual values for the two periods are analyzed. These time 

series show weak linear trends and we want to investigate whether these trends are 

significant. For example, as shown in Fig. 9, the index of period 2 for January shows a long 

steep upward trend starting at around 1970 suggesting significance of the trend, whereas for 
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July the trend can be seen in a smaller part of the same period and is thus of questionable 

significance.  

   (Here should be placed Figure 9) 
 

According to Akaike (AIC) and Swartz (BIC) criteria the order of the AR model of the 

residuals, for the most time series was 1 (and mostly for 150n = ). The estimated coefficient 

of AR(1) was about 0.5 for most of the time series, but the distribution of the residuals did 

not appear to have the same form across the time series. For example, the Kolmogorov – 

Smirnov test for normality gave rejection for most of the time series. According to our 

simulation results for correlated residuals at the order of 0.5ϕ � , the minimum sample size 

for the appropriate use of the trend test is at 100 to 150 (see Fig. 8). In table 2, the 

standardized coefficients (s.c.) for the magnitude of the trend for all the time series are 

shown. The s.c. for period 2 are larger than for period 1 for all months except November (11). 

  (Here should be placed Table 2) 
 
   All asymptotic tests give significant linear trend for all months for period 2 and only for 

autumn and winter months for period 1, as shown in Fig. 10 using C3. This result cannot be 

trusted due to the presence of positively correlated residuals and according to the simulation 

results for sample sizes at the level of period 1 and 2. On the other hand, when the bootstrap 

and randomization tests were used, significant linear trend was found only for the winter and 

partly spring months. As shown for C3 and bootstrap in Fig. 10, significant trend at 0.05α =  

was found for months September to May for period 1 and for months January to April for 

period 2. However, the test results for period 2 should be treated with caution as for such a 

small sample size the presence of positive autocorrelation in the residuals (here it is about 

0.5) may be the cause of the statistically significant trend (see also Fig. 8). Note in particular 

that the linear trend for January of period 2 was found significant with all approaches, 
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whereas for July only the asymptotic approach found significant trend (see also Fig. 10). 

According to the simulation results, we should thus trust the bootstrap test for July of period 

2. 

 (Here should be placed Figure 10) 

 
   As for the mean annual time series (at point 13 of the horizontal axis of Fig. 10), C3 

asymptotic and bootstrap tests give significant linear trend for period 1, whereas for period 2 

the linear trend was found significant for the asymptotic but not for the bootstrap test.  

The overall results from the test of C3 and bootstrap approach suggest that there is a trend 

during the winter and spring months, better expressed in the long record (1856 – 2005). 

           
5 Conclusion 

 

Monte Carlo simulations were made on four test statistics for asymptotic, randomization 

and bootstrap test of linear trend under different settings of time series length, residual 

distribution and autocorrelation. The comparative results showed clear superiority of the 

randomization and bootstrap test over the asymptotic test and revealed differences and 

limitations in the performance of the test statistics.  

For correlated residuals, the C3 test statistic, using spectrum-based estimation of the 

variance of the slope coefficient, gives the smallest size of the asymptotic test and when 

resampling techniques are used the test size decreases to the nominal level. Further, it attains 

high power compared to the other test statistics. However, when the residuals are white noise, 

the power of the test using C3 is smaller than when using a test statistic formed under the 

assumption of white noise residual.  

The asymptotic test gives generally large type I error and the use of resampling techniques 

recovers the correct test size in most of the settings considered in the study. For correlated 

residuals, suitable surrogate data generation techniques have been used for the randomization 
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test and the residual-based bootstrap for the bootstrap test. The simulation results showed that 

the bootstrap test turns out to attain higher power than the randomization test.  

The overall simulation results suggest the use of the C3 statistic in a bootstrap test. Even 

this test cannot distinguish linear trend from strong positive autocorrelation depending on the 

time series length. We found that under the condition of retaining the correct test size, the 

time series length has a functional dependence on the positive autocorrelation (for values 

larger than about 0.4) that varies with the input white noise distribution. These functional 

relations can serve as a guide for the limits of implementation of the test in real-world 

applications. 

We applied the asymptotic and resampling tests with the four test statistics to time series of 

an index of land air and sea surface temperature anomalies at different periods, for all 12 

months separately and for the annual average. For some months, a linear trend was found for 

some statistics using the asymptotic test (and sometimes even the resampling test) whereas it 

was not found when using C3 and the bootstrap test, indicating spurious detection of trend. 

However, consistent detection of trend could be obtained in the winter and spring months, 

especially when considering the whole record that allows for a proper implementation of the 

test, given also the relatively small positive autocorrelation of the residuals. 

We believe that this work shed some light on the performance of standard tests for linear 

trend and showed the need of resampling techniques in the implementation of the tests. There 

are other tests for linear trend not considered in this work and it would be interesting to 

include them in a future comparative work. 
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Tables and Figures 
 
 

Table 1.  

   Et ~ N(0,1) Et ~ U[-1/2,1/2] 
b Test (α=0.05) C1 C2 C3 MK C1 C2 C3 MK 

Asymptotic 0.375 0.645 0.101 0.377 1.000 1.000 0.999 0.972 b=-0.004 
Randomization 0.328 0.270 0.235 0.307 1.000 0.990 0.994 0.999 

Asymptotic 0.133 0.343 0.029 0.117 0.820 0.931 0.414 0.777  
b=-0.002 

 Randomization 0.104 0.104 0.108 0.108 0.780 0.642 0.667 0.739 
Asymptotic 0.061 0.206 0.013 0.057 0.048 0.241 0.002 0.044  

b=0.0 
 Randomization 0.049 0.046 0.061 0.049 0.048 0.053 0.051 0.050 

Asymptotic 0.130 0.380 0.031 0.119 0.800 0.933 0.388 0.762  
b=0.002 

 Randomization 0.140 0.110 0.113 0.129 0.792 0.688 0.712 0.757 
Asymptotic 0.401 0.655 0.099 0.377 1.000 1.000 1.000 0.961 b=0.004 

Randomization 0.389 0.328 0.199 0.386 1.000 0.991 0.995 1.000 
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Figure 1.  
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Figure 2.   
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Figure 3.  
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Figure 4.  
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Figure 5.   
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Figure 6.  
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   Figure 7. 
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Table 2.   

Months Annual  
Period 1 2 3 4 5 6 7 8 9 10 11 12  

1 0.530 0.559 0.665 0.653 0.621 0.490 0.468 0.601 0.646 0.704 0.746 0.610 0.755 
2 0.746 0.660 0.719 0.816 0.830 0.826 0.796 0.783 0.794 0.705 0.649 0.715 0.833 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 11

Page 31 of 68

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

 

 

 

 

Figure 10.   
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Tables and Figures Captions 
 
 

Table 1. Probability of rejecting H0 when Et is normal or uniform white noise (n=128) for all 

test statistics, asymptotic and randomization approach and five trend coefficients, given in the 

first column. 

 
Figure 1. Estimated null distribution from 1000 realizations of C1, C2, C3 and MK trend 

statistics together with the standard normal distribution when at  is normal white noise in (a) 

and uniform white noise in (b), where n=128 and ϕ =-0.8. 

 

Figure 2.  Probability of rejecting H0 for the four trend statistics where Et is generated by 

AR(1) with ϕ =-0.8 and normal input white noise. The asymptotic test is used in (a), the 

randomization test in (b), and the bootstrap test in (c). The same for ϕ =-0.4 in (d), (e) and (f), 

respectively. 

 
 

Figure 3. Probability of rejecting H0 for the four trend statistics where Et is generated by 

AR(1) with ϕ =-0.4 and uniform input white noise. The asymptotic test is used in (a), the 

randomization (IAAFT) test in (b), and the bootstrap test in (c). The same is shown for the 

exponential input white noise in (d), (e) and (f), respectively. 

 
 

 
Figure 4. Estimated null distributions from 1000 realizations of C1, C2, C3 and MK trend 

statistics together with standard normal distribution when at is normal white noise (a) and 

uniform white noise in (b) where n=128 and ϕ =0.8. 
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Figure 5.  Simulation results for uniform (a) and exponential (b) white noise when ϕ =0.8 and 

n=128. 

 
 

Figure 6. Bootstrap randomization test of C3, when ϕ =0.8 and n=256 for normal, uniform 

and exponential input white noise. 

 

Figure 7.  Probability of rejecting H0 for the four trend statistics where Et is generated by 

ARMA(1,1). (a) φ=-0.8, θ=0.8, normal input white noise and bootstrap test. (b) φ=-0.8, 

θ=0.8, normal input white noise and randomization test. (c) φ=-0.8, θ=0.8, uniform input 

white noise and bootstrap test. (d) φ=-0.4, θ=0.4, normal input white noise and bootstrap test. 

 
 

Figure 8.  Sample size as a function of ϕ  for which the test using C3 and bootstrap approach 

attains a size less than 0.06 for a=0.05. The results are shown for different distributions of 

input white noise as shown in the legend. 

         
 

Figure 9.  The temperature time series of period 2 for January and July. 

 
 

Table 2.  The standardized coefficient for the linear trend estimated for all time series. 

 

Figure 10.  P-values of C3 statistic for periods 1856-2005 (n=150) and 1961-2005 (n=45) and 

for asymptotic and bootstrap test as given in the legend. 
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Tables and Figures Captions 
 

 

Table 1. Probability of rejecting H0 when Et is normal or uniform white noise (n=128) for all 

test statistics, asymptotic and randomization approach and five trend coefficients, given in the 

first column. 

 

Figure 1. Estimated null distribution from 1000 realizations of C1, C2, C3 and MK trend 

statistics together with the standard normal distribution when at  is normal white noise in (a) 

and uniform white noise in (b), where n=128 and ϕ =-0.8. 

 

Figure 2.  Probability of rejecting H0 for the four trend statistics where Et is generated by 

AR(1) with ϕ =-0.8 and normal input white noise. The asymptotic test is used in (a), the 

randomization test in (b), and the bootstrap test in (c). The same for ϕ =-0.4 in (d), (e) and (f), 

respectively. 

 

 

Figure 3. Probability of rejecting H0 for the four trend statistics where Et is generated by 

AR(1) with ϕ =-0.4 and uniform input white noise. The asymptotic test is used in (a), the 

randomization (IAAFT) test in (b), and the bootstrap test in (c). The same is shown for the 

exponential input white noise in (d), (e) and (f), respectively. 

 

 

 

Figure 4. Estimated null distributions from 1000 realizations of C1, C2, C3 and MK trend 

statistics together with standard normal distribution when at is normal white noise (a) and 

uniform white noise in (b) where n=128 and ϕ =0.8. 
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Figure 5.  Simulation results for uniform (a) and exponential (b) white noise when ϕ =0.8 and 

n=128. 

 

 

Figure 6. Bootstrap randomization test of C3, when ϕ =0.8 and n=256 for normal, uniform 

and exponential input white noise. 

 

Figure 7.  Probability of rejecting H0 for the four trend statistics where Et is generated by 

ARMA(1,1). (a) φ=-0.8, θ=0.8, normal input white noise and bootstrap test. (b) φ=-0.8, 

θ=0.8, normal input white noise and randomization test. (c) φ=-0.8, θ=0.8, uniform input 

white noise and bootstrap test. (d) φ=-0.4, θ=0.4, normal input white noise and bootstrap test. 

 

 

Figure 8.  Sample size as a function of ϕ  for which the test using C3 and bootstrap approach 

attains a size less than 0.06 for a=0.05. The results are shown for different distributions of 

input white noise as shown in the legend. 

         

 

Figure 9.  The temperature time series of period 2 for January and July. 

 

 

Table 2.  The standardized coefficient for the linear trend estimated for all time series. 

 

Figure 10.  P-values of C3 statistic for periods 1856-2005 (n=150) and 1961-2005 (n=45) and 

for asymptotic and bootstrap test as given in the legend. 
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Abstract 

 

A number of parametric and non-parametric linear trend tests for time series are evaluated 

in terms of test size and power, using also resampling techniques to form the empirical 

distribution of the test statistics under the null hypothesis of no linear trend. For resampling, 

both bootstrap and surrogate data are considered. Monte Carlo simulations were done for 

several types of residuals (uncorrelated and correlated with normal and non-normal 

distributions) and a range of small magnitudes of the trend coefficient. In particular for  

AR(1) and ARMA(1,1) residual processes, we investigate the discrimination of strong 

autocorrelation from linear trend with respect to the sample size. The correct test size is 

obtained for larger data sizes as autocorrelation increases and only when a randomization test 

that accounts for autocorrelation is used. The overall results show that the type I and II errors 

of the trend tests are reduced with the use of resampled data. Following the guidelines 

suggested by the simulation results, we could find significant linear trend in the data of land 

air temperature and sea surface temperature. 

 

 

 

Key words: time series, linear trend tests, resampling techniques, surrogate data, bootstrap.  
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 3 

 

 

1 Introduction 

 

The investigation of long-term trends in times series is an important issue in many 

applications. Long-term trends can be considered as stochastic trends attributed to power law 

autocorrelation decay, referred to as long term persistence ( see e.g. Rybski et al, 2006), or as 

deterministic trends, which will be the focus of this work. The formal statistical approach for 

the latter is a test for the presence of a linear trend in the time series. Such tests have been 

used in many areas of climatology, such as global warming (Woodward and Gray, 1993; 

Cohn and Lins, 2005), in meteorology, such as rainfall (Bonaccorso et al, 2005) and 

temperature (Xu et al, 2002; Feidas et al, 2004), and in hydrology, such as stream flow 

(Wang et al, 2005; Yue et al 2002). 

The standard decomposition of a time series tY , 1, ,t n= K , under the assumption of a 

linear trend reads  

tt EbtaY ++= ,     (1) 

where a  is a constant, b  represents the magnitude of the trend and tE  is the residual. The 

null hypothesis for the trend test is 0H : 0b = . Rejection of 0H  establishes the presence of 

linear trend in the time series, provided that the model for the residuals is valid. 

Many trend tests assume independent residuals, such as the rank-based non-parametric 

Mann-Kendall (MK) test (Mann, 1945; Kendall, 1975) and the parametric regression-based 

test (Woodward et al, 1993). For the latter, the statistic is simply the estimated trend 

coefficient b̂  standardized with its standard error. When the residuals are short-term 

correlated, simple corrections in the estimation of the standard error of b̂  are suggested 

making use of the autocovariance (Grenander, 1954) and the spectrum of  tE  (Bloomfield 
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 4 

and Nychka, 1992). More involved schemes adjusting the solution for the trend coefficient in 

the presence of autocorrelation in the time series have been proposed in (Sun and Pantula, 

1999; Roy et al, 2004). 

Strong positive autocorrelation in the time series may form monotonic trend and give rise 

for false rejection for the trend test. This has been shown with Monte Carlo simulations and 

different estimators for the linear trend (Woodward and Gray, 1993; Sun and Pantula, 1999; 

Roy et al, 2004; Kim et al, 2003). On the other hand, a deterministic trend may alert the 

sample autocorrelation used in the statistic of the trend test (Fried and Imhoff, 2003). 

Besides the correlation in the residuals, the distribution of the residuals, as well as the 

sample size, affect heavily the outcome of the test, depending also on the magnitude of the 

trend. In this work, we address all these factors for four standard tests. Moreover, we 

introduce randomization and bootstrap versions of the tests in an attempt to improve the 

performance of the tests. Particular emphasis is given on the limits of sample size that 

maintain small type I and II errors. The investigation is done using Monte Carlo simulations 

at different settings of time series length, magnitude of trend coefficient, as well as 

distribution and linear structure of the residual process. We considered also a real application 

and applied the tests to a time series of an index that combines land air temperature anomalies 

(Jones, 1994a) and sea surface temperature anomalies (Parker et al, 1995) on a 5o x 5o grid 

box basis, developed by the Climatic Research Unit (CRU) of University of East Anglia 

(http://www.cru.uea.ac.uk/).  

The trend tests are presented in Section 2 and the simulation setup and results in Section 3. 

In Section 4, the application is presented and in Section 5 the conclusions are drawn.  

2 Statistical testing of linear trend 

 

   In general, it is difficult to detect the small linear trend with eyeball judgment, and there is 

need for an accurate and sensitive trend test in order to assess the significance of such weak 
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 5 

linear trends that are often investigated in small time series, as for example in meteorology 

(Feidas et al, 2004). In the following, we briefly present four standard linear trend tests, three 

parametric and one non-parametric test. 

2.1 Parametric trend tests 

 

   Under the assumption of independent and normally distributed residuals tE  with zero mean 

and variance 2σ , 2(0, )
t

E σΝ� , from the regression of tY   on time t, the least square 

estimator b̂  is obtained as  

 b̂ =

∑

∑

=

=

−

−

n

t

n

t

t

tt

Ytt

1

2

1

)(

)(

,                                      (2) 

where t  is the mean time.  

   The estimated standard error of b̂  is given by  

         

1/ 2 1/ 2

2 2

1 1

1 2
2

1

ˆ ˆˆ ˆ( ) 12 ( )
ˆˆ ( )

( 2) ( 1)
( 2) ( )

= =

=

   
− − − −   

   = =
− −   − −      

∑ ∑

∑

n n

t t

t t

n

t

Y a bt Y a bt

s b
n n n

n t t

,                      (3) 

where ˆâ Y bt= −  and Y  is the mean of the time series. Then the test statistic referred to as 

C1 is 
1

ˆ

ˆˆ ( )

b
t

s b
=  and follows the Student distribution with n-2 degrees of freedom 

2~ nt t − (Woodward and Gray, 1993). 

   When the residuals tE  are correlated, the estimated standard error of b̂  is given by 

       

1/ 2
1

2 02 2
2 1

12 24ˆˆ ( ) ( )( )
( 1) ( 1)

−

−
= =

   = + − −  − −   
∑∑

n s

s t

s t

s b t t s t
n n n n

γ γ ,               (4) 

where kγ  denotes the k-th order autocovariance of tE  (Grenander, 1954). Replacing in (4) 

kγ  with the respective estimate 
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 6 

                 
1

1 ˆ ˆˆ
n k

k t k t

t

E E
n

γ
−

+
=

= ∑ ,                                (5) 

where 
t

E  can be estimated by ˆˆ ˆ
t tE Y a bt= − − , except at 0k =  where we use 0

ˆ / 2n nγ −  to 

estimate 0γ , the estimated standard error of b̂ , 2
ˆˆ ( )s b , is derived. This is used to form the test 

statistic 
2

ˆ

ˆˆ ( )

b
t

s b
=  referred to as C2 and it holds as before 2~ nt t − .   

   In a different approach, the standard error of b̂  is estimated from the power spectrum 

(Bloomfield and Nychka, 1992)  

       

1/ 2
0.5

3

0

ˆˆ ( ) 2 ( ) ( )s b W f S f df
 

=  
 
∫ ,                              (6) 

where 

2

2

1

( )
n

ift

t

t

W f m e
π−

=

= ∑  with 
2

1

( )
t n

t

t t
m

t t
=

−
=

−∑
  and )( fS  denotes the sample spectrum of 

tE  given as 

 
1

0

1

1
ˆ ˆ( ) 2 cos( )

2

−

=

  = +  
  

∑
n

j k j

k

S f f kγ γ
π

  where  
2

, 0,...,
2j

j nf j
n

π
= = . 

The test with statistic 2

3

ˆ
~

ˆˆ ( )
n

b
t t

s b
−=  is denoted as C3. 

2.2 Non-Parametric trend tests 

   Two non-parametric rank-based statistical tests, namely the Mann-Kendall (MK) test, also 

called Kendall’s tau test due to Mann (1945) and Kendall (1975), and the Spearman’s rho test 

(Lehmann, 1975; Sneyers, 1990) are used for detecting trend in time series data. Yue et al 

(2002) showed that these two tests have almost the same power to identify trends in time 

series data. In our study, we use the rank-based non-parametric Mann-Kendall (MK) test, 

Page 42 of 68

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 7 

which seems to have been used more often in applications, such as stream flow (Yue et al, 

2002; Yue and Pilon, 2004, Wang et al, 2005). 

The null hypothesis for the MK test is that the time series 
t

Y , 1, 2,...,t n= , is independent 

and identically distributed. The statistic S of Kendall’s tau is 

   
1

1 1

sgn( )
n n

j i

i j i

S Y Y
−

= = +

= −∑∑ ,               (7) 

where 

1, 0

sgn( ) 0, 0

1, 0

if

if

if

θ

θ θ
θ

>


= =
− <

. 

Mann (1945) and Kendall (1975) documented that when 8n ≥  the statistic S is approximately 

normally distributed with the mean and the variance as follows: 

 

                                       
1

( ) 0

( 1)(2 5) ( 1)(2 5)

( ) ,
18

n

m

m

S

n n n t m m m

Var S =

Ε =

− + − − +
=

∑  

where mt  is the number of ties of extent m. 

 

 2.3 Randomization and bootstrap tests 
 

   The tests described above have all well defined asymptotic null distribution, i.e. distribution 

of the test statistic under 0H . However, departures from the nominal null distribution may 

occur, e.g. due to small sample size. Resampling techniques have been used to form the null 

distribution. Here we consider randomization and bootstrap tests.  

A randomization test generates a randomly chosen subset of all possible permutations of 

the original sample consistent to 0H (Fortin et al, 2002). The randomization tests used in this 
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study are adjusted to the correlation structure of the time series and the distribution of 

residuals tE . 

   When the residuals are white noise, 2(0, )tE WN σ� , the randomized or so-called surrogate 

data are generated by shuffling the tY  time series. In case where tE  stem from a stochastic 

linear process, different surrogate data generating algorithms are called depending on whether 

the process is normal or not. When it is normal, the surrogate time series are generated by 

phase randomization making use of the Fourier transform and are referred to as FT surrogate 

data (Theiler et al, 1992). An FT surrogate time series is a normal time series with the same 

linear structure as tY , but contains no trend. In case tE  comes from a non-normal stochastic 

linear process, the more general algorithms of Improved Amplitude Adjusted Fourier 

Transform, IAAFT (Schreiber and Schmitz, 1996) and Statically Transformed Autoregressive 

Process, STAP (Kugiumtzis, 2002) are called. The IAAFT algorithm makes also use of the 

Fourier transform but in an iterative scheme that terminates when sufficient convergence of 

both power spectrum and marginal distribution is reached. The STAP algorithm generates the 

surrogate time series as statically transformed realizations of a normal (autoregressive) 

process so that both the original marginal distribution and linear structure are preserved. 

These algorithms were introduced to test nonlinear departures from the null hypothesis of 

linear stochastic process, but they can as well be used to test departures involving linear 

trend. The test using STAP surrogate data is more conservative than when using IAAFT 

surrogates and its power decreases faster with the decrease of the time series length 

(Kugiumtzis 2002). We employ the randomization test with both surrogate data types and 

compare their size and power on small sample sizes, typically encountered in trend 

investigation. 
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In addition to randomization tests we include bootstrap tests, adapted for each model 

assumption for tE  (Hinkley, 1988; Efron and Tibshirani, 1993). For white noise residuals, 

the standard bootstrap resampling is applied. When tE  is a realization of a linear stochastic 

process, there are a number of bootstrap approaches, such as the block, sieve, wild and local 

bootstraps, but we follow here the most standard “naïve” bootstrap approach, fitting an 

autoregressive model and drawing from the model residuals to generate the bootstrap time 

series (Buhlmann, 2002;  Politis 2003). 

3 Monte Carlo Simulations 

3.1 Simulation setup 

 

   We generate Monte Carlo realizations for different stochastic processes with and without 

linear trend according to the model in (1). The length of the time series n  varies as 2k  for 

4,5,6,7k =  and the trend magnitude is monitored varying the linear trend coefficient as 

0.01(0.002) 0.01b = − , where the no-trend scenario is for 0b = . For white noise residuals tE , 

the normal, uniform and exponential distributions are considered. For correlated residuals tE , 

we consider the first order autoregressive process AR(1), ttt aEE += −1ϕ , and the mixed 

process of first order autoregressive part and first order moving average part ARMA(1,1) 

1 1t t t tE φE θa a- -= - + , where ta  follows normal, uniform and exponential distribution. In 

order to examine how the correlation in the residuals affects the detection of linear trend, we 

vary also the parameter φ (equal to one lag autocorrelation of residuals) as 

0.95, 0.8± ± and 0.4± . The combination of all the values of n, b, and φ (including zero) and the 

distribution types of input noise, gives a total of 4x11x7x3=924 cases. For ARMA, the study 

is not exhaustive and is restricted to selected values of φ and θ. 
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   For each case, 1000 Monte Carlo realizations are generated and for each realization 199 

surrogate and bootstrap data are generated by the appropriate algorithm. For the correlated 

residuals, both IAAFT and STAP surrogate data are generated along with the bootstrap data. 

The four tests are applied on each time series and the test decision is made on the basis of the 

analytic null distribution of the test statistic q. In addition, the null distribution is formed from 

the values of q computed on the resampled data, denoted as 1 199,...,q q , and the rejection of 

0H  is deduced when  0q computed on the original time series is not within the null 

distribution. In previous works on surrogate data, the rejection of 0H  is often determined 

from the significance S (provided that 1,..., Mq q , on the M surrogate data, are fairly normally 

distributed) denoted as  

        

0

,
q

q q
S

s

−
=          (8) 

where q  is the average  and 
q

s  the standard deviation (SD) of Mqq ,...,1  (Kugiumtzis, 2000). 

Rank ordering has also been used, where for our case, 0H  is rejected, say,  at significance 

level 0.01α =  when 0q  is first or last in the ordered concatenated list 0 1 199, ,...,q q q  and at 

0.05α =  when 0q is at places 1 to 5 or 196 to 200. 

3.2 Simulation results 

 

   All linear trend tests are performed using the test statistics C1, C2, C3 and MK and the test 

decision is made using the asymptotic approach and the randomization and bootstrap 

approach. The probability of rejecting H0 is estimated by the relative frequency of rejections 

in the ensemble of 1000 time series. 

The significance S in (8) gives better resolution in the p-value than the rank ordering. 

However, normality tests on the statistics from a sample of 199 surrogates showed departures 
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from normality. Therefore, the surrogate and bootstrap test results below are for rank 

ordering. 

One would expect that all the tests perform well in the case of independent residuals. 

However, even when the residual series is normal white noise, the asymptotic test shows 

larger size when using C2 and small power when using C3, given with highlighted values in 

Table 1. For C2 this is a significant drawback that persists for other distributions of Et (e.g. 

uniform noise in Table 1) and questions the detection of trend with this method (e.g. note the 

higher probability of rejection for b=±0.002 as compared to C1 and MK). The shortcomings 

of C2 and C3 are recovered with the use of the randomization approach. Indeed 

randomization tests attain always the correct size of the test and the same level of power as 

the asymptotic approach. The results on non-zero trend coefficients suggest that C1 and MK, 

constructed under the assumption of independent residuals, have somehow larger power than 

the C2 and C3 statistics for any white noise distribution. The distribution of Et seems to affect 

the significance of the linear trend, e.g. the power of all tests is increased when the 

distribution changes from normal to uniform (see Table 1). The results of the bootstrap tests 

are the same as for the respective randomization tests. 

(Here should be placed Table 1) 

 

For correlated residuals, the degree of correlation, monitored in the simulations with the 

coefficient φ of the AR(1) model for Et, in combination with the time series length have 

major effect on the size and power of all tests. On the other hand, the distribution of Et 

(actually we determine the distribution of the input noise at of AR(1) in the simulations) does 

not seem to have significant effect on the test accuracy.  

   The simulations showed that when consecutive residuals are anti-correlated (φ negative in 

AR(1)) the null distribution of the t statistic of C2 tends to be wider than the respective 

nominal distribution, whereas for C1, C3 and MK tests it is narrower, as shown in Fig. 1. For 
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example, in the absence of trend and for 128n = , the estimated variance of the C2 statistic 

when 0.8ϕ = −  is 1.74 and when 0.2ϕ = −  is 2.8, which are both far from the nominal unit 

variance. For the other tests, the estimated variance is much smaller than the nominal unit 

variance. This is observed for all three types of noise. 

(Here should be placed Figure 1) 

 

     Thus the asymptotic approach tends to give larger test size for C2 test and smaller power 

for the other statistics. This is shown in Fig. 2a and 2d for AR(1) residuals with 0.8ϕ = −  and 

0.4ϕ = − , respectively, where the data size is n=128 and at follows normal distribution. The 

power of all tests increases with the decrease of anticorrelation (φ closer to zero) and the 

increase of the magnitude of b, similarly for upward and downward trend. C2 has the largest 

power but spuriously given the large test size for b=0, and that is because 2
ˆˆ ( )s b  is a poorly 

behaved estimator (Woodward et al, 1993). The other three test statistics perform similarly 

having insignificant power for small b  (see Fig. 2a). The respective randomization tests 

using FT surrogates give better results: they eliminate the type I error of the asymptotic tests 

for C2, with a loss of power (see Fig. 2b and 2e). The randomization tests using C2 and C3 

tend to have more symmetric increase of power than C1 and MK (for positive and negative 

b ) . When bootstrap data are used, the power of all tests is further improved and all four tests 

perform similarly, as shown in Fig. 2c and 2f.  

(Here should be placed Figure 2) 

 

Similar results are obtained when tE  is an AR(1) process with uniform or exponential 

input white noise. The test results for the two noise distributions are shown in Fig. 3, for 

0.4ϕ = − . Note that C2 and C3 attain larger power when resampling techniques are used, 

especially when the input noise is uniform. 
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(Here should be placed Figure 3) 

    

   STAP gives similar results to IAAFT for the randomization test in these non-normal AR(1) 

processes. Both randomization and bootstrap tests eliminate type I error for all statistics, but 

bootstrap tests obtain somehow larger power than the randomization tests.   

   The actual null distribution of the test statistics deviates from the nominal null distribution 

also when ϕ  in AR(1) residuals is positive but in a different way and at a larger degree 

(compare Fig. 4 to Fig. 1). For example, for 0b = , normal white noise and 128n = ,  as ϕ  

coefficient increases from 0.2 to 0.8, the variance jumps from 1.49 to 9.44  for C1, from 3.15 

to 4.4 for C2, from 0.29 to 0.68  for C3 from 4.37 to 7.67 for MK test. This explains the very 

large test size we found when using C1, C2 and MK with the asymptotic approach. All test 

statistics, except for C3, have much wider empirical distribution as shown in Fig. 4 for 

normal and uniform noise. 

(Here should be placed Figure 4) 

 

   The Monte Carlo simulations showed that the empirical test size gets larger for the 

asymptotic tests as ϕ  in AR(1) residuals increases away from 0.4. The same problem was 

found also for the tests using resampling techniques but at a lesser amount. Among all test 

statistics, only C3 performs properly for large positive autocorrelation. In Fig. 5a, the test 

results using C3 are shown for 0.8=ϕ , 128n =  and the uniform input noise. There is still a 

small type I error, especially for IAAFT and STAP randomization tests. On the other hand, 

the bootstrap test eliminates the type I error at the cost of smaller power compared to IAAFT 

and STAP. For exponential input noise all tests do not have any significant power (see Fig. 

5b) and the same holds for normal input noise (not shown here). 

(Here should be placed Figure 5) 
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   The power increases fast for larger data sets, as shown in Fig. 6 for C3, bootstrap approach 

and 256=n , i.e. double than the sample size in Fig. 5. For strong positive correlations as for 

8.0=ϕ  used in Fig. 5 and Fig. 6, the increase of the power with the sample size is lower for 

normal and exponential input white noise. 

(Here should be placed Figure 6) 

  

The test results when the residuals are from an ARMA(1,1) turn out to be similar to the 

results shown above for AR(1) residuals, at least for the corresponding values of φ that we 

tested for. For examples, as shown in Fig. 7a the performance of the bootstrap tests with C2 

and C3 for ARMA(1,1) residuals with 0.8φ= - , 0.8θ =  and normal input noise are 

substantially the same as the respective results for AR(1) shown in Fig.2c, whereas C1 and 

MK show less power for ARMA(1,1). This difference with C1 and MK gets larger when the 

randomization test is used instead (compare Fig. 7b with Fig. 2b). For all statistics the test for 

the same ARMA residual process improves both in terms of significance and power when the 

input noise is uniform, as we observed for the AR process (see Fig. 7c). Other values of φ and 

θ  gave results similar to the corresponding AR(1) residual process. For example the results 

for 0.4φ= -  show the same test performance for C2, C3 and difference for C1,MK for the 

ARMA and AR case as discussed earlier for 0.8φ = -  (compare Fig. 7d to Fig. 2f). For 

positive values of φ in the ARMA(1,1) residual process, the power of the test (bootstrap and 

randomization) decreases in the same way as for the AR(1) residual process.   

   

(Here should be placed Figure 7) 

 

      It is of practical interest to investigate the dependence of sample size on the strength of 

positive autocorrelation (positive ϕ ) under the condition of maintaining the correct test size. 

For this, we made Monte Carlo simulations for AR(1) residual processes with 
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99.0,97.0,95.0)05.0(4.0=ϕ  and we found the smallest n  that preserves the actual size of the 

test within the limit of 0.06 for 05.0=a . The results for C3, bootstrap approach and the three 

distributions of input white noise are shown in Fig. 8. It is clear that the demand on more data 

points increases faster as ϕ  approaches 1, i.e. the random walk scenario that regards fully 

stochastic trend. It turns out that for uniform input white noise the correct application of the 

test (using C3 and bootstrap approach) does not require as long time series as for normal and 

exponential white noise. 

(Here should be placed Figure 8) 

 

   According to the simulation results, C3 with the use of bootstrap test is the most suitable 

trend test to identify the presence of small linear trend in time series data under varying 

conditions of autocorrelation and amplitude distribution of the time series. 

 

4 Application  
 

    

    We applied the asymptotic and resampling tests to time series of an index that combines 

land air temperature anomalies (Jones, 1994a) and sea surface temperature anomalies (Parker 

et al, 1995) on a 5o x 5o grid box basis, developed by the Climatic Research Unit (CRU) of 

University of East Anglia (http://www.cru.uea.ac.uk/).. We consider the time series for each 

month from January to December in the period from 1856 to 2005 ( 150n = , the whole 

sample), referred to as period 1, and from 1961 to 2005 ( 45n = ), referred to as period 2. In 

addition, the records of the mean annual values for the two periods are analyzed. These time 

series show weak linear trends and we want to investigate whether these trends are 

significant. For example, as shown in Fig. 9, the index of period 2 for January shows a long 

steep upward trend starting at around 1970 suggesting significance of the trend, whereas for 
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July the trend can be seen in a smaller part of the same period and is thus of questionable 

significance.  

   (Here should be placed Figure 9) 

 

According to Akaike (AIC) and Swartz (BIC) criteria the order of the AR model of the 

residuals, for the most time series was 1 (and mostly for 150n = ). The estimated coefficient 

of AR(1) was about 0.5 for most of the time series, but the distribution of the residuals did 

not appear to have the same form across the time series. For example, the Kolmogorov – 

Smirnov test for normality gave rejection for most of the time series. According to our 

simulation results for correlated residuals at the order of 0.5ϕ � , the minimum sample size 

for the appropriate use of the trend test is at 100 to 150 (see Fig. 8). In table 2, the 

standardized coefficients (s.c.) for the magnitude of the trend for all the time series are 

shown. The s.c. for period 2 are larger than for period 1 for all months except November (11). 

  (Here should be placed Table 2) 

 

   All asymptotic tests give significant linear trend for all months for period 2 and only for 

autumn and winter months for period 1, as shown in Fig. 10 using C3. This result cannot be 

trusted due to the presence of positively correlated residuals and according to the simulation 

results for sample sizes at the level of period 1 and 2. On the other hand, when the bootstrap 

and randomization tests were used, significant linear trend was found only for the winter and 

partly spring months. As shown for C3 and bootstrap in Fig. 10, significant trend at 0.05α =  

was found for months September to May for period 1 and for months January to April for 

period 2. However, the test results for period 2 should be treated with caution as for such a 

small sample size the presence of positive autocorrelation in the residuals (here it is about 

0.5) may be the cause of the statistically significant trend (see also Fig. 8). Note in particular 

that the linear trend for January of period 2 was found significant with all approaches, 
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whereas for July only the asymptotic approach found significant trend (see also Fig. 10). 

According to the simulation results, we should thus trust the bootstrap test for July of period 

2. 

 (Here should be placed Figure 10) 

 

   As for the mean annual time series (at point 13 of the horizontal axis of Fig. 10), C3 

asymptotic and bootstrap tests give significant linear trend for period 1, whereas for period 2 

the linear trend was found significant for the asymptotic but not for the bootstrap test.  

The overall results from the test of C3 and bootstrap approach suggest that there is a trend 

during the winter and spring months, better expressed in the long record (1856 – 2005). 

           

5 Conclusion 

 

Monte Carlo simulations were made on four test statistics for asymptotic, randomization 

and bootstrap test of linear trend under different settings of time series length, residual 

distribution and autocorrelation. The comparative results showed clear superiority of the 

randomization and bootstrap test over the asymptotic test and revealed differences and 

limitations in the performance of the test statistics.  

For correlated residuals, the C3 test statistic, using spectrum-based estimation of the 

variance of the slope coefficient, gives the smallest size of the asymptotic test and when 

resampling techniques are used the test size decreases to the nominal level. Further, it attains 

high power compared to the other test statistics. However, when the residuals are white noise, 

the power of the test using C3 is smaller than when using a test statistic formed under the 

assumption of white noise residual.  

The asymptotic test gives generally large type I error and the use of resampling techniques 

recovers the correct test size in most of the settings considered in the study. For correlated 

residuals, suitable surrogate data generation techniques have been used for the randomization 
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test and the residual-based bootstrap for the bootstrap test. The simulation results showed that 

the bootstrap test turns out to attain higher power than the randomization test.  

The overall simulation results suggest the use of the C3 statistic in a bootstrap test. Even 

this test cannot distinguish linear trend from strong positive autocorrelation depending on the 

time series length. We found that under the condition of retaining the correct test size, the 

time series length has a functional dependence on the positive autocorrelation (for values 

larger than about 0.4) that varies with the input white noise distribution. These functional 

relations can serve as a guide for the limits of implementation of the test in real-world 

applications. 

We applied the asymptotic and resampling tests with the four test statistics to time series of 

an index of land air and sea surface temperature anomalies at different periods, for all 12 

months separately and for the annual average. For some months, a linear trend was found for 

some statistics using the asymptotic test (and sometimes even the resampling test) whereas it 

was not found when using C3 and the bootstrap test, indicating spurious detection of trend. 

However, consistent detection of trend could be obtained in the winter and spring months, 

especially when considering the whole record that allows for a proper implementation of the 

test, given also the relatively small positive autocorrelation of the residuals. 

We believe that this work shed some light on the performance of standard tests for linear 

trend and showed the need of resampling techniques in the implementation of the tests. There 

are other tests for linear trend not considered in this work and it would be interesting to 

include them in a future comparative work. 
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Tables and Figures 
 

 

Table 1.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Et ~ N(0,1) Et ~ U[-1/2,1/2] 

b Test (α=0.05) C1 C2 C3 MK C1 C2 C3 MK 

Asymptotic 0.375 0.645 0.101 0.377 1.000 1.000 0.999 0.972 
b=-0.004 

Randomization 0.328 0.270 0.235 0.307 1.000 0.990 0.994 0.999 

Asymptotic 0.133 0.343 0.029 0.117 0.820 0.931 0.414 0.777  

b=-0.002 
 Randomization 0.104 0.104 0.108 0.108 0.780 0.642 0.667 0.739 

Asymptotic 0.061 0.206 0.013 0.057 0.048 0.241 0.002 0.044  

b=0.0 
 Randomization 0.049 0.046 0.061 0.049 0.048 0.053 0.051 0.050 

Asymptotic 0.130 0.380 0.031 0.119 0.800 0.933 0.388 0.762  

b=0.002 
 Randomization 0.140 0.110 0.113 0.129 0.792 0.688 0.712 0.757 

Asymptotic 0.401 0.655 0.099 0.377 1.000 1.000 1.000 0.961 
b=0.004 

Randomization 0.389 0.328 0.199 0.386 1.000 0.991 0.995 1.000 
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Figure 1.  
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Figure 2.   
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Figure 3.  
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Figure 4.  
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Figure 5.   
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Figure 6.  
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   Figure 7. 
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Figure 8.   
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      Figure 9.   
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Table 2.   

Months Annual  

Period 
1 2 3 4 5 6 7 8 9 10 11 12  

1 0.530 0.559 0.665 0.653 0.621 0.490 0.468 0.601 0.646 0.704 0.746 0.610 0.755 

2 0.746 0.660 0.719 0.816 0.830 0.826 0.796 0.783 0.794 0.705 0.649 0.715 0.833 
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Figure 10.   
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