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8 1 Introduction

12 Let Xi,...,X,, and Y;,...,Y,, be independent random samples from popu-
12 lations with absolutely continuous distribution functions F'(z) and F(z — 1),
13 ¥ € R, respectively. We wish to test

14

15 H() : ¥=0

16

g against

19 Hy: 9>0.

52 The Wilcoxon-Mann-Whitney test is the most familiar nonparametric test
29 for this problem. This test was generalised to linear rank tests with various
23 other scores, such as the Median test, the normal scores test and the Savage
24 test, see e.g. Hdjek, Sidak and Sen (1999).

gg Another generalisation is to consider a class of tests based on U-statistics.
27 This interesting class of tests has drawn considerable attraction in the lit-
28 erature (cf. e.g. Deshpande and Kochar (1982), Shetty and Govindarajulu
29 (1988), Kumar (1997), Xie and Priebe (2000, 2002), John and Priebe (2007)).
22 Following Kumar, Singh and Oztiirk (2003) a general class Uk, of U-
32 statistics is defined in Section 2. Local alternatives of the form ¢ = 0y =
33 0/v/N, N = ny +ny, are considered and the asymptotic efficacies of the tests
34 based on Uy; are compared in Section 3. It is shown that there are different
35 tests of this type which are efficient for densities with short, medium or
2? long (right or left) tails, respectively. For example, the test based on Us is
33 efficient for densities with short tails, and that based on Us 3 is efficient for
39 densities with long tails. However, the practising statistician has generally
40 no clear idea on the underlying density, thus he/she should apply an adaptive
j; test which takes into account the given data set. In Section 4 two versions
43 of such an adaptive test are proposed, one of them is distribution-free. The
44 adaptive tests first classify the underlying distribution with respect to some
45 measures like (right and left) tailweight and skewness and then select an
jg appropriate test based on U-statistics. Our adaptive test is compared briefly
48 with adaptive tests based on linear rank tests in Section 5 and with the ¢-
49 test and the Mann-Whitney-Wilcoxon test in Section 6 . In Section 7
50 a simulation study is performed and the finite sample power is compared with
g; the asymptotic power. It is shown that one of the adaptive tests behaves well
53 also for moderate sample sizes. A data example is provided in Section
54 8. We give some conclusions in Section 9.

55

56

57 2

58

59

60
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2 Test statistics

We consider the class of U-statistics, which was proposed by Kumar, Singh
and Oztiirk (2003). Let k, 1 < k < min(ny,ng), and i, i < %, be fixed
integers. Define

2 itz < yer and ik < Yk—iv)k
Qi(w1, T Y- yk) = Q1 ifeither g < Yek OF Te—ite < Yh—it )k
0 otherwise,
where x(;); is the ith order statistic in a subsample of size & from the X-

sample (and likewise for y’s). Let Uy, be the U-statistic associated with
kernel ®;, i.e.

172
Ukﬂ- = TN ey Z(I)i(XTl? . ,er,}/;l, . ,Y;k) — Nina9,
(k)'(k)
where the summation extends over all possible combinations (71, ...,7x) of
k integers from {1,...,n;} and all possible combinations (si,...,s;) of k

integers from {1,...,ny}. The null hypothesis Hj is rejected in favour of H;
for large values of Uy ;.
Remark: The following special cases are of particular interest.

For ¢« =1 and k = 1 we have the Wilcoxon-Mann-Whitney test.

For i = 1 or i = k we have the Deshpande-Kochar test (cf. Deshpande
and Kochar, 1982).

For i = (k +1)/2 we have the Kumar-test (cf. Kumar, 1997).
Let
) = E®i(z, Xor. .., X, V1,0, Y3)
y) = E&,(Xq,..., Xk y, Yo, ..., Y})
) (
(

where E and Var denote the expectation and variance respectively. More-
over, let Fi;r(.) be the cumulative distribution function of the sth order
statistics of a sample of size k.
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Proposition 2.1 (cf. Kumar, Singh and Oztiirk, 2003) Under assump-
tions N — o0, ni /N — X, 0 < A < 1 the limiting distribution of NY/*(Uy; —

Mii)/ Ok is standard normal, where expectation ny,; = EUy,; and variance

o, =Var (Uy;) have the forms

o) —00

Mei — N1N2 (/ F(i)k(y) dF(z’)k(y — 9) +/ F(k—z’+1)k(y) dF(k—H—l)k(?J - 9)) — NiN2

ST
A 1-)"

2 292
Okpi — ”1”2(

Remark: Under Hy we have n;; = 0 and

where py; depends on k and i only. The expression for pj; is rather long,
that is why we do not write it out. It can be found in Kumar, Singh and
Oztiirk (2003), pp.125-126.

3 The asymptotic efficacies

The asymptotic efficacies AE of the statistics Uy ; under the alternative 0y =
N-1Y2.9 are given by

AE(Ugalf) = M1 = X) - CF,(f),

where f(-) denotes the probability density function belonging to the c.d.f. F'(-)
and

) = o0 ([ rp = - P Py ans

(K2 pr,i)'/? %0

@ - p@p e i)

o

(c¢f. Kumar, Singh and Oztiirk, 2003).
Note that the asymptotic efficacy is defined by the limit of 73 ,/07 ;, cf.
Noether (1955).
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From Kumar, Singh and Oztiirk (2003) we know that for some
underlying distributions the test based on Uj; has highest efficacy
if £ is as large as possible as long as it is less than sample size.
For example, for the uniform 7 should be 1 or k£, and for the double
exponential k£ should be odd and i = (k+1)/2. Therefore, for further
investigations we have to make some restrictions. We restricted the
choice of k as k < 5 ourselves just for illustrative purpose. Of course,
computations can be made for values of £ beyond that. We compute
the asymptotic Pitman efficacies for all tests Uy,; with 1 < i < k, k < 5.
Values of the factors C,(f) for various densities are presented in Table 1.
We also give the corresponding factors for the t-test (see the first
column). The L-DE density was proposed by Policello and Hettmansperger
(1976), the U-L by Gastwirth (1965), the RST is named after Ramberg,
Schmeiser and Tukey, cf. Ramberg and Schmeiser (1972, 1974), CN(e, 0)
is the scale contaminated normal with contaminating proportion ¢, Mielke
denotes the Mielke (1972) density and BT is the density of Box and Tiao
(1962).

The bold entries denote, for the given density, the asymptotically best
test among the considered tests. (If the t¢-test is the asymptotically
best, it is denoted in italics. Note that the ¢-test is not allowed
to be included in the adaptive procedure since the adaptive test
requires independence between the two steps, see Proposition 4.1
below.) On the first view we see that the columns for Us,,Us; and Us 3
have the most bold entries. This observation gives rise to the idea to base an
adaptive test on these few statistics. (The classical test Uy is also included
in the adaptive test.)

To get a closer idea how to classify densities we apply the method of Hall
and Joiner (1982). The content of information in the asymptotic efficacy
matrix is analysed by a principal component analysis where the densities
are the observations and the efficacies of the U, ; are the variables. The
first principal component explains already 96% of the variability (Figure 1).
For better visibility we display the values of the first two (varimax rotated)
principal components (Factor 1 and Factor 2). In Figure 1 nearly symmetric
densities with short tails are denoted by a green plus, that with short-medium
and long-medium tails by a cyan X and a blue star, respectively, and that
with long tails with a red dot. Skew densities are denoted by a black plus
(short tails) and a yellow dot (medium tails) respectively. The dots denote
densities with long tails, the stars and X that with medium tails, and the

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca
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plus that with short tails. On the left side we have densities with long tails,
in the centre that with medium tails, and on the right that with short tails.
11 For an exact definition what we understand by long, medium and short tails
12 see below. On the first view we see that the AE(Uy ;) classify the densities
13 according to their tailweight. The skewness seems to play a marginal role
only.

©CoO~NOUTA,WNPE

18 Insert Figure 1 about here

21 4 Adaptive test

24 There are some proposals for adaptive tests for the two-sample location prob-
25 lem in the literature, see e.g. Hogg (1974, 1982), Hogg, Fisher and Randles
26 (1975), Ruberg (1986) and Biining (1994). We apply the concept of Hogg
27 (1974), that is, to classify at first the type of the underlying density with
29 respect to one measure of skewness § and to three measures of tailweight ,
30 t, and t;, which are defined by

¢ (1)
(0.95) — Q(0.05)

w

w
>
Il

32 Q(0.95) + Q(0.05) — 2 - Q(0.5)
Q

0.95) — G

85)

5)
5)

(0.05)
(0.15)

005) Q(0.95) — Q(0.5)
0.15) " 0(0.85) - Q

w
D
>
Il

¢
-Q

—Q(
—Q(
42 where Q(u) is the so-called classical quantile estimate of F'~1(u),

45 Xay—(1=96)- (X —Xqn)) if u<1/(2-N)
46 Q(u) = (1 - 5) . X(y) -+ 5 . X(j+1) 1f 1 S U S 2.-N—1 (4)

2-N 2:-N

48 Xy +6(Xvy — Xv-1)) if u>(2-N-1)/(2-N),

50 where 6 = N-u+1/2 —j and j = |N -u + 1/2]. Note that t; and #,
are measures of left tailweight and right tailweight, respectively. All the
53 measures are estimated from the pooled sample.
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In Tables 2 and 3 the values of the corresponding theoretical measures
s, t, t,. and t;, for various selected densities are presented. (For symmetric
densities we have s =0 and t = t, = t;.)

Comparing Table 1 with Tables 2 and 3 roughly we see that Us; is the
asymptotically best test for symmetric densities with small tailweight, Us;
for symmetric densities with small to medium tailweight, U ; for symmetric
densities with medium to larger tailweight, and Us 3 for symmetric densities
with large tailweight. The tests Us; and U ; should be included in an adap-
tive test since they are the (asymptotically) best for the normal and for the
logistic density, respectively (at least among the considered tests).

The measure of skewness gives no clear classification idea. That is why
we consider left tailweight ¢; and right tailweight t,., and classify densities
as densities with partially short tails if ¢; < 1.55 or ¢, < 1.55. They are
classified to have partially medium tails if ¢, < 1.8 or ¢, < 1.8 and if they
have not partially short tails.

The reasoning of the last two sections gives rise to the following adaptive
test.

Define regions E}, ..., E; of R* which are based on the so called selector
statistic S = (3,1,1;,1,)

By ={t <1553 <0.2} “nearly symmetric, short tails”

Page 8 of 30

By ={1.55 <t < 1.65, 5 < 0.2} “nearly symmetric, light medium tails”
B3 ={1.65<1t<18, 5 <0.2} “nearly symmetric, heavy medium tails”

E,={t>18,]3 <02} “nearly symmetric, long tails”
Es={(t; < 1.55 V t, < 1.55), |5| > 0.2}  “skew, partially short tails”
Es = {(t; > 1.65 A {, > 1.65),]3| > 0.2}  “skew, long tails”
B, = {t; > 1.55, {, > 1.55,|3] > 0.2} \Es “skew, partially medium tails”
where §, 1,1, and £, are given by (1) to (3). Note that there was no density
which belongs to class E7.

The cutoff values of the regions are determined in such a way that the
vast majority of densities is classified correctly, i.e. they fall in the class that
has the highest asymptotic power (cf. Tables 2 and 3 with Table 1). For
example, the normal (tailweight t=1.59, cf. Table 2) is classified to Es, and
the test Us, which is the best among the considered tests (cf. Table 1), is
performed. The logistic is mapped to region Ej3 and the optimal test U ;
is performed. Similar observations for the other densities lead to the given
cutoff values. In few cases, if the classification is not correct, then the efficacy
loss is very small in almost all cases. In Table 1 the chosen test is underlined

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca
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if it is not already the (bold) best.

Now, we propose the Adaptive test A which is based on the four U-
statistics U1, Us 1, Uy, and Us 3. We denote the tests by (5,1), (3,1), (1,1)
and (5,3), respectively.

) if SeFUEFE;
) if SeFE,UE;
) if SekBy

(5,3) if Se B UE;

()

In Figure 2 the corresponding adaptive scheme is given. As indicated
above the skewness plays only a marginal role. It is included in the adaptive
scheme implicitly by left and right tailweight.

Insert Figure 2 about here

The two-stage procedure defined above is asymptotically distribution-free
since the selector statistic S is based on the order statistic only and the U-
statistics are based on the ranks only.

The Adaptive test A is only asymptotically distribution-free because asymp-
totic critical values are used in the adaptive scheme.

Proposition 4.1 Let o be the standard deviation of the underlying cdf. I,
if it exists and let {Ox} be a sequence of ‘near’ alternatives with /Ny —
orbf. The asymptotic power function of the Adaptive test A equals

1= ®(21-0 — JAE(Usa|f) -op-0) if f€EUE;
3(0) = 1= (210 —/AE(Usal[) - op-0)  if [E€EUE;

L= (210 = VAE(OW[f) - 0p-0)  if fE€Es

L= (210 = VAEUs3[[) - or-0)  if f€EUES

Proof. Let be h = 1 if (k,i) = (5,1), h = 2 if (k,i) = (3,1), h = 3 if
(]{Z,Z) = (1, 1), h =4 if (]{7,7,) = (5,3) Let be T1 = U571, T2 = U371, T3 = Ul,l,
T4 = U5’3 and Dl = El UE5, D2 = E2 UE7, D3 = Eg, D4 = E4UE6.
The proposition follows from the total probability theorem and from the

URL: http://mc.manuscriptcentral.com/Issp E-mail: comstat@univmail.cis.mcmaster.ca
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consistency of the selector statistics, i.e.

4
B0) = ZPUFO(T}L > Con|Th chosen) - P,,.o(1}, chosen)
h=1

A o(1) else

~ 1_(I>(Zl—a_ AE(Th|f)O'F9) if f &€ Dy,

where ¢y, is the (1 — a)-quantile of the asymptotic null distribution of 7),. g

Remark: The factor o is introduced to have similar power values for the

various distributions. For the Cauchy the factor o is set to op = 0y =
F~H®(1)) = 1.8373.

The Adaptive test A(S) is based on selector statistics computed from
the pooled sample. However, location differences may effect the estimates of
tailweight and skewness. That is why we consider also a modification A(S’ *)
of the adaptive test, where tailweights and skewness are estimated from the
single samples. Let §; and t;, fm- and tAm-, 1 = 1,2 be statistics of the form
(1) to (3) for skewness and tailweight, left tailweight and right tailweight,
respectively. Applying the A(S’*)—test the selector statistic S* = (8%, 8%, 15, 17)
with

s n1A+n2A f* n1£+n2£
§ = =8+ =S = — -
NTTTNT? NN
=2+ 220, 4=, 2
l—Nl,l Nl,2 r —Nr,l N?“,2

is used instead of §, t, t; and ¢,. This procedure is also asymptotically
distribution-free. However, it is not distribution-free also if the exact critical
values are used. This property is due to the fact that the selector statistic is
no longer based on the pure order statistic.

For various densities asymptotic power functions (together with finite
power functions) are given in Figures 3 and 4.

The blue dotted line is for U; i, the violet short-dashed line for Us ;, the
green long-dashed line for Us ;, the red dashed-dotted line for Us; 5 (and the
black continuous line for the adaptive test).

Remark: Another adaptive test which is based on U-statistics, but with
another classes of U-statistics (and in another context) is proposed in Késsler

9
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1

2

3

4

5

6

7

8 (2005). It turns out, that the adaptive test presented here is slightly better
2 0 for the majority of considered densities, especially for short tail densities
1 (uniform, exponential).

12

13 Remark: Another kind of (nonrestrictive) adaptive tests was constructed
1;1 by John and Priebe (2007). They take the class of weighted generalised
16 Mann-Whitney-Wilcoxon (WGMWW) statistics proposed by Xie and Priebe
17 (2002), and estimate in a first step the asymptotic efficacies, where the
18 weights are considered as parameters. In a second step these weights are de-
19 termined in such a way that the estimated asymptotic efficacy is maximised.
32 Then the test based on the resulting WGMWW statistic is performed.

22

54 5 Comparison to adaptive tests based on lin-
25 o« 4o

26 ear rank statistics

27

28 Restrictive adaptive tests for the two-sample location problem based on linear
gg rank tests are proposed by Hogg (1974, 1982), Hogg, Fisher and Randles
31 (1975), Handl (1986) and Biining (1994). All of them are based on the
32 concept of Hogg (1974), and they use few linear rank statistics, with the
33 following scores: Gastwirth (GA, for short tails), Wilcoxon (WI, for medium
34 tails), Median (Hogg, 1974, and Hogg et al., 1975, Long-tail (LT, Handl,
gg 1986) and Biining, 1994, both for long tails) and Hogg-Fisher-Randles (HFR,
37 for right-skew densities). Since the Median test is known to be bad for most
38 densities (except for the doubleexponential), we restrict to the scores GA, W1,
39 LT and HFR, and call the corresponding adaptive scheme B(S) (where the
22 form of S is not of interest here). For some densities we take the respective
42 two asymptotically best tests in the the Adaptive schemes A(S) and B(S5)
43 (cf. Table 4).

44 For the classical densities considered the U-statistics based test A(S) has
jg slightly higher asymptotic power than the test B(S). (For the logistic they
47 are, of course, the same.) For the densities U-L (0.75) and L-D (0.75) that
48 are ‘optimal’ densities for the tests GA and LT (cf. Biining and Kossler,
49 1999) it is vice versa.

50

51

52

53

54

55
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6 Comparison to the t-test and to the Wilcoxon

test

To evaluate the adaptive test we compare the AE values for the
t-test, the Wilcoxon test, and for the Adaptive test A(S). The test
with the highest AE gets rank one, that with the second highest
rank two, and that with the lowest AE (among the three tests) rank
three, all for the various densities considered. In the case of equal
AE values, average ranks are taken. The results are presented in
Table 5. The avarage rank over all 86 densities is 1.23 for the
Adaptive test A(S), in comparison to 2.10 for the Wilcoxon test
and 2.67 for the t-test. Note that this result is not surprising since
the adaptive test A(S) is constructed in such a way that it has high
AE.

7 Simulation study

In order to assess whether the asymptotic theory can also be applied for
medium to small sample sizes a simulation study (10,000 replications each)
is performed. We choose the following six distributions:

- Uniform distribution (density with small tailweight),

- Normal distribution (density with medium tailweight),

- Logistic distribution (density with medium tailweight),

- Doubleexponential distribution (density with large tailweight),
- Cauchy distribution (density with very large tailweight),

- Exponential distribution (very skew density)

We consider the four single tests Us 1, Us 1, Uy 1, Us 3 and the two Adaptive
tests A(S) and A(S*). The sample sizes ny = ny = 10, 20,40 and the alter-
natives 0y = N~Y20o with various  are considered. Recall that the factor
or denotes the standard deviation of the underlying distribution function F
(0cau = F71(®(1)) = 1.8373).

The Adaptive test A(SY *) is slightly anticonservative, also for ny = ny =

40, with correspondingly slightly higher power than the Adaptive test A(S)
(except for the Cauchy). This test is not considered here.

11
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1

2

3

4

5

6

7

8 For ny = ny = 10 and n; = ny = 20 almost all tests (except the test
i 0 Uy 1 which attains the level of significance) are slightly anticonservative, for
11 ny = ny = 10 the attained level of significance is always less than 0.08, and
12 for ny = ny = 20 it is less than 0.06 and therefore ¢ = 0.2-robust. (For
13 the notion of e-robustness see e.g. Rasch, Teuscher, and Guiard (2007).) For
ig n1 = ng = 40 the results of the simulation study are summarized in Figures 3
16 and 4. Again, the blue dotted line is for U ;, the violet short-dashed line for
17 Us 1, the green long-dashed line for Us ;, the red dashed-dotted line for Us 3
18 and the continuous line is for the Adaptive test A(S). At first we see that,
;g for ny = ny = 40, the finite power is well approximated by the asymptotic
21 power (except for the Cauchy). Moreover, it can be seen that, for a given
22 density, there is always, sometimes together with another test, a single test
23 which is the best. The test Us; is the best for the uniform and for the
gg exponential (together with the Adaptive test A(S)), the test Uy is the best
26 for the normal and for the logistic density, and the test Us 3 is the best for
27 the doubleexponential and for the Cauchy. All these facts are not surprising.
28 Also, not surprisingly, the tests Us ; and Us 3 may be bad for some densities.
gg The tests Uy, and A(S) are, over all densities, the best. However, for the
31 uniform and for the exponential densities the adaptive test is clearly better.
32 For the Cauchy density, somewhat surprisingly, the test U;; is clearly
22 better than the adaptive tests. The Adaptive test A(S*) is better than A(S).
35 The reason for these facts is, that for small and moderate sample sizes, the
36 misclassification rate into the class E is relatively large.

37

38

28 Insert Figures 3 and 4 about here

41

42

43 8 Data example

44

45 At the 50kms ski-running competition in the Jizerske hory 2002 altogether
j? 2320 runners finished the race. We consider only two age groups, where the
48 first group contains men with an age less then 40, and the second group men
49 of an age of 40 to 49. The (perhaps somewhat trivial?) conjecture is that the
50 running times of the older are longer than that of the younger men. Figure
g; 5 gives a box plot of these data.

53
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Insert Figure 5 about here

At first, we estimate skewness and tailweight, cf. (1) and (2), and we ob-
tain § = 0.116 and = 1.500. (The computation of left and right tailweights
is not necessary here.) According to our adaptive procedure the test Us
is chosen. We obtain Us; = 1.633 which results in an one-sided p-value of
0.0511. Although the boxes look very similar we obtain a relatively
small p-value. On one hand this fact may be due to the large sam-
ple sizes, on the other hand our procedure gives a weak evidence
against H,. For comparison we also computed the one-sided p-values for
the (here not recommended) Mann-Whitney Wilcoxon test, p = 0.181 and
for the t-test, p = 0.188.

9 Conclusions

What are the results of our study? At first, we see that the finite power of
the considered tests based on U-statistics can be well approximated by their
asymptotic power. Second, there are modifications of the “classical” Mann-
Whitney test MW that may have (considerably) higher power than MW for
symmetric as well asymmetric densities. Third, the Adaptive test A(g )is a
serious alternative for the Wilcoxon-Mann-Whitney test U; ; for moderate to
large sample sizes. Especially, for short-tail densities and for skew densities
the adaptive test considered here is better than the adaptive test B (S ) based
on linear rank tests.

Many tests based on U-Statistics have good power properties. They can
be applied to a broader class of underlying densities than a linear rank test

with fixed scores.

For moderate to large sample sizes (about ny,ne > 20) the recommenda-
tion for the practising statistician is as follows: If the density is known to be
nearly normal take the ¢-test. If it is only known that it has medium tails
then take the Mann-Whitney-Wilcoxon test or the ¢-test. (For the robustness
of the t-test see e.g. Biining (1991) or Rasch, Teuscher, and Guiard (2007)
and the references therein.) For densities with short tails take the test Us 1,
and for those with long tails the test Us 3. For a completely unknown density

N

take the adaptive test A(S).

13
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For relatively small sample sizes (about ni,ns = 10) take the Mann-
Whitney-Wilcoxon test. If it is known that the densities have not too large
tails, then t-test may be applied. (Of course, the t-test is allowed only, if
outliers can be excluded.)

Note that we considered the location problem for continuous data only.
How the procedures behave for ordinal data may be a topic for further stud-
ies. Comparisons of the Mann-Whitney-Wilcoxon test with the t-test are
made in the recent paper of Rasch, Teuscher, and Guiard (2007). Further
investigations are also desirable for more general alternatives, such as F' # G
or for the case of additional scale differences between F' and G.

Acknowledgements The authors are grateful to the editor and the referees
who gave valuable hints on an improvement of an earlier version of this paper.
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Figure 1. The first two principal components
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Figure 2. Adaptive scheme.
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Page 20 of 30

Figure 3. The asymptotic and finite (n; = ny = 40) power functions of the

~

tests Uy, Us 1, Us 1, Us 3 and A(S); densities: uniform, normal and logistic.
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10 Figure 4. The asymptotic and finite (n; = ny = 40) power functions of the

N

11 tests Uy 1,Us 1, Us 1, Us 3 and A(S); densities: doubleexponential, Cauchy and
12 exponential (Continuation from Figure 3.)
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Figure 5. Running times for two age groups
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Table 1. Values of the factors C]f_’i(f), k <5, for various densities f, together with the corre-
sponding factors for the t-test

Density t-test U171 U271 U371 U3_]2 U471 U472 U571 U5_]2 U573
Uniform 12.00 12.00 14.74 22.09 7.053 30.01 7.535 38.00 9.109 6.095
Normal 1.000 0954 0976 0.985 0.873 0.950 0.889 0.900 0.931 0.832
Logistic 0.304 0.333 0.332 0.313 0324 0.284 0.327 0.254 0.332 0.315
Doubleex 0.500 0.750 0.705 0.576 0.833 0462 0.816 0.379 0.749 0.866
Cauchy 0.0 0304 0.268 0.182 0.382 0.118 0.368 0.077 0.318 0.409
to 0.0 0520 0.489 0.398 0.572 0.311 0.566 0.244 0.538 0.579
tio 0.800 0.843 0.846 0.816 0.802 0.755 0.813 0.688 0.835 0.772
L-DE 0.55 0.499 0.745 0.701 0.574 0.826 0.461 0.809 0.378 0.728 0.822
L-DE 0.61 0.495 0.726 0.686 0.567 0.798 0.458 0.783 0377 0.728 0.822
L-DE 0.70 0.481 0.672 0.641 0.544 0.720 0448 0.712 0.373 0.678 0.730
L-DE 0.75 0.468 0.630 0.606 0.524 0.663 0.438 0.659 0.368 0.637 0.665
L-DE 0.80 0.450 0.581 0.563 0.497 0.599 0.423 0.599 0.360 0.587 0.594
L-DE 0.90 0.395 0.464 0.457 0.422 0460 0.373 0.463 0.328 0.466  0.450
L-DE 0.95 0.355 0.400 0.396 0.372 0391 0.334 0.394 0300 0.399 0.380
L-DE 0.97 0.336 0.373 0371 0.349 0363 0.315 0.367 0.282 0.372 0.353
L-DE 0.99 0.315 0.347 0.345 0.325 0337 0.295 0.340 0.264 0.345 0.328
U-L 0.55 0.281 0.298 0.299 0.289 0.282 0.267 0.287 0.242 0.296 0.271
U-L 0.61 0.246  0.250 0.254 0.255 0.228 0.242 0.233 0.224 0.248 0.215
U-L 0.70 0.182 0.173 0.181  0.194 0.147 0.195 0.152 0.188 0.169 0.134
U-L 0.75 0.141  0.130 0.139 0.156 0.106 0.163 0.110 0.161 0.125 0.094
U-L 0.80 0.100  0.090 0.099 0.116 0.069 0.126 0.073 0.130 0.085 0.061
U-L 0.90 0.029 0.026 0.029 0.038 0.018 0.048 0.019 0.054 0.022 0.015
RST (-1) 0.0 0.042 0.037 0.024 0.055 0.015 0.052 0.009 0.044 0.060
RST (-0.5) 0.0 0464 0.427 0.328 0.533 0.243 0.522 0.182 0.480 0.550
RST (-0.4) 0.193 0.891 0.832 0.665 0.994 0511 0.980 0.396 0.919 1.016
RST (-0.3) 0.832 1952 1.850 1.537 2.113 1.230 2.095 0.987 2.003 2.132
RST (-0.2) 3.340 5426 5.220 4.518 5.678 3.765 5.664 3.135 5.524  5.662
RST (-0.1) 2092 26.87 26.27 23.73 27.13 20.61 27.22 17.81 27.09 26.71
RST (0.05) 143.7  148.6 149.2 144.1 1415 1334 143.3 1219 147.0 136.7
RST (0.14) | 24.18 23.08 23.56 23.73 21.15 2284 21.55 21.59 2250 20.19
RST (0.2) 14.04 1291 13.33 13.81 11.52 13.65 11.78 13.20 1245 10.91
RST (0.4) 5.815 5.036 5425 6.196 4.078 6.686 4.222 6.978 4.643 3.762
CN (.01,2) 0.971 0941 0.960 0.966 0.863 0.928 0.879 0.876 0.918 0.823
CN (.02,2) 0.943 0.927 0944 0.947 0.853 0.907 0.869 0.853 0.907 0.814
CN (.03,2) 0.917 0.887 0.900 0.893 0.823 0.846 0.837 0.788 0.871 0.787
CN (.05,2) 0.870 0.824 0.831 0.811 0.775 0.757 0.787 0.694 0.815 0.744
CN (.01,3) 0.926 0.934 0952 0.954 0.859 0913 0.875 0859 0.913 0.820
CN (.02,3) 0.862 0.914 0.928 0.924 0.845 0.878 0.860 0.819 0.896  0.807
CN (.03,3) 0.806 0.854 0.861 0.839 0.804 0.780 0.817 0.713 0.846 0.771
CN (.05,3) 0.714 0.761 0.759 0.716 0.738 0.644 0.747 0.569 0.766 0.712
CN (.01,5) 0.806 0.928 0.944 0943 0855 0.899 0.871 0.841 0.909 0.817
CN (.02,5) 0.676 0.901 0.913 0.902 0.838 0.850 0.853 0.78 0.887 0.802
CN (.03,5) 0.581 0.825 0.825 0.789 0.788 0.718 0.799 0.642 0.825 0.757
CN (.05,5) 0.455 0.709 0.696 0.631 0.707 0.544 0.713 0.461 0.726 0.686

929 Continuation on the following page
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Page 24 of 30

Density t-test U1,1 U2,1 U371 U3,2 U4 1 U4,2 U571 U5,2 U573
Mielke (0.2) 0.452  0.620 0.591  0.500 0.667 0.413 0.658 0.347 0.620 0.682
Mielke (0.4) 0.408 0.521 0.503 0.439 0.545 0.373 0.541 0.319 0.521 0.548
Mielke (0.6) 0.369 0.444 0433 0.389 0.452 0.339 0.452 0.295 0.444 0.449
Mielke (0.8) 0.335 0.383 0.377 0.348 0.380 0.309 0.382 0.273 0.382 0.374
Mielke (1.5) 0.241 0.245 0.249 0.246 0.227 0.233 0.231 0.215 0.242 0.215
Mielke (2.0) 0.194 0.188 0.193 0.200 0.167 0.195 0.171 0.18 0.184 0.156
Mielke (5.0) 0.069 0.061 0.067 0.079 0.047 0.087 0.049 0.090 0.057 0.042
Mielke (20) 0.007  0.006 0.007 0.010 0.004 0.013 0.004 0.015 0.005 0.003
BT (0.25) 0.633 0.660 0.658 0.624 0.640 0.572 0.645 0.520 0.650 0.626
BT (0.5) 0.382 0.444 0433 0.389 0.454 0.340 0.452 0.298 0.441 0.454

T (0.75) 0.222 0.292 0.279 0.239 0311 0.200 0.308 0.170 0.291 0.318

T (1.25) 0.068 0.118 0.116 0.098 0.131 0.081 0.132 0.068 0.123 0.136

T (1.5) 0.036  0.073 0.077 0.070 0.080 0.061 0.083 0.055 0.080 0.081
Exponential 1.000 3.000 3.684 5.522 1.763 7.502 1.884 9.500 2.277 1.524
Gamma (1.5) 0.667 1.216 1.365 1.705 0.895 1.994 0.936 2.230 1.062 0.808
Gamma (2.0) 0.500 0.750 0.815 0.951 0.595 1.047 0.617 1.112 0.683 0.546
Gamma (2.5) 0.400 0.540 0578 0.651 0.445 0.694 0.459 0.717 0.502 0.412
Gamma (3.0) 0.333 0422 0447 0.493 0355 0.515 0.365 0.523 0.396 0.330
Gamma (4.0) 0.250 0.293 0.307 0.330 0.252 0.337 0.259 0.336 0.278  0.237
Gamma (5.0) 0.200 0.224 0.234 0.248 0.196 0.250 0.201 0.246 0.214 0.184
Gamma (10) 0.100  0.103 0.106  0.110 0.092 0.108 0.094 0.105 0.100 0.087
Weibull (1.1) 1.296 2919 3.448 4.793 1898 6.135 2.008 7.407 2360 1.673
Weibull (1.5) 2.662 3391 3.706 4.375 2.662 4877 2.762 5.249 3.0568 2.446
Weibull (2.0) 4.660 4.712 4.980 5.447 3996 5.665 4.110 5.470 4.428  3.738
Weibull (2.5) 6.937 6.516 6.795 7.203 5.693 7.276 5.835 T7.182 6.216 5.364
Weibull (3.0) 9.494 8732 9.050 9.450 7.736 9.413 7.916 9.174 8.387 7.315
Weibull (4.0) 15.47 1433 1478 15.25 12.84 15.01 13.12 14.48 13.84 12.18
Weibull (5.0) 22.61 2146 22.09 22.70 1930 2226 19.71 21.39 20.76 18.32
LogNor (0.05) | 898.5 3825 391.0 395.0 349.3 281.3 356.0 361.2 3726 3329
LogNor (0.1) 98.51 95.97 98.21 99.44 8747 96.18 89.18 91.29 9341 83.31
LogNor (0.3) 9.705 11.10 11.47 11.89 9.893 11.75 10.12 11.37 10.70 9.363
LogNor (0.5) 2.742 4328 4559 4946 3.690 5.094 3.797 5.104 4.095 3.448
LogNor (0.9) 0.356  1.768 1984 2478 1.290 2874 1.356 3.173 1.561 1.153
LogNor (1.0) 0.214 1.574 1804 2.350 1.090 2819 1.154 3.195 1.356 0.959
LogNor (1.1) 0.127 1.445 1.692 2.304 0944 2860 1.007 3.328 1.211 0.817
LogNor (1.5) 0.012 1.307 1.690 2.765 0.640 3.924 0.708 5.045 0.947 0.509
RST (.2,.4) 8.622 7.599 8.040 8.812 6.413 9.161 6.608 9.256 7.156 5.976
RST (.2,.49) 7.610 6.638 7.107 8.005 5449 8528 5.634 8.800 6.170 5.040
RST (.4.,49) 5.241 4532 4933 5.767 3.582 6.353 3.720 6.750 4.127 3.284
RST (-.2,-.4) 0.387 2.061 1991 1.743 2.135 1465 2.134 1.227 2.099 2.116
RST (-.2,-.49) | 0.021 1473 1435 1.283 1.496 1.010 1.502 0.935 1.495 1.471
RST (-.4,-.49) | 0.020 0.659 0.613 0485 0.742 0.369 0.730 0.282 0.681 0.760
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Table 2. Values of the tailweight t for various symmetric densities

Density t Density t Density t Density t
Uniform 1.286 | Normal 1.587 | Logistic 1.697 | Doubleexp  1.912
Cauchy 3.217 | to 2.107 | tyo 1.672
L-DE 0.55 1.911 | L-DE 0.61 1.905 | L-DE 0.70  1.884 | L-DE 0.75  1.864
L-DE 0.80 1.836 | L-DE 0.90 1.753 | L-DE 0.95 1.712 | L-DE 0.97  1.703
L-DE 0.99 1.698
U-L 0.55 1.668 | U-L 0.61 1.623 | U-L 0.70 1.534 | U-L 0.75 1.474
U-L 0.80 1.409 | U-L 0.90 1.300
RST (-1) 3.451 | RST (-0.5) 2.302 | RST (-0.4) 2.146 | RST (-0.3) 2.010
RST (-0.2) 1.891 | RST (-0.1) 1.788 | RST (0.05) 1.657 | RST (0.14) 1.591
RST (0.2) 1.552 | RST (0.4) 1.446
CN (.01,2) 1.592 | CN (.02,2) 1.597 | CN (.03,2) 1.601 | CN (.05,2) 1.611
CN (.01,3) 1.596 | CN (.02,3) 1.605 | CN (.03,3) 1.615 | CN (.05,3) 1.635
CN (.01,5) 1.600 | CN (.02,5) 1.614 | CN (.03,5) 1.629 | CN (.05,5) 1.665
Mielke 0.2 1.860 | Mielke 0.4 1.812 | Mielke 0.6 ~ 1.770 | Mielke 0.8  1.732
Mielke 1.5  1.626 | Mielke 2.0  1.571 | Mielke 5.0  1.404 | Mielke 20.0 1.292
BT (0.25) 1.670 | BT(0.5) 1.752 | BT(0.75) 1.833 | BT(1.25) 1.992
BT (1.5) 2.071
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Table 3. Values of skewness s, tailweight ¢, left tailweight ¢; and

right tailweight ¢, for various skew densities

Density Skewness Tailweight Left tailweight Right tailweight
Exponential 0.564 1.697 1.210 1.912
Gamma (1.5) 0.460 1.651 1.284 1.846
Gamma (2.0) 0.401 1.668 1.329 1.810
Gamma (2.5) 0.354 1.621 1.360 1.785
Gamma (3.0) 0.338 1.653 1.382 1.768
Gamma (4.0) 0.298 1.643 1.412 1.743
Gamma (5.0) 0.271 1.636 1.432 1.727
Gamma (10.0) 0.202 1.619 1.480 1.686
Weibull (1.1) 0.508 1.654 1.237 1.859
Weibull (1.5) 0.335 1.571 1.329 1.728
Weibull (2.0) 0.194 1.544 1.411 1.649
Weibull (2.5) 0.103 1.541 1.470 1.605
Weibull (3.0) 0.040 1.546 1.513 1.577
Weibull (4.0) -0.04 1.559 1.573 1.544
Weibull (5.0) -0.088 1.571 1.612 1.525
LogNormal (0.05 0.041 1.588 1.563 1.611
LogNormal (0.1) 0.082 1.591 1.541 1.634
LogNormal (0.3) 0.242 1.626 1.457 1.749
LogNormal (0.5) 0.390 1.695 1.386 1.879
LogNormal (0.9) 0.629 1.940 1.274 2.202
LogNormal (1.0) 0.676 2.024 1.251 2.298
LogNormal (1.1) 0.719 2.117 1.229 2.401
LogNormal (1.5) 0.844 2.588 1.160 2.890
RST (0.2,0.4) 0.029 1.486 1.486 1.486
RST (0.2,0.49) 0.014 1.459 1.469 1.449
RST (0.4,0.49) -0.011 1.426 1.436 1.417
RST (-0.2-,0.4) 0.375 2.073 1.718 2.289
RST (-0.2,-0.49) 0.490 2.195 1.657 2.470
RST (-0.4,-0.49) 0.153 2.226 2.086 2.342
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23 Table 4. The factors C} ,(f), for the chosen Uy -tests, and the corresponding
24 factors for the linear rank tests, for various densities f, only the entries that
25 are on the first and second place, respectively

28 A(S) B(S)

29 density U171 U371 U571 U573 GA WI LT HFR

30 Uniform 22.0 38.0 24.0 120

31 Normal 0.954 0.985 0.884 0.954

33 Logistic 0.333 0.315 0.333 0.315

34 Doubleexpon | 0.750 0.866 0.750 0.845

35 Cauchy 0.304 0.409 0.304 0.407

36 Exponential 552 9.50 6.00 5.40

38 U-L (0.75) 0.130 0.161 0.166 0.130
39 L-D (0.75) 0.630 0.665 0.630 0.666
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Table 5. Rankings of the t¢-test (¢), the Wilcoxon test (W), and the adaptive test (A)

Page 28 of 30

Density t W A || Density t W A || Density t W A
Uniform 25 25 1 || RST (0.05) |3 1.5 1.5 || Exponential 3 2 1
Normal 1 3 2 || RST (0.14) | 1 3 2 || Gamma (1.5) |3 2 1
Logistic 3 1.5 1.5 || RST (0.2) 1 3 2 || Gamma (2.0) |3 2 1
Doubleex 3 2 1 ]| RST (0.4) 2 3 1 || Gamma (2.5) | 3 2 1
Cauchy 3 2 1||oN(01,2) |1 3 2| Gamma(3.0) |3 2 1
ta 3 2  1||ON(022) |2 3 1| Gamma(40) |3 2 1
t10 3 15 15| ON(032) |1 3 2| Gamma(5.0) |3 2 1
L-DE 0.55 3 2  1||ON(052) |1 3 2| Gamma(10) |3 2 1
L-DE 0.61 3 2 1 || CN (.01,3) 3 2 1 || Weibull (1.1) | 3 2 1
L-DE 0.70 3 2 1 || CN (.02,3) 3 2 1 || Weibull (1.5) | 3 2 1
L-DE 0.75 3 2 1 ]| CN (.03,3) 3 1 2 || Weibull (2.0) | 3 2 1
L-DE 0.80 3 2  1||ON(053) |3 1 2| Weibull 25) |2 3 1
L-DE 0.90 3 15 15| ON(0L5) |3 2 1| Weibull(3.0) |1 3 2
L-DE 0.95 3 15 15| ON(025) |3 2 1| Webull (40) |1 3 2
L-DE 0.97 3 1.5 1.5 || CN (.03,5) 3 1 2 || Weibull (5.0) 2 3 1
L-DE 0.99 3 1.5 1.5 || CN (.05,5) 3 1.5 1.5 || LogNor (0.05) | 1 3 2
U-L 0.55 3 1.5 15 || Mielke (0.2) | 3 2 1| LogNor (0.1) |2 3 1
U-L 0.61 3 1.5 15 || Mielke (0.4) | 3 2 1| LogNor (0.3) |3 2 1
U-L 0.70 3 2 1| Mielke (0.6) | 3 1.5 1.5 || LogNor (0.5) |3 2 1
U-L0.75 3 2 1| Mielke (0.8) |3 1.5 1.5 || LogNor (0.9) |3 2 1
U-L 0.80 3 2 1| Mieke(1.5) |3 2 1| LogNor(1.0) |3 2 1
U-L 0.90 3 2 1| Mieke(20) |2 3 1| LogNor(1.1) |3 2 1
RST (-1) 3 2 1 || Mielke (5.0) | 2 3 1 || LogNor (1.5) |3 2 1
RST (05)| 3 2 1| Mielke(20) |3 2 1| RST(2.4) |2 3 1
RST (04)| 3 2 1| BT (025 |3 15 15| RST(2,.49) |2 3 1
RST (03)| 3 2 1| BT(05) 3 15 15| RST (4.49) |2 3 1
RST(02)| 3 2 1| BT(07) |3 2 1| RST(-2-4) [3 2 1
RST (0.1) | 3 15 15| BT(1.25) |3 2 1| RST(-2-49) |3 2 1

BT (1.5) 3 2 1| RST (-4-49) |3 2 1
Average 2.67 210 1.23
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2

3

4

5

6

7

8 Rejoinder to the second report of referee B

9

12 Thank you very much for your report on our revised paper. All your
12 comments are considered.

13 In a new section (Section 6) we compare the adaptive test with the
1;1 Wilcoxon test and with the t-test. We think, the improvement of the asymp-
16 totic power is convincing.

17 You are right, the restriction & < 5 looks slightly restrictive, and the
18 computer time argument is not satisfactory. However, we have to make some
19 restriction. We think, the arguments presented in the first paragraph of page
32 5 are sufficient.

22 We have changed “generalized” and “generalization” to “generalised” and
23 “generalisation”. We are sorry, we cannot see any other American English
24 words. The text is thought to be written in British English.

gg In Table 1 we added the asymptotic efficacies of the t-test. We prefer
27 to present the asymptotic efficacies instead of some ARE for the following
28 reasons:

29 First, the paper is on U-statistics, and if any test is chosen to be the
22 reference test for computing AREs, then it should be the Wilcoxon test.
32 Second, there are some densities for which the AE of the t-test is zero, all
33 ARE-values in the corresponding row become oo. Third, the AE allow easier
34 comparisons. The reader may take his/her favourite test and compare it to
gg the others.

37 We decided to add no further curves in Figures 3 and 4. One reason is
38 that there are already five lines, and a sixth one will reduce the readability
39 of the curves. Let us illustrate this fact: For the uniform the two lines for
22 the t-test and U;; coincide, for the normal the line for the t-test lies very
42 slightly above the other lines, but this will not be visible. For the logistic
43 the line for the ?-tests is almost the same as for the tests Us; and Us 3, and
44 for the Cauchy no line exists. An impression of the asymptotic power of the
45 t-test can be obtained from the corresponding entries in Table 1. Another
j? point is that the t-test plays only a marginal role in our paper.

48 We used the SAS package to draw the figures. Concerning the blue dotted
49 and dashed lines this program seems to produce some problems. We are
50 currently working on it. However, we are not able to do it in the narrow time
g; window of two weeks that we have for revision.

53 In Figure 1 we labelled the dot in the upper left corner. Labels on the
54 axes are removed, since an detailled interpretation of the axes is difficult.
gg The other mistakes are corrected.

57 1

58

59
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Figure 3. The asymptotic and finite (n; = ny = 40) power functions of the

~

tests Uy 1, Us 1, Us 1, Us 3 and A(S); densities: uniform, normal and logistic.
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10 Figure 4. The asymptotic and finite (n; = ny = 40) power functions of the

N

11 tests Uy 1,Us 1, Us 1, Us 3 and A(S); densities: doubleexponential, Cauchy and
exponential (Continuation from Figure 3.)
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