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Bayesian Truncated  
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With Application to Dutch  
Illegal Immigrant Data 

 

BOREK D. PUZA, HELEN L. JOHNSON, AND TERENCE J. O'NEILL (22 OCTOBER 2007) 

 

This paper presents a Bayesian approach to the regression analysis of truncated data, 

with a focus on zero-truncated counts from the Poisson distribution. The approach 

provides inference not only on the regression coefficients but also on the total sample 

size and the parameters of the covariate distribution. The theory is applied to some 

illegal immigrant data from The Netherlands. Several models are fitted with the aid of 

Markov chain Monte Carlo methods and assessed via posterior predictive p-values. 

Inferences are compared with those obtained elsewhere using other approaches. 
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1. INTRODUCTION 

 

In statistics, truncation occurs when only those values which lie in a certain region 

are observed. This phenomenon is related to but differs from censoring, whereby 

particular sample values are known only to lie in a certain region. Thus, under 

censoring the number of unobserved values is known, whereas under truncation that 

number is unknown. Truncation and censoring may both be thought of as examples of 

non-ignorable non-response or more generally as examples of biased sampling.  

 

This paper focuses on the regression analysis of data from a truncated Poisson 

distribution where the response is observed if and only if it is non-zero. This is an 

example of truncation where each unobserved response is exactly known (i.e. zero). 

This situation may be contrasted with truncated Gaussian regression where each 

unobserved response is known only to lie in a certain region. 

 

Previously, the analysis of truncated count data has largely been based on maximum 

likelihood (ML) methods. Dahiya and Gross (1973) examined ML estimation of the 

mean of a Poisson distribution truncated at zero, as well as the total sample size (in 

this case the number of observed values plus the number of zeros). Blumenthal, 

Dahiya, and Gross (1978) extended these results with the aim of obtaining an 

improved estimator of the total sample size and investigated the asymptotic properties 

of that estimator. Later, Scollnik (1997) addressed the same inferential issues from a 

Bayesian perspective with the aid of Markov chain Monte Carlo (MCMC) methods. 

However, none of these three papers considered covariate information. Recently, 

Ibrahim, Chen and Lipsitz (2002) proposed Bayesian generalized linear models for 

analysing data with missing covariates but did not consider the issue of truncation.  
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The regression analysis of truncated data has been the subject of research in a number 

of contexts. Amemiya (1984) studied a form of the Tobit model for the regression 

analysis of truncated Gaussian responses. Also, Shaw (1988) and Grogger and Carson 

(1991) considered several regression models for truncated data from the Poisson and 

negative binomial distributions. More recently, O’Neill and Barry (1995a) proposed a 

truncated model for grouped binary data and extended it to grouped ordinal data 

(O’Neill and Barry, 1995b).  

 

Two recent papers which deal specifically with the regression analysis of zero-

truncated Poisson data are Van der Heijden, Cruyff and Van Houwelingen (2003) and 

Van der Heijden, Bustami, Cruyff, Engbersen, and Van Houwelingen (2003). The 

former paper proposes the use of a Horvitz-Thompson estimator for the total sample 

size and thereby calculates estimates of two offender populations in The Netherlands: 

drunk drivers and persons who illegally possess a firearm. The latter paper presents 

the theory used in the former paper in more detail and applies it to a third data set so 

as to estimate the number of illegal immigrants in The Netherlands during 1995. 

 

In this paper we propose a Bayesian alternative to the Horvitz-Thompson approach in 

the two papers by Van der Heijden et al. Arguably, the Bayesian approach is highly 

suitable for analysing the type of truncated data in those two papers. It provides a 

convenient platform for inference not only on the regression coefficients and total 

sample size but also on several other quantities, such as the parameters of the 

covariate distribution itself. The covariate distribution is not a focus of any inference 

in Shaw (1988) or Grogger and Carson (1991) nor in the two papers by Van der 

Heijden et al. It should also be noted that the theory in the latter two papers does not 

lead to the maximum likelihood estimates (MLEs) of any model parameters, only to 
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approximations thereof. Moreover, that theory leads to confidence intervals (CIs) for 

the total sample size which are based on an asymptotic normal approximation to the 

essentially skewed distribution of the authors' proposed Horvitz-Thompson estimator 

of that quantity. 

 

Most importantly, in each of the models considered in Van der Heijden, Bustami et al. 

(2003) there remains significant unobserved heterogeneity. One primary goal of the 

present paper is to reanalyse the data in that paper, to find a model which fits them 

satisfactorily - so that there remains no heterogeneity - and hence to derive 

convincing point and interval estimates of the total number of Dutch illegal 

immigrants in 1995. We believe that this goal has been achieved. 

 

In Section 2 we review the ML approach to the analysis of truncated data and point 

out some problems with that approach. The Bayesian approach is discussed in Section 

3, and Sections 4 and 5 narrow down the class of models to be considered to the case 

of a categorical covariate distribution, a Poisson response with truncation at zero, and 

a priori ignorance regarding all model parameters. In Section 6 the Bayesian theory is 

applied to the Dutch illegal immigrant data in Van der Heijden, Bustami et al. (2003), 

and inferences are compared with the results obtained in that paper. 

 

The Bayesian model used in Section 6 is assessed in Section 7 using posterior 

predictive p-values and rejected as not fitting the Dutch illegal immigrant data very 

well. Sections 8 and 9 feature two alternative Bayesian models, each involving a 

hidden covariate. A fourth model is then fitted in Section 10 and shown to pass a 

suitable posterior predictive p-value check in Section 11. Some final inferences are 

drawn from the fourth model in Section 12, and Section 13 contains a summary and 

discussion. Several technical details are relegated to the Appendix. 
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2. MAXIMUM LIKELIHOOD ANALYSIS OF TRUNCATED DATA 

 

Consider a situation where events of a certain type occur randomly according to some 

process, and let N denote the total number of such events which occur in a specified 

time period and location under study. We call N the total sample size. When an event 

occurs it is associated with certain characteristics which may be described by the 

value of a covariate x, whose probability density function (pdf) ( )f x  depends on a 

parameter θ . Also, the event is associated with the value of a response variable y 

whose conditional pdf ( | )f y x  depends on a parameter β . Each of x, y, θ  and β  

may be a scalar or a column vector. For the time being, θ , β  and N are to be thought 

of as unknown constants, but later we will treat them as random variables. Suppose 

that:  

 

 ● We observe an event with value ( , )x y  if and only if y is in some specified  

  region, R. 

 ● We observe n such events, with their ( , )x y  values denoted  

  1 1( , ),..., ( , )n nx y x y . 

 ● On the basis of these n data pairs, we wish to make inferences regarding β ,  

  θ  and N. 

 

First observe that the pdf of an observed (or truncated) data pair ( , )x y  is  

 

 ( , )( , | ) f x yf x y y R
P

∈ = , y R∈ , 
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where ( , ) ( ) ( | )f x y f x f y x=  and ( ) ( , )P P y R P β θ= ∈ =  (a function of β  and θ ). 

Hence the joint pdf of the truncated data pairs - conditional on there being n of them - 

may be written   

 

 ( , | )( , | , )n
n

f X Y nf X Y Y R n
P

∈ = ,   nY R∈ , 

 

where: 1( ,..., )nX x x ′=  and 1( ,..., )nY y y ′= ; 1( , | ) ( , )n
i i if X Y n f x y==∏ , where 

( , )i if x y  denotes ( , )f x y  evaluated at ix x=  and iy y= ; and nY R∈  means 

" iy R∈  for all i = 1,...,n".  

 

Now, the observed (or truncated) sample size n has a binomial distribution with 

parameters N and P. Hence the pdf of the truncated data, defined as 

( , , | )nD X Y n Y R= ∈ , may be written 

 

 ( , | )( ) (1 )n N n
n

Nf X Y nf D P P
nP

−
⎛ ⎞⎟⎜= × ⎟ −⎜ ⎟⎜ ⎟⎜⎝ ⎠

,   nY R∈ .       (1) 

 

Consequently, the likelihood function may be taken as 

 

 !( , , ) ( , | ) (1 )
( )!

N nNL N f X Y n P
N n

β θ −= −
−

,        (2) 

 

keeping in mind that P and ( , | )f X Y n  are implicitly functions of β  and θ . The 

MLEs of β , θ  and N can be obtained as follows. First, find the conditional MLEs 

ˆ( )Nβ  of β  and ˆ( )Nθ  of θ  which maximize (2) for each fixed , 1, 2,...N n n n= + +  

Then N̂ , the MLE of N, is the value which maximizes ˆ ˆ( ( ), ( ), )L N N Nβ θ . The MLEs 
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of β  and θ  are then ˆ ˆ ˆ( )Nβ β=  and ˆ ˆ ˆ( )Nθ θ= . Each pair ( ˆ( )Nβ , ˆ( )Nθ ) can be 

obtained using a Newton-Raphson or EM algorithm. 

 

Unfortunately, the above approach becomes problematic when it comes to estimating 

variances. This is because N is a discrete quantity. Consequently, special techniques 

are required, either along the lines of Dahiya and Gross (1973) and Blumenthal et al. 

(1978) which involve asymptotic expansions (in a simpler context with no 

covariates), or along the lines of Van der Heijden, Bustami et al. (2003) which 

involve the Horvitz-Thompson estimator. Our situation differs from those considered 

previously - and is more complicated - because we are additionally concerned with 

estimating the parameter θ  which characterizes the covariate distribution.  

 

Arguably, the Bayesian approach is highly suitable in the present context. As we will 

see, this approach permits easy calculation of both point and interval estimates for β , 

θ  and N. It also provides a convenient platform for inference on other quantities: 

such as functions of β , θ  and N; and such as the number of the N n−  unobserved 

values with particular characteristics. After a description of the Bayesian approach we 

will apply it to some Dutch illegal immigrant data and compare our results with the 

analysis of the same data in Van der Heijden, Bustami et al. (2003).  

 

3. THE BAYESIAN APPROACH 

 

The Bayesian approach to inference on β , θ  and N is to treat these quantities as 

random variables, to specify a joint prior pdf for them, and to multiply that pdf by the 

pdf of the truncated data at (1), rewritten as ( | , , )f D Nβ θ . The resulting joint 

posterior pdf is given by 
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 !( , , | ) ( , , ) ( , | , , ) (1 )
( )!

N nNf N D f N f X Y n P
N n

β θ β θ β θ −∝ × −
−

,   (3) 

 

where ( , , )f Nβ θ  is the prior pdf, where ( , | )f X Y n  at (1) has been rewritten 

( , | , , )f X Y n β θ , and where ( | , ) ( , )P P y R Pβ θ β θ= ∈ =  is the same function of β  

and θ  as P in Section 2. 

 

The equations necessary for inference based on (3) are typically intractable but can be 

solved to any degree of precision with the aid of MCMC methods (Gilks, Richardson 

and Spiegelhalter, 1996). In particular, a Metropolis-Hastings (MH) algorithm can be 

used to obtain a large random sample from (3), namely 
(1) (1) (1) ( ) ( ) ( )( , , ),..., ( , , ) ~ ( , , | )J J JN N iid f N Dβ θ β θ β θ .  

 

This sample can then be used to perform Monte Carlo inference on any functional 

( , , )Nγ γ β θ= . For example, the posterior mean ˆ ( | )E Dγ γ=  may be estimated by 
1 ( )

1
J j
jJγ γ−
== ∑ , where ( ) ( ) ( ) ( )( , , )j j j jNγ γ β θ= ; and a 1 α−  CI for γ̂  is 

/ 2( / )z s Jα γγ ± , where zδ  denotes the upper δ -quantile of the standard normal 

distribution and 2 1 2
1( 1) ( )J

j js Jγ γ γ−
== − ∑ − . The 1 α−  central posterior density 

region (CPDR) for γ  itself may be estimated by the / 2α  and 1 / 2α−  empirical 

quantiles of  (1) ( ),..., Jγ γ . 

 

4. A  PRIORI IGNORANCE REGARDING THE TOTAL SAMPLE 

SIZE 

 

In the special case of a priori ignorance regarding N, one suitable choice of joint prior 

is given by: 
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 ( , , ) ( , ) ( )f N f f Nβ θ β θ=  

 ( ) 1/ , 1,2,3,...f N N N∝ = , 

 

where ( , )f β θ  is the joint prior of β  and θ . This choice yields the convenient 

factorisation  

 

 ( , , | ) ( , | ) ( | , , )f N D f D f N Dβ θ β θ β θ= , 

 

where: 

 

 ( , | , , )( , | ) ( , ) n

f X Y nf D f
P

β θ
β θ β θ∝          (4) 

 
1

( | , , ) (1 ) , , 1, 2,...
1

n N nN
f N D P P N n n n

n
β θ −

⎛ ⎞− ⎟⎜= ⎟ − = + +⎜ ⎟⎜ ⎟⎜ −⎝ ⎠
.    (5) 

  

By the method of composition (Tanner, 1993), equations (4) and (5) permit the Monte 

Carlo sample from (3) to be obtained more simply. First apply an MH algorithm 

based on (4) (rather than on (3)) so as to yield 
(1) (1) ( ) ( )( , ),..., ( , ) ~ ( , | )J J iid f Dβ θ β θ β θ . Then for each 1,...,j J= , sample ( )jN  from 

the negative binomial distribution with parameters n and ( ) ( )( , )j jP β θ . The J resulting 

triplets  ( ) ( ) ( )( , , )j j jNβ θ , 1,...,j J= , then constitute a random sample from 

( , , | )f N Dβ θ . 

 

Note that (4) defines exactly the same posterior for β  and θ  as would be implied by 

sampling repeatedly until n positive values of y have been obtained. In that case, N 

would be the total number of pairs ( , )x y  sampled and not of direct interest. In 

contrast, the actual situation under consideration is that of N already-existing pairs 
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( , )x y , where only the n pairs with y > 0 are observed. This appealing equivalence 

results from using the prior ( ) 1/ , 1,2,3,...f N N N∝ =  

 

5. CATEGORICAL COVARIATES AND A POISSON RESPONSE   

 

To provide a concrete example, first suppose that each covariate x is a column vector 

of length 1K +  which takes on one of the known values 1,..., Tv v  with corresponding 

unknown probabilities 1,..., Tπ π , where these are parameterized by 2( ,..., )Tθ θ θ ′=  

according to the logistic formulation 1log( / )t tθ π π=  . Secondly, suppose that the 

response y for an event with covariate x is Poisson with mean ( ) exp( )x xλ β′= , 

where 0( ,..., )Kβ β β ′=  is the vector of regression coefficients.  Thirdly, suppose that 

an event is observed if and only if its response y is positive. 

 

Then, in the classical framework, x has a categorical distribution  

with pdf 1( ) ( )T
t t tf x I x vπ==∑ = , 1,..., Tx v v= , where ( )I ⋅  is the standard  

indicator function, 1 1 1 2( ) ( ) 1/{1 exp( ) ... exp( )}TP x vπ π θ θ θ= = = = + + + , and 

1( ) exp( )t t tP x vπ π θ= = = , 2,...,t T= . Also, ( | ) exp( ( )) ( ) / !yf y x x x yλ λ= − , 

0,1,2,...y = , and { }1, 2,3,...R += ≡ , so that 1( 0) T
t t tP P y pπ== > =∑ , where 

( 0 | ) 1 exp{ exp( )}t t tp P y x v v β′= > = = − − .  

 

In a Bayesian setting, some expressions above require rewriting with an appropriate 

conditioning on β  and θ . Thus, we should replace ( )f x  by ( | )f x θ , ( )tP x v=  by 

( | )tP x v θ= , ( )f y  by ( | , )f y x β , ( 0)P y>  by ( 0 | , )P y β θ> , and ( 0 | )tP y x v> =  

by ( 0 | , )tP y x v β> = .  

 

Suppose that there is a priori ignorance regarding all unknown quantities and it is 

reasonable to set ( , , ) ( , ) ( )f N f f Nβ θ β θ= , where ( ) 1/ , 1, 2,3,...f N N N∝ =  (see 
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Section 4) and 1 1( , ) 1, ,K Tf β θ β θ+ −∝ ∈ℜ ∈ℜ  (so that all the components of β  and 

θ  are a priori uniform over ( ),ℜ≡ −∞ ∞ , independently of one another and of N). 

 

Given the above specifications, the pdfs at (3), (4) and (5) are completely defined. 

After some algebra, a convenient way to write the pdf at (4) is 

( , | ) exp{ ( , )}f D lβ θ β θ∝ , where 

  

 { } { }
1 11

1( , ) ( ) ( ) log exp ( )
( )

T T

t t t t t t t
t t

l n y nβ θ η β θ µ β θ µ β
π θ= =

⎛ ⎞⎟⎜ ⎟= + − − − −⎜ ⎟⎜ ⎟⎜⎝ ⎠
∑ ∑ , 

 

and where: 1 0θ ≡ ; 1 ( )n
t i i tn I x v==∑ =  is the number of observed events with 

covariate tv ; 1
1 ( )n

t t i i i ty n y I x v−
== ∑ =  is the average response for the observed 

events with covariate tv ; ( )t tvη β β′=  is the linear predictor for a value with covariate 

tv ; ( ) exp{ ( )}t tµ β η β=  is the mean of the postulated Poisson distribution for the 

response of an event with covariate tv ; and 1 1( ) 1/ exp( )T
t tπ θ θ== ∑  is the probability 

that an event has covariate 1v . 

 

6. APPLICATION TO DUTCH ILLEGAL IMMIGRANT DATA 

 

To illustrate the model in Section 5, we will apply it to some data taken from Van der 

Heijden, Bustami et al. (2003), as given in Table 1. In their paper these data are 

discussed in detail and only a brief description will be given here. According to Dutch 

police records, in 1995 there were 4392 persons who were apprehended and 

identified as illegal immigrants in The Netherlands. Of these, only 2512 were 

effectively expelled from the country. The remaining 1880 consisted of 398 females 

and 1482 males. In turn there were 366 females and 1279 males who were each 
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apprehended once, 24 females and 159 males who were each apprehended twice, and 

so on.  

 

Of primary interest is the total number of apprehensible but not effectively expellable 

illegal immigrants in the Netherlands during 1995 - hereafter referred to simply as the 

total number of illegal immigrants. This question was addressed by Van der Heijden, 

Bustami et al. (2003) using several different models with varying amounts of 

covariate information. However, none of these models was deemed to fit the data 

very well, and none of the models made an attempt to estimate the covariate 

distribution. Our aim here is to find a satisfactory model whose solution yields 

plausible inferences regarding the quantity of primary interest as well as several 

others. 

 

Table 1.   Dutch illegal immigrant data 

 

   Frequency of apprehension  

   1 2 3 4 5 6 Total 

 Females 366 24 6 1 1 0 398 

 

 

Males 1279 159 31 12 0 1 1482 

  Persons 1645 183 37 13 1 1 1880 

 

The data in Table 1 may be taken as representing 1880n =  data pairs ( , )i ix y , i = 

1,...,n, where each iy  is a positive integer, and where each ix  is either 1 (1,0)v ′=  (in 

the case of a female) or 2 (1,1)v ′=  (in the case of a male). Thus T = 2, 1n  = 398 and 

2n  = 1482. It is also useful at this stage to define 1 ( , )n
ty i i t in I x v y y==∑ = =  

(conditional on Y > 0), and 1
T

y t tyn n• ==∑  (i.e. the total number of persons who were 
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apprehended exactly y times). Thus, 24n  = 12, 2n•  = 183, etc. The regression 

parameter here is 0 1( , )β β β ′= , and so K = 1.  

 

Assuming suitability of the model in Section 5, the number of times a female is 

apprehended follows a Poisson distribution with mean 1 1 0exp( ) exp( )vµ β β′= = , and 

the number of times a male is apprehended follows a Poisson distribution with mean 

2 2 0 1exp( ) exp( )vµ β β β′= = + . The probabilities of an illegal immigrant being female 

and male are, respectively, 1 21/(1 exp( ))π θ= +  and 2 11π π= − . We wish to make 

inferences regarding 0β  (the intercept), 1β  (the male indicator coefficient), 2θ  (the 

logodds of being male), N (the total number of illegal immigrants), and some other 

quantities, such as 2m , the number of unapprehended males.  

 

An MH algorithm was applied according to Sections 4 and 5 so as to obtain a sample 

of size 10000J =  from 0 1 2( , , | )f Dβ β θ . Let this sample be denoted 
(1) (1) (1) ( ) ( ) ( )
0 1 2 0 1 2( , , ),..., ( , , )J J Jβ β θ β β θ . Then for each 1,...,j J= , a value ( )jN  was 

sampled from the negative binomial distribution with parameters n and 
( ) ( ) ( ) ( ) ( )

1 1 2 2
j j j j jP p pπ π= + , where ( ) ( )

1 21/(1 exp( ))j jπ θ= + , ( ) ( )
2 11j jπ π= − , 

( ) ( )
1 01 exp( exp( ))j jp β= − −  and ( ) ( ) ( )

2 0 11 exp( exp( ))j j jp β β= − − + . 

 

Taking (1) ( ),..., JN N  as a sample from ( | )f N D , the posterior mean of N, 

ˆ ( | )N E N D= , was estimated by (1) ( )( ... ) /JN N N J= + +  = 7368.7. Also, the 95% 

CPDR for N was estimated as [6592, 8308], whose bounds are the 0.025 and 0.975 

empirical quantiles of (1) ( ),..., JN N .  

 

These inferences are similar to those in Table 5 of Van der Heijden, Bustami et al. 

(2003), where a non-Bayesian model with only gender as a covariate yielded the 

point estimate 7319 (≈ 7369) and the 95% CI [6504, 8134] (≈ [6592, 8308]).  
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We see that our inferences are slightly higher. This may be due to the posterior 

density of N being skewed to the right, as is evident from histograms of (1) ( ),..., JN N  

(not shown here). By contrast, the approach of Van der Heijden, Bustami et al. (2003) 

involves approximating the distribution of a Horvitz-Thompson-type estimator with a 

normal distribution. We hypothesize that that distribution is in fact right-skewed and 

that if this were taken into account the estimates in Van der Heijden, Bustami et al. 

(2003) would be slightly lower and more in line with our inference. 

  

In the same way as for N we also estimated 0β , 1β  and 2θ  by -1.57, 0.48 and 0.90, 

with 95% CPDRs (-1.90, -1.28), (0.17, 0.83) and (0.56, 1.19), respectively. From our 

results regarding 1β  we deduce that there is a difference between males and females: 

the ratio of the Poisson mean for males to the Poisson mean for females is estimated 

to be about exp(0.48)  = 1.6, and there appears to be a 95% probability (a posteriori) 

that that ratio is between about exp(0.17)  = 1.2 and exp(0.83)  = 2.3. In comparison, 

using a non-Bayesian model with more covariates, Van der Heijden, Bustami et al. 

(2003) estimated 1β  by 0.397 with standard error 0.163 (see Table 4 in that paper). 

 

The usefulness of the Bayesian approach is evidenced by the ease with which the 

Monte Carlo sample can be used to make inferences regarding a host of other 

quantities of potential interest. In particular, suppose that we are interested in 2m , 

defined as the number of unapprehended males amongst the N n−  unapprehended 

persons. According to our model, 2 2( | , , , ) ~ ( , )m N n Bin N nβ θ ψ− , where 

2 2 2 2( | 0, , ) (1 ) /(1 )P x v y p Pψ β θ π= = = = − − . Hence we simulate 
( ) ( ) ( )
2 2~ ( , )j j jm Bin N n ψ−  for each 1,...,j J= , where ( ) ( ) ( ) ( )

2 2 2(1 ) /(1 )j j j jp Pψ π= − − .  

 



15 

  

The resulting values, (1) ( )
2 2,..., Jm m , constitute a random sample from the posterior 

distribution of 2m , and their average, 2m  = 3738.2, provides an estimate of the 

posterior mean of 2m . Also, the empirical 0.025 and 0.975 quantiles of (1) ( )
2 2,..., Jm m  

are 3211 and 4317, which provide estimates of the bounds of the 95% CPDR for 2m . 

A possibly better approach to point estimation of 2m  is to note that 

2 2( | , , , ) ( )E m N n N nβ θ ψ= − . This fact leads to the Rao-Blackwell estimate,  
1 ( ) ( )

1 2( )J j j
jJ N n ψ−
=∑ −  = 3738.2 (which in this case is identical to 2m  to one decimal 

place). 

  

7. MODEL CHECK VIA POSTERIOR PREDICTIVE P-VALUES 

 

None of the models in Van der Heijden, Bustami et al. (2003) fit the illegal immigrant 

data adequately (see p319 in that paper). It is therefore of interest to see whether the 

same conclusion applies for the Bayesian model fitted in Section 6. One way to 

address this issue is via posterior predictive p-values (Gelman, Carlin, Stern and 

Rubin, 1995, pp169-174). To this end, let the discrepancy quantity be 

 

 2

1 1

( , , )
T M

ty
t y

W rβ θ
= =

∆=∆ =∑∑ , 

 

where T = 2, M = 6 and:   

 

 ty ty
ty

ty

n e
r

s
−

=               (the ty-th standardized residual) 

 { : 1,..., ; 1,..., }tyW n t T y M= = =          (the set of 12 counts in Table 1) 

 ( | , , )ty ty te E n nβ θ= , 2 ( | , , )ty ty ts V n nβ θ= . 
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Here, tye  and 2
tys  are the mean and variance of the ty-th frequency tyn , given the 

model parameters, and given that 1n  = 398 females and 2n  = 1482 males were 

observed. The ppp-value may be defined as ( | )P DΠ= ∆≥∆ , where 

( , , )W β θ∆=∆  and W  is an independent future replicate of W given 1,..., Tn n . 

Although Π  is difficult to calculate analytically, it can readily be estimated via 

Monte Carlo. Details can be found in Appendix A.1. Thereby we estimate Π  by  

Π̂  = 0.0003, with 95% CI (0, 0.00064).  

 

Because Π  is very small, we conclude that the model used in Section 6 provides a 

poor fit to the data. Further details of this analysis are presented in Table 2 which 

shows the observed frequencies tyn  in Table 1 alongside the estimated expected 

frequencies tye  and estimated standardized residuals tyr  for both females (t = 1) and 

males (t = 2).  

 

In Table 2 the residuals greater than 3 in absolute value are marked by an asterisk, 

suggesting points of poor fit. For example, 24n  = 12 males were apprehended 4 times. 

According to the fitted model, we would expect only about 24e  = 2.0 of the 2n  = 1482 

males to be apprehended 4 times. The discrepancy between 12 and 2 appears to be 

due to more than just chance, and this intuitive assessment is corroborated by the 

estimated standardized residual 24r  = 7.24 being large. 
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Table 2:   Observed and estimated counts 

 

y Observed Expected Standardized residual 

 Female Male Total Female Male Total Female Male 

0 0 0 0 1750.5 3738.2 5488.7   

1 366 1279 1645 357.7 1247.7 1605.4 1.32 2.21 

2 24 159 183 37.5 208.8 246.3 -2.27 -3.71* 

3 6 31 37 2.7 23.4 26.1 2.17 1.62 

4 1 12 13 0.15 2.0 2.1 2.44 7.24* 

5 1 0 1 0.0066 0.13 0.14 14.03 -0.36 

6 0 1 1 0.00025 0.0075 0.0080 -0.01 11.79* 

Total 398 1482 1880 2148.5 5220.2 7368.7   

 

8. A HIDDEN COVARIATE MODEL 

 

Having established that the model used in Section 6 does not fit the data very well, 

we now consider alternatives. One possibility is to postulate a hidden covariate with 

two possible values. To make things concrete, let us hypothesize that each individual 

has an unknown susceptibility to being apprehended and is either cautious or 

careless, although we don't know which. Then we may take the logarithm of the mean 

of the ith person's response iy  as  

 

 0 0 1 1 2 2i i i ix x x xβ β β β′ = + + , 

 

where 0 , 1 , 2( )i i i ix x x x ′=  is the value of the ith person's covariate vector and equals one 

of the following: 
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 1v′  = (1,0,0)  (if they are a cautious female) 

 2v′  = (1,0,1)  (if they are a careless female) 

 3v′  = (1,1,0)  (if they are a cautious male) 

      4v′  = (1,1,1)  (if they are a careless male). 

 

This specification corresponds to a model in the class of models already considered in 

Section 5, with K = 2, 0 1 2( , , )β β β β ′= , T = 4, and 2 3 4( , , )θ θ θ θ ′= . However, in this 

case we do not know 1n , 2n , 3n  and 4n  (the numbers of cautious females, careless 

females, cautious males and careless males, respectively), only that the total number 

of females is 1 2 398n n+ = , and the total number of males is 3 4 1482n n+ = . Also, 

we do not know 23n , the number of careless females who were apprehended three 

times, only that the total number of females apprehended three times is 13 23n n+  = 6 

(see Table 1). 

 

As before we will take the priors on 0 1 2 3, , ,β β θ θ  and 4θ  as independent and uniform 

over ℜ . Also, for reasons of identifiability, we will restrict 2β  (the susceptability 

coefficient) to be positive by using the prior 2 2( ) 1,f δ δ∝ ∈ℜ , where 2 2logδ β=  

(instead of 2 2( ) 1,f β β∝ ∈ℜ ). 

 

Inference can once again proceed via Monte Carlo after first implementing a suitable 

MH algorithm. In this case our target is a random sample from the joint posterior 

distribution of  

 

 0 1 2, ,β β β ;     2 3 4, ,θ θ θ ;   21 22 23 24 25, , , ,n n n n n ;     41 42 43 44 46, , , ,n n n n n .    (6) 
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Note that 16n  and 26n  must be zero because no female was apprehended 6 times (see 

Table 1), and this is why 26n  does not appear in (6). Likewise, 35 45 0n n+ =  implies 

that 45 0n = . 

 

We see that a suitable MH algorithm is very similar to the one used in Section 6 but 

with 10 additional Gibbs steps, one for each tyn  listed in (6). See Appendix A.2 for 

details regarding these steps. From the output of the MH algorithm we estimated the 

posterior mean and 95% CPDR for 2β  as 3.18 and (2.00, 5.66). This implies a clear 

distinction between the hypothesized careless and cautions persons, with the ratio of 

the two expected numbers of apprehensions being about exp(3.18)  = 24, and almost 

certainly more than exp(2.00)  = 7.4.  

 

Also, we estimate the posterior mean and 95% CPDR for 1β  as -0.21 and (-1.18, 

0.67), and the posterior probability that 1β  is positive as 32%. These results are very 

notable because they suggest that there may be no difference between males and 

females, and that the difference found in Section 6 was only apparent and possibly 

just an artefact of using a poorly fitting model. 

 

9. A HIDDEN COVARIATE MODEL WITH UNEQUAL RATIOS 

 

The hidden covariate model in Section 8 assumes that the ratio of the Poisson mean 

for careless females to the Poisson mean for cautious females is exactly the same as 

the ratio of the Poisson mean for careless males to the Poisson mean for cautious 

males (and that both ratios are equal to 2exp( )β ). This suggests that we also consider 

a model where the two ratios may be unequal. To this end suppose that the logarithm 

of the mean of the ith person's response iy  is  
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 0 0 1 1 2 2 3 3i i i i ix x x x xβ β β β β′ = + + + , 

 

where 0 , 1 , 2 3( , )i i i i ix x x x x ′=  is the value of the person's covariate vector and equals one 

of the following: 

 

 1v′  = (1,0,0,0)  (if they are a cautious female) 

 2v′  = (1,0,1,0)  (if they are a careless female) 

 3v′  = (1,1,0,0)  (if they are a cautious male) 

      4v′  = (1,1,0,1)  (if they are a careless male). 

 

The only difference between the model here and the one in Section 8 is that K = 3, 

0 1 2 3( , , , )β β β β β ′= , 2exp( )β  is the ratio of the Poisson mean for careless females to 

the Poisson mean for cautious females, and 3exp( )β  is the ratio of the Poisson mean 

for careless males to the Poisson mean for cautious males. These two ratios are now 

not necessarily the same, as they were in Section 8. For reasons of identifiability we 

will use the prior 0 1 2 3( , , , ) 1f β β δ δ ∝ , 0 1 2 3, , ,β β δ δ ∈ℜ , where logk kδ β=  (instead of 

0 1 2 3( , , , ) 1f β β β β ∝ , 0 1 2 3, , ,β β β β ∈ℜ ). 

 

Applying an MH algorithm similar to the one in Section 8, we obtained a random 

sample from the joint posterior distribution of the now 17 unknown parameters (the 

16 parameters in (6) plus 3β ). Thereby we estimated the posterior mean and 95% 

CPDR for 1β  as 1.11 and (-2.03, 4.51), and the posterior probability of 1β  being 

positive as 74%. These results again suggest that there is no difference between males 

and females. 
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10. A HIDDEN COVARIATE NO-GENDER MODEL 

 

Section 7 showed that a model with only gender as a covariate does not fit the data 

very well. Sections 8 and 9 then showed that introducing a hidden covariate makes 

gender statistically insignificant - both when that hidden covariate is assumed to be 

the same for males and females and when it is assumed to be different. This suggests 

that we now fit a model with only the hidden covariate and no gender. To this end, 

suppose that for both males and females the log-mean of the ith person's response iy  

is 

 

 0 0 1 1i i ix x xβ β β′ = + , 

 

where 0 , 1( )i i i ix x x ′=  is the value of the person's covariate vector and equals one of 

the following: 

 

 1v′  = (1,0)  (if they are cautious) 

 2v′  = (1,1)  (if they are careless). 

 

In this case the unknown quantities are 0 1 2 21 22 23 24 25 26, , , , , , , ,n n n n n nβ β θ ,  where 2 yn  is 

the number of careless persons (both male and female) who were apprehended y 

times. A suitable MH algorithm involves six Gibbs steps, as detailed in Appendix 

A.3. Applying this MH algorithm, we obtained a random sample from the posterior 

distribution of the now 9 unknown quantities. Thereby we estimated the posterior 

mean and 95% CPDR for 1β  as 2.31 and (1.89, 3.02). Thus the hidden covariate is 

statistically significant when gender has been removed from the model. The 

corresponding inferences for 0β  are -3.13 and (-3.17, -1.59), and those for 2θ  are  

-3.58 and (-4.47, -2.86). 
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11. CHECK OF THE HIDDEN COVARIATE NO-GENDER MODEL   

 

It remains to check the fit of the covariate model with no gender considered in 

Section 10. To this end we may define the discrepancy quantity as 

 

 2

1

( , , )
M

y
y

W rβ θ
=

∆=∆ =∑ , 

 

where M = 6 and: 

 

 y y
y

y

n e
r

s
• −

=      (the y-th standardized residual) 

 1{ ,..., }MW n n• •=     (the set of person frequencies in Table 1)     

 ( | , , )y ye E n nβ θ•= ,  2 ( | , , )y ys V n nβ θ•= . 

 

The ppp-value, ( | )P DΠ= ∆≥∆ , may be estimated via Monte Carlo (see Appendix 

A.4) and we find that Π̂  = 0.46. This provides no evidence against the model fitting 

well.  

 

Table 3 provides estimates of the expected counts and standardized residuals used in 

the calculation of Π̂ . We see that all six standardized residuals 1 6,...,r r  are less than 

unity in absolute value. This is in contrast to the residuals in Table 6 of Van der 

Heijden, Bustami et al. (2003) which include three that are greater than 3 in absolute 

value, indicating a lack of fit. Those residuals are reproduced in the last column of 

our Table 6 and the three extremes are asterisked. 
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Table 3:   Observed and estimated counts for the hidden covariate no-gender model 

 

  Results for the hidden 

covariate model in Section 7 

Results in Table 6 of Van der 

Leijden, Bustami et al. (2006) 

y Observed Estimated Residuals Estimated Residuals 

0 0 13433.8  10810.4  

1 1645 1643.8 0.06 1612.6 0.81 

2 183 184.7 -0.10 233.7 -3.32* 

3 37 38.2 -0.14 30.1 1.25 

4 13 10.2 0.96 3.2 5.42* 

5 1 2.5 -0.90 0.3 1.31 

6 1 0.6 0.81 0.0 6.57* 

Total 1880 15313.8  12690.3  

 

12. FURTHER INFERENCES USING THE BEST MODEL 

 

Having found a model in Section 10 which passed the posterior predictive model 

check in Section 11, we now provide further inference based on that model. Using the 

output from the MH algorithm in Section 10, our Monte Carlo estimate of 

1 1 0exp( ) exp( )vµ β β′= = , the mean of the Poisson distribution for cautious illegal 

immigrants, is 0.13 with 95% CPDR (0.04, 0.20); and our estimate of 

2 2 0 1exp( ) exp( )vµ β β β′= = + , the mean of the Poisson distribution for careless 

illegal immigrants, is 1.23 with 95% CPDR (0.78, 1.94).  

 

Using further simulations, we also estimate the posterior mean and 95% CPDR for N 

as 15314 and [9574, 32656]. These results may be compared with 12690 and [7186, 



24 

  

18194] which are the corresponding estimates in Van der Heijden, Bustami et al. 

(2003, Table 5) under their best model which takes into account gender, age and 

nationality but still exhibits some unobserved heterogeneity. Our inference is 

somewhat higher, and this is in agreement with the suggestion in Van der Heijden, 

Bustami et al. (2003, page 319) that "12690 should be interpreted as an 

underestimate". For an explanation of why remaining unobserved heterogeneity could 

cause N to be underestimated, see the last paragraph on page 297 of Van der Heijden, 

Cruyff et al. (2003).  

 

Also, our estimate of 1n , the number of cautious illegal immigrants in the sample, is 

1579; and so our estimate of 2n , the number of careless illegal immigrants in the 

sample, is 1880 - 1579 = 301. The 95% CPDR for 2n  is estimated as [102,602]. 

 

After further simulations, we also estimate 1m , the number of unapprehended 

cautious illegal immigrants, as 13274, and so we estimate 2m , the number of 

unapprehended careless illegal immigrants, as 15314 - 13274 = 160. Our 95% CPDR 

estimate for 2m  is [16,500]. 

 

Thus it appears that the vast majority of illegal immigrants are cautious and have only 

a small probability of being apprehended, namely about 1 exp( 0.13) 12%− − = . At 

the same time there exists a small but significant proportion of careless persons 

whose probability of apprehension is higher at about 1 exp( 1.23) 71%− − = . That 

proportion is about 301/1880 = 16% in the sample, about 160/(15314 - 1880) = 1% in 

the non-sample, and about (301 + 160)/15314 = 3% overall. 
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13. SUMMARY AND DISCUSSION 

 

In this paper we have developed a Bayesian modeling framework for the analysis of 

truncated data and highlighted the advantages of that framework relative to the 

classical frequentist approach. We focused on a specific class of Bayesian models 

involving a zero-truncated Poisson response, categorical covariates, and a priori 

ignorance regarding all model parameters. An outline was given of how any model in 

that class can be solved with the aid of Markov chain Monte Carlo methods.  

 

Several such Bayesian models were applied to some Dutch illegal immigrant data 

which had previously been analyzed by Van der Heijden, Bustami et al. (2003) using 

approximate maximum likelihood methods and a Horvitz-Thomspon estimator. The 

best model in that paper exhibited residual unexplained heterogeneity, but we were 

able to find a Bayesian model which passed a suitable goodness-of-fit test (with a 

posterior predictive p-value of 0.46). That model includes a hidden covariate which 

can be used to categorize illegal immigrants as either careless or cautious in relation 

to their susceptibility to apprehension. A notable finding was that with the inclusion 

of this hidden covariate, the previously apparent difference between males and 

females disappeared.  

 

The use of hidden covariates is akin to the non-Bayesian approach in Böhning, Dietz, 

Kuhnert and Schön (2005) and Böhning and Schön (2005) where it is shown how an 

unacceptable goodness-of-fit can be addressed by modeling with mixtures. That is, 

our best model is in fact a mixture model with two components - one for careless 

illegal immigrants and one for cautious illegal immigrants. The advantage of the 

Bayesian approach is that it also permits convenient inference on the parameters of 



26 

  

the covariate distribution itself (θ  in our notation), something which is not 

considered in Böhning et al. (2005) or Böhning and Schön (2005).  

 

It should be pointed out that "Algorithm 1 for the Poisson" in Böhning et al. (2005) (a 

version of the EM algorithm) is not actually guaranteed to find the true MLEs of N 

and β  (in our notation). By applying that algorithm in simple situations we found 

that it sometimes terminates close to, but not exactly at, the true MLEs of N and β  

(obtained by way of trial and error). This is likely due to N being a discrete quantity. 

 

APPENDIX 

 

A.1.   The Monte Carlo procedure in Section 7 

 

Observe that  ( | , , ) ~ ( , )ty t t tyn n Bin nβ θ ρ , where  

 

 exp( exp( ) )( | , , , 0)
!(1 exp( exp( ))

t t
ty i t i

t

v v yP y y x v y
y v

β β
ρ β θ

β
′ ′− +

= = = > =
′− −

,     1, 2,...y = , 

 

so that ty t tye n ρ=  and 2 (1 )ty t ty tys n ρ ρ= − . The ppp-value ( | )P DΠ= ∆≥∆  may be 

estimated by 

 

 ( ) ( )

1

1ˆ ( )
J

j j

j

I
J =

Π= ∆ ≥∆∑ ,    with 95% CI   
ˆ ˆ(1 )ˆ 1.96

J

⎛ ⎞⎟Π −Π⎜ ⎟⎜Π± ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
, 

 

where ( ) ( ) ( )( , , )j j jW β θ∆ =∆ , ( ) ( ) ( ) ( )( , , )j j j jW β θ∆ =∆ , and ( )jW  is a value sampled 

from the distribution of W given ( )jβ β= , ( )jθ θ=  and 1,..., Tn n . Here, ( )jβ  and ( )jθ  

are taken from the output of the MH algorithm in Section 6.  
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Each ( )jW  can be obtained as follows. Repeatedly sample from the Poisson 

distribution with mean ( )
0exp( )jβ  until 1 398n =  positive values have been obtained. 

Then for each 1,...,y M= , let ( )
1

j
yn  be the number of these 1n  values which are equal 

to y. Likewise, repeatedly sample from the Poisson distribution with mean 
( ) ( )
0 1exp( )j jβ β+  until 2 1482n =  positive values have been obtained, and then for 

each 1,...,y M= , let ( )
2

j
yn  be the number of these 2n  values which are equal to y. 

Finally form ( ) ( ){ : 1,..., ; 1,..., }j j
tyW n t T y M= = = . 

 

A.2.   The 10 Gibbs steps in Section 8 

 

For 2t =  and each y = 1,2,3,4,5 the Gibbs step is to sample 

2 1 2 2~ ( , )y y y yn Binomial n n ρ+ , where  

 

 2
2 2 1 2

1 2

( | , , )( | , , , or )
( | , , ) ( | , , )y

P x v yP x v y x v v
P x v y P x v y

β θ
ρ β θ

β θ β θ
=

= = = =
= + =

 

                2 2

1 1 2 2

( | , )
( | , ) ( | , )

f y v
f y v f y v

π β
π β π β

=
+

, 

 

and where 4
2exp( ) /{1 exp( )}t t t tπ θ θ== +∑ , ( | , ) exp( ) / !y

t t tf y v yβ µ µ=  and 

exp( )t tvµ β′= .  

 

For 4t =  and each 1,2,3,4,6y =  the Gibbs step is to sample 

4 3 4 4~ ( , )y y y yn Binomial n n ρ+ , where 

 

 4 4
4 4 3 4

3 3 4 4

( | , )( | , , , or )
( | , ) ( | , )y

f y vP x v y x v v
f y v f y v

π β
ρ β θ

π β π β
= = = =

+
. 
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A.3.   The 6 Gibbs steps in Section 10 

 
For each y = 1,2,3,4,5,6 the Gibbs step is to sample 2 2~ ( , )y y yn Binomial n ρ• , where 

 

 2 2
2 2

1 1 2 2

( | , )( | , , )
( | , ) ( | , )y

f y vP x v y
f y v f y v

π β
ρ β θ

π β π β
= = =

+
, 

 
and where: 1 2y y yn n n• = + , exp( ) /(1 exp( ))t t tπ θ θ= + , ( | , ) exp( ) / !y

t t tf y v yβ µ µ=  

and exp( )t tvµ β′= . For reasons of identifiability, we use the prior 1 1( ) 1,f δ δ∝ ∈ℜ , 

1 1logδ β= . 

 

A.4.   The Monte Carlo procedure in Section 11 

 
Observe that ( | , , ) ~ ( , )y yn n Bin nβ θ ρ• , where  

 

 { }1 1 2 2
1( | 0, , ) ( | , ) ( | , )y f y y f y v f y v
P

ρ β θ π β π β= > = + , 

 

so that y ye nρ=  and 2 (1 )y y ys nρ ρ= − . The ppp-value may be defined as 

( | )P DΠ= ∆≥∆ , where ( | 0)D Y Y= >  (the data), ( , , )W β θ∆=∆  and W  is a 

future replicate of W given n. A Monte Carlo estimate of Π  is 1
1

ˆ J
j jJ I−
=Π= ∑ , 

where ( )j j jI I= ∆ ≥∆ , ( ) ( ) ( )( , , )j j jW β θ∆ =∆  and ( ) ( ) ( ) ( )( , , )j j j jW β θ∆ =∆ . To 

generate ( )jW , first sample ( ) ( )
1 1~ ( , )j jn Bin n π , where ( ) ( ) ( )

1 1 1exp( ) /(1 exp( ))j j jπ θ θ= + . 

Then repeatedly sample from the ( )
0(exp( ))jPoisson β  distribution until ( )

1
jn  positive 

values have been obtained. Then repeatedly sample from the 
( ) ( )
0 1(exp( ))j jPoisson β β+  distribution until ( ) ( )

2 1
j jn n n= −  positive values have been 

obtained. Then for each y = 1,...,6, let ( )j
yn•  be the number of the n values obtained 

which are equal to y. Finally, form ( ) ( ) ( )
1 6{ ,..., }j j jW n n• •= . 
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